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I have used the DALL·E 2 [C:1] to create the pictures found at the beginning of each chapter.
Since DALL·E 2 is a software framework based on neural networks that generates images
from text prompts, I included these pictures since they demonstrate the potential of neural
networks.
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English abstract

Ultra-high-energy cosmic rays are the most energetic, naturally occurring particles known
to humankind. Being two orders of magnitude beyond the energy scale of the current
generation of accelerators, the questions of how the cosmic rays obtain their energy and where
they originate from are still a mystery. Moreover, the excess of muons in the decay products
of ultra-high-energy cosmic rays in Earth’s atmosphere also challenges our understanding
of hadronic interactions at the highest energies. To solve the mysteries around cosmic ray
physics, it is integral to identify the masses of the incoming cosmic rays. The separation
of heavy cosmic rays from light cosmic rays allows for studies of the arrival directions to
match minimally-deflected cosmic rays to potential source candidates. In addition, since the
number of nucleons is directly related to the number of muons produced, it also grants us
the ability to cross-test hadronic interaction models on real measurements.

Due to the low flux of ultra-high-energy cosmic rays, large detectors for the indirect
detection of cosmic rays are required to obtain enough statistics. The interaction of a cosmic
ray with Earth’s atmosphere triggers a cascade of secondary particles called air shower.
The Pierre Auger Observatory is the largest cosmic-ray observatory in the world, covering
an effective detection area of over 3000 km2 specifically designed to detect air showers.
The observatory has a hybrid design, using the atmosphere as a calorimeter to observe
the longitudinal shower development with fluorescence detectors and a surface detector of
regularly arranged detector stations on ground level to measure the amount of produced
secondary particles. Commonly, the particles arriving at the ground are referred to as shower
footprint.

The recent rise in the popularity of artificial neural networks granted physicists new,
easy-to-use tools to approach physics problems in a data-driven way. Using neural net-
works presents an opportunity to relate detailed data, such as shower footprints, to physical
observables, such as the energy of an air shower, without the need for analytical model
building.

The central objective of this thesis is the investigation of methods based on neural networks
to extract information from data taken by the surface detector of the Pierre Auger Observatory
that is correlated to the mass of the cosmic rays. To achieve this, I considered two different
approaches and explored the benefit of using neural networks. The first approach is based
on the extraction of the muon content in each station of the surface detector and the second
approach is based on the measurement of the entire shower footprint. Using Monte Carlo
simulation studies, I discarded the first approach in favor of the second, which showed more
promising results. From this simulation study, I selected three different neural network
models trained to predict the depth of the shower maximum, relative muon content, and
logarithmic mass from shower footprints. As a final step, I applied the networks on air
showers measured by the Pierre Auger Observatory to estimate the mass composition of
ultra-high-energy cosmic rays.
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German abstract

Die ultrahochenergetische kosmische Strahlung besteht aus den energiereichsten, natürlich
vorkommenden Teilchen, die der Menschheit bekannt sind. Da sie zwei Größenordnungen
jenseits der Energieskala der derzeitigen Generation von Teilchenbeschleunigern liegt, sind
die Fragen, wie die kosmische Strahlung ihre Energie erhält und woher sie stammt, noch
immer ein Mysterium. Darüber hinaus stellt der Überschuss an Myonen in den Zerfalls-
produkten der ultrahochenergetischen kosmischen Strahlung in der Erdatmosphäre auch
unser Verständnis der hadronischen Wechselwirkungen bei höchsten Energien in Frage. Um
die Rätsel der kosmischen Strahlung zu lösen, ist es unerlässlich, die Massen der einfallen-
den kosmischen Strahlen zu bestimmen. Die Trennung der schweren kosmischen Strahlung
von der leichten kosmischen Strahlung ermöglicht Untersuchungen der Einfallsrichtungen,
um minimal abgelenkte kosmische Strahlung mit potenziellen Quellen in Verbindung zu
bringen. Da die Anzahl der Nukleonen direkt mit der Anzahl der erzeugten Myonen zusam-
menhängt, können wir dadurch außerdem die Modelle der hadronischen Wechselwirkung
anhand realer Messungen überprüfen.

Aufgrund des geringen Flusses der ultrahochenergetischen kosmischen Strahlung sind
große Detektoren für den indirekten Nachweis der kosmischen Strahlung erforderlich, um
genügend Statistik zu erhalten. Das Pierre-Auger-Observatorium ist das größte Observato-
rium für kosmische Strahlung auf der Welt und deckt einen Fläche von über 3000 km2 ab.
Der Zerfall eines hochenergetischen Teilchens in der Atmosphäre löst eine Kaskade von Se-
kundärteilchen aus, die als Luftschauer bezeichnet wird. Das Observatorium ist speziell für
den Nachweis von solchen Luftschauern konzipiert worden. Dabei wird die Atmosphäre als
Kalorimeter genutzt, um die Entwicklung der Schauer in Längsrichtung mit Fluoreszenzde-
tektoren zu messen. Zusätzlich wird ein Oberflächendetektor mit regelmäßig angeordneten
Detektorstationen eingesetzt, um die Menge der erzeugten Sekundärteilchen zu messen.
Diese Sekundärteilchen werden üblicherweise als Schauer-Fußabdruck bezeichnet.

Die zunehmende Popularität künstlicher neuronaler Netze in jüngster Zeit hat Physikern
neue, einfach zu handhabende Werkzeuge gegeben, um physikalische Probleme datenge-
steuert anzugehen. Die Verwendung neuronaler Netze bietet die Möglichkeit, detaillierte
Daten, wie z. B. Schauer-Fußabdrücke, mit physikalischen Beobachtungsgrößen, wie z. B.
der Energie eines Luftschauers, in Beziehung zu setzen, ohne dass ein analytisches Modell
erstellt werden muss.

Das Hauptziel dieser Arbeit ist die Untersuchung von Methoden, die auf neuronalen Net-
zen basieren, um aus den Daten des Oberflächendetektors des Pierre-Auger-Observatoriums
Informationen zu extrahieren, die mit der Masse der kosmischen Strahlung korrelieren. Um
dies zu erreichen, habe ich zwei verschiedene Ansätze in Betracht gezogen und die Nütz-
lichkeit der Verwendung neuronaler Netze untersucht. Dabei basiert der erste Ansatz auf
der Extraktion des Myonengehalts in jeder Station des Oberflächendetektors und der zweite
Ansatz auf der Messung des gesamten Schauer-Fußabdrucks. Anhand von Monte-Carlo-
Simulationsstudien habe ich den ersten Ansatz zugunsten des zweiten verworfen, da letzterer
vielversprechendere Ergebnisse lieferte. Aus dieser Simulationsstudie habe ich drei verschie-
dene neuronale Netze ausgewählt, die für die Vorhersage der Tiefe des Schauer-Maximums,
des relativen Myonengehalts und der logarithmischen Masse von Schauer-Fußabdrücken
trainiert wurden. In einem letzten Schritt benutzte ich die Netzwerke, um die Massenzusam-
mensetzung der ultrahochenergetischen kosmischen Strahlung aus Messungen vom Pierre
Auger Observatorium zu bestimmen.
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Spanish abstract

Los rayos cósmicos de ultra alta energía son las partículas de origen natural mas energéticas
conocidas por la humanidad, llegan hasta dos órdenes de magnitud por encima del límite de
la actual generación de aceleradores terrestres. Cómo los rayos cósmicos obtienen su energía
y en dónde se originan siguen siendo un misterio. Además, el exceso de muones en los
productos de desintegración de los rayos cósmicos en la atmósfera terrestre, desafía nuestra
comprensión de las interacciones hadrónicas en las más altas energías. Para resolver los
misterios en torno a la física de los rayos cósmicos, es fundamental identificar su composición
química. La separación entre los rayos cósmicos pesados y ligeros permite estudiar sus
direcciones de arribo para asi poder relacionar a los rayos cósmicos menos desviados con
sus posibles fuentes. Por otro lado, dado que el número de nucleones está directamente
relacionado con el número de muones producidos, también somos capaces de someter a
prueba a los modelos de interacción hadrónica de ultra alta energía a la luz de las medición.

La desintegración de un rayo cósmico en la atmósfera desencadena una lluvia de partículas
secundarias llamada cascada. Debido al bajo flujo de los rayos cósmicos ultra energéticos, se
requieren grandes detectores para asi obtener suficiente estadística de la detección indirecta
de los primarios a través de las lluvias. El Observatorio Pierre Auger, localizado en el hemis-
ferio sur, es el mayor observatorio de rayos cósmicos del mundo, con un área de detección
efectiva de más de 3000 km2, diseñado específicamente para detectar las cascadas de partícu-
las inducidas. Para ello, utiliza un diseño híbrido, empleando la atmósfera como calorímetro
para observar el desarrollo longitudinal de la cascada con detectores de fluorescencia, y un
detector de superficie con estaciones ordenadas regularmente a nivel del suelo para medir
el desarrollo lateral de las partículas secundarias producidas. Comúnmente, las partículas
que llegan al suelo conforman la denominada "huella de la cascada".

El reciente aumento de la popularidad de las redes neuronales artificiales ha proporciona-
do nuevas herramientas y de fácil implementación para abordar los problemas de la Física. El
uso de redes neuronales ofrece la oportunidad de relacionar datos detallados, como las hue-
llas de las cascadas, con observables físicos, como la energía de una cascada, sin necesidad
de construir modelos analíticos.

El objetivo central de esta tesis es la investigación de métodos basados en redes neuronales
para extraer información de los datos tomados por el detector de superficie del Observatorio
Pierre Auger que esté correlacionada con la masa de los rayos cósmicos. Para ello, he consi-
derado dos enfoques diferentes y explorado la viabilidad del uso de redes neuronales. Así,
el primer enfoque se basa en la extracción del contenido de muones en cada estación del
detector de superficie y el segundo enfoque se basa en la medición de toda la huella de la cas-
cada. Utilizando estudios de simulación de Monte Carlo, descarté el primer enfoque en favor
del segundo, que mostró resultados más prometedores. A partir de este estudio basado en
simulaciones, seleccioné tres modelos de red neuronal diferentes entrenados para predecir
la máxima profundidad de la cascada, el contenido relativo de muones y la masa logarítmica
a partir de las huellas de la cascada. Como paso final, apliqué las redes a datos medidos en
el obsevatorio para estimar la composición química de los rayos cósmicos primarios.
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1 Introduction

Always go too far, because that’s where you’ll
find the truth.

(Albert Camus, Philosopher)

The country Argentina on Earth being hit by a high
energy cosmic ray that came from another galaxy, oil
painting[.]

DALL·E 2 prompt:

Cosmic Rays (CRs) are particles accelerated by extraterrestrial sources. The energy spectrum
of CRs is ranging from energies about 109 to over 1020 eV, spanning over 11 orders of magni-
tude. The exact origins and acceleration mechanisms of CRs above 1018 eV are still unknown.
Their high energy beyond the scale of human-made accelerators challenges the theoretical
models of astrophysics and particle physics. To unravel the mysteries of CRs, we require
exact knowledge of the distribution of masses of the CRs arriving on Earth. Moreover, if
we were be able to distinguish the CRs at highest energies on a particle-by-particle basis,
we would gain new insights into non-understood problems, such as the sources of the CRs
and the over-abundance of muons at highest energies. Gaining knowledge about the mass
composition is the main objective of this thesis.

The flux of CRs at 1018 eV is roughly one CR per km2 per year. This low flux makes direct
detection unfeasible, favoring indirect methods based on the decay of CRs after interacting
with the air molecules in Earth’s atmosphere. Due to the high energy of the CRs, the in-
teraction yields a cascade of secondary particles called air shower, which propagates into
the momentum direction of the initial CR. Ground-based detectors can observe the devel-
opment of these air showers, making it possible to gain information about the longitudinal
development and lateral particle distribution at ground level.

At the time of writing, the Pierre Auger Observatory (Auger) is the world-wide largest
ground-based detector for the indirect detection of CRs. The observatory follows a hybrid
detector concept using fluorescence telescopes to observe the longitudinal shower profile
and an extensive array of surface detector stations to measure the shower footprint. The
hybrid detection of CRs makes it possible to cross-calibrate measurements taken by both
independent detectors.

The Surface Detector (SD) of Auger consists of over 1600 evenly spaced Water-Cherenkov
detectors (WCDs) arranged in a triangular grid. In total, Auger covers an area of about
3000 km2. Currently, the observatory is undergoing an upgrade called AugerPrime. One of
the additions is the deployment of Surface Scintillator Detector (SSD) on top of the WCD
stations. The two independent measurements allow for a better disentanglement of the
signal induced by muons and other particles.

1



1 Introduction

In this work, we focus on analyzing shower footprints measured by the detector stations
of the SD to extract shower observables correlated to the mass of the CR. Motivated by the
phenomenology of air shower physics, the most promising candidates are the atmospheric
depth of the shower maximum and the number of muons produced during the cascade. Both
observables, however, are properties of an air shower that are hard to access via conventional
analysis. The Fluorescence Detector (FD) allows for direct measurement of the depth of
the shower maximum. Due to its sensitivity, however, the FD can only be used during
moonless nights, reducing its potential uptime to about 15%. Moreover, there is still no
direct measurement method for the number of muons at the highest energies. Therefore,
we develop methods that relate the shower footprint measurements of the SD stations to the
aforementioned quantities.

The data of air shower simulations and measurements is highly complex making the
search for conventional analytic approaches exceptionally hard. For this reason, we use
a data-driven approach to analyze the air shower data in this work. We select the tool set
provided by Artificial Neural Networks (ANNs) for this purpose. This choice is baded on the
recent successes of ANN-based approaches in hard-to-solve tasks, such as image and speech
recognition. Due to similarity of footprints to images and time signals to audio signals,
insights from these fields of computer science can be directly transferred to the analysis of
the SD detector. Moreover, using ANN relieves us from a large part of the model building
process allowing us to focus more on the mass estimation itself. Henceforth, we drop the
‘artificial’ from the acronym ANN solely refering to it as Neural Network (NN).

We attempt to reconstruct the observables from shower footprint data with two different
approaches that coincide with two preceding analyses based on NNs. First, we link local
shower information from measurements of the stations in the SD to the local signal induced by
muons. While doing this, we reproduce and validate the results from the previous analysis,
use reference models to contextualize the predictions of the NN, and show how much the
NN-based ansatz improves the reconstruction of the local muonic content. In addition,
we conduct a feasibility study to investigate whether it is possible to use an NN-based
approach to extract the muon numbers from the binary signal traces of the Underground
Muon Detector (UMD). Secondly, we proceed to analyze the entire shower footprint to extract
global shower properties, such as the depth of the shower maximum and the shower energy.
To do this, we use a NN architecture based on an earlier version used in the other preceding
analysis. We boost the performance of this NN by standardizing the measured footprints to
remove certain symmetries encoded in the triangular grid of the SD detector. We optimize
the NN architecture and identify beneficial shower observables to improve the inference
of the depth of the shower maximum, and demonstrate that NN-based approaches can be
used to predict various global shower properties. In addition, we discuss various sources
of uncertainty of the NN-based predictions and derive procedures to obtain uncertainty
estimates from multi-network and multi-shower studies. Moreover, we conduct another
feasibility study for photon event identification. In both of these analyses, we extensively
use Monte Carlo (MC) air shower simulation studies. We also analyze how the SSD affects
the quality of the predictions of the NNs used.

In the end, we apply the NN for the shower footprint analysis on measurements of Auger
predicting the depth of the shower maximum and muon content of the showers. We correct
for differences between simulations and measurements, such as atmospheric conditions,
estimate systematic uncertainties for the method, and calibrate and verify the reconstruction
with FD measurements. Based on this we obtain an estimate for the composition of CRs at
highest energies.
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Thesis philosophy This thesis is a case study. We want to ask in which way NNs may
improve the prediction of specific high-level shower properties, such as the depth of the
shower maximum and the primary particle energy, and how we can exploit this to gain a
better understanding of the mass composition. The thesis is split into two separate analyses:
the reconstruction of localized shower properties and the reconstruction of global shower
properties. We only apply the latter analysis to measurements taken by Auger.

Thesis structure In Chapter 2, we survey the basic principles of CR physics and key mile-
stones in its history. Since it is the centerpiece of this work, we discuss Auger and its most
important contributions to modern science. We follow this up in Chapter 3 with the stan-
dard reconstruction of air shower events in the main framework of the Auger collaboration.
Moreover, we discuss advanced reconstruction techniques. In Chapter 4, we introduce NNs
as a tool for physics analysis. We also analyze the most prevalent analyses in Auger, which
are based on NNs.

In Chapter 5, we discuss the data sets we simulated for this thesis and how we prepare
them to use them as inputs for our NNs. In Chapter 6, we use air-shower simulations to
compare NNs used to extract the muon content from single surface detector stations with
reference models to contextualize the predictions of the NNs. This analysis leads to two
additional studies. We try to exploit the new scintillator detectors to improve the predictions
and check if an NN-based approach could work with data taken by the UMD. In Chapter 7,
we switch to the NN-based reconstruction of global shower properties using all necessary
event-level information. We systematically investigate the effect of selected hyperparameters
of our network architecture to achieve a superior result. In addition, we discuss how we
estimate uncertainties in the predictions of our networks, check the effect of introducing SSD
data into our inputs, and check if an NN-based approach helps in distinguishing air showers
induced by photons. Afterward, we apply this knowledge to measurement data in Chapter 8.
We demonstrate how NN-based models trained on air shower simulations can be used on SD
data taken by Auger. Moreover, we predict the depth of the shower maximum, the relative
muon content, and the logarithmic mass number from shower footprint data with three
different NNs obtaining insights into the mass composition at the highest energies. Finally,
in Chapter 9, we draw a conclusion. We present the most important results and give a short
outlook of future projects and possible improvements for further studies.
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2 High-Energy Cosmic Ray Physics

It was just a colour out of space – a frightful mes-
senger from unformed realms of infinity beyond
all Nature as we know it;

(The Colour out of Space, H. P. Lovecraft )

The physicist [V]ictor [H]ess wearing his glasses sit-
ting in a hot air balloon with an electrometer explaining
extensive air showers by Picasso[.]

DALL·E 2 prompt:

Cosmic Rays (CRs) are particles originating from various extraterrestrial sources. Their
spectrum covers more than eleven orders of magnitude [P:1] from below 1 GeV up to over
100 EeV. In the low-energy regions, CRs are mainly produced by coronal ejections from
nearby stars, such as our Sun [P:2]. At higher energies, however, their exact origins are still
a mystery and part of active research. CRs with energies above 1018 eV are called Ultra-
High Energy Cosmic Rays (UHECRs). They are especially interesting since human-made
accelerators, such as the Large Hadron Collider (LHC) [P:3], cannot accelerate particles to
such high energy. They give us a way to probe particle physics beyond the energy scales
of modern colliders. Like in the pre-accelerator era, Cosmic Ray Physics (CRP) provides us
with further insights into the most extreme microscopic and macroscopic processes of our
Universe.

At the highest energies, around 100 EeV, UHECRs have a flux of about one particle per
km2 per century (see Fig. 2.3). This low flux makes direct detection unfeasible. Hence, we
need huge detector arrays to observe them in significant quantities in a reasonable time.

We start this chapter with a historical overview of CRP in Sec. 2.1. Afterward, in Sec. 2.2, we
discuss the theory required to understand the basics of CRP. Then, in Sec. 2.3, we introduce
the Pierre Auger Observatory. Up to date, this is the world’s largest detector of UHECRs.
Finally, in Sec. 2.4, we give an overview of the current science case of the observatory and
CRP.

2.1 Historic overview

Over the last millennia, our ancestors gazed into the night sky, trying to comprehend its all-
encompassing sea of stars. It fueled their imagination, sparking religion [T:A] and ancient
philosophy [T:B] alike. Only very recently have we started to understand it in a scientific
way. Every time we have looked closer, we have found something new and unforeseen. One
of those unexpected finds has been CRs.
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After the discovery of spontaneous radioactive decay in the 20th century by Becquerel [P:4],
measurements indicated that ionizing radiation was constantly present in Earth’s atmo-
sphere. Electrometers discharged even without obvious radioactive materials nearby [P:5].
Initially, many scientists believed Earth itself was the only source of this radiation. They
drew this conclusion from electroscope measurements at different heights near the ground
level, such as in [P:6]. The main idea was that radioactive elements underground were its
source. Domenico Pacini contradicted this view by placing electroscopes underwater [P:7,
P:8]. He found a decrease in the ionization rate. This measurement implied that the water
shielded the radiation from sources other than Earth itself. However, initial measurements
at higher altitudes, such as at the top of the Eiffel tower [P:9], did not support a cosmic
origin. Higher altitudes were required. Using balloon experiments at various times of the
day, Victor Hess [P:10] cemented this idea. Up to a certain altitude, the radiation decreased;
then, it increased exponentially with height. Since the measurements did not vary too much
between day and night, the Sun was ruled out as the primary source of this radiation. Hence,
Hess concluded that the cosmos itself must be the source.

Finding their non-terrestrial origin, however, did not explain the nature of the radiation.
Initially, gamma rays were the favored candidate [P:11], which gave rise to the name cosmic
ray we use today. This changed after the dependence of the CR flux on the magnetic field of
the Earth, which had been predicted by Rossi [P:12], was discovered. Later, Rossi concluded
that the CRs produced secondary particles which are able to traverse the atmosphere [P:13]
without too much energy loss. The discovery [P:14] of the muon μ revealed the nature of
these secondary particles.

In 1939, Auger and colleagues arranged Geiger counters 300 m apart in a flat plane [P:15]
outdoors. Finding a higher rate of coinciding triggers than expected, they concluded that
the CRs interacted with air molecules in the atmosphere creating cascades of secondary
particles. Moreover, they found that CRs followed a steeply decreasing energy spectrum of
the form �−2. In 1954, Heitler developed a theoretical framework that explained cascades
induced by high-energy photons [P:16] (see Sec. 2.2.5). This led to the construction of large
CR detector arrays, such as the Vulcano Ranch experiment in New Mexico. During the
experiment, Linsley and colleagues observed the first UHECR with an energy of more than
1020 eV [P:17]. In 1966, Greisen, Zatsepin, and Kuzmin predicted a theoretical upper limit
of the energies of proton UHECRs [P:18, P:19]: the Greisen-Zatsepin-Kuzmin (GZK) cutoff.
Due to interaction with photons of the Cosmic Microwave Background (CMB), protons would
lose energy during their travel to Earth, reducing the maximum distance to their potential
sources significantly and softening the particle spectrum.

All these findings motivated the construction of more giant detectors. The next-generation
experiments yielded contradictory results. While High Resolution Fly’s eye (HiRes) – a
fluorescence telescope – reported a steepening of the spectrum at very high energies [P:20],
Akeno Giant Air Shower Array (AGASA) [P:21] – a ground-based detector – did not observe
a suppression at the highest energies. To resolve this tension, an even larger observatory was
needed, which led to the construction of the Pierre Auger Observatory (Auger) (see Sec. 2.3).
Up to date, Auger is still the largest CR detector in the world. After ten years of operation, it
verified the existence of a suppression of the spectrum at the highest energies. It is, however,
still not clear if this suppression is partially due to the GZK cutoff or primarily due to the
scarcity of sources.

2.2 Phenomenology of UHECRs

In this work, we define UHECRs as elementary particles and nuclei having a primary particle
energy equal to or above 1 EeV. Due to their extremely small flux, direct detection is infea-
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sible. However, when UHECRs enter Earth’s atmosphere, they interact with air molecules.
This results in a shower cascade of billions of secondary low-energy particles. A part of these
excites the nitrogen in the atmosphere leaving a longitudinal profile of fluorescence light. In
addition, the footprint of the shower cascade can be measured at ground level.

The first couple of interactions of the primary particle are primarily of hadronic nature.
Hence, they are governed by the theory of strong interaction: Quantum Chromodynamics
(QCD). Due to the precise measurements of today’s accelerators, we understand high-energy
hadronic interactions quite well [P:22]. However, at low energies, soft QCD still poses many
problems due to the breakdown of perturbative approaches. Since soft QCD is required
to describe the development of hadronic air showers accurately, this leads to a mismatch
between air shower measurements and simulations in the number of hadronic particles
produced in a shower. To resolve this mismatch with particle accelerators, they would need
to be of an astronomical size{1} to reach the required center-of-mass energies of up to 1020 eV.
Therefore, the current procedures rely on the extrapolation of LHC data to approximate the
properties of the interaction of CRs with the atmosphere.

2.2.1 Origin and propagation

The exact processes that could accelerate UHECRs to such high energies are still a mystery.
Until now, no experiment could uncover UHECR point sources.

Still, we are able to quantify some properties of the required sources. For charged CRs,
the Lamor radius 'L needs to be smaller than the scale of the magnetic turbulences in the
source 'B to confine them. This yields

'B >
�

�/4�
= 'L , (2.1)

where � is the magnetic field strength of the source, / is the charge number of the particle,
4 is the unit charge, and � = E/20 is the characteristic velocity of the scattering centers. We
call Eq. (2.1) the Hillas-Criterion for sources [P:2, P:23]. Note that this condition does not
guarantee that the energy is achievable. It only is a rough estimate. The maximum energy
achievable still depends on the accelerator itself.

Fig. 2.1(a) shows the Hillas diagram. It combines the characteristic size and magnetic field
strength of different source classes. The lines represent the minimum product 'B� required
for the acceleration to 1020 eV for different values of �. From this plot, we already see that
some sources, such as normal galaxies and supernovae, are not able to satisfy Eq. (2.1) and
are therefore ruled out as the origins of UHECRs. However, even if a source passes the
Hillas-Criterion, it still requires the necessary energy budget to produce enough UHECRs
to explain the observed flux. In Fig. 2.1(b), we show the number density for various sources
using their characteristic luminosities. The solid line represents the luminosity required to
satisfy the energy budget if the CR luminosity equals that of the source. Since the UHECR
luminosity does not need to be the same as the source luminosity, the dashed lines show
the deviation for an over- and underproduction. Both Fig. 2.1(a) and Fig. 2.1(b) convey that
the jets of Active Galactic Nuclei (AGN) sources, such as nearby radio galaxies, are very
promising candidates to act as accelerators for UHECRs [P:24].

Since hadronic CR possess a charge, they change their trajectory through the extragalactic
and galactic magnetic fields. During their long propagation, even small magnetic fields
cause deflections that add up significantly. Since heavier nuclei carry more charge than light
ones, they are deflected more. Hence, light CRs, such as protons, are very interesting in

{1}For an equivalent center of mass energy of a primary of 1020 eV interacting with a fixed target, we would more
or less need the circumference of mercury with LHC technology.
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(a) (b)

Figure 2.1: Left: Sizes and magnetic field strengths of various CR source candidates. The solid
and dashed lines represent the confinement given by the Hillas criterion (see Eq. (2.1)) beyond
the acceleration of particles to an energy of 1020 eV is possible. The magnetic field strength is
given in the comoving frame of the source, and Γ is the Lorentz factor to account for cosmic
expansion. Right: Effective number density and luminosity for various CR source candidates.
The sources that satisfy the confinement conditions also must be luminous enough to explain
the observed number densities. Taken from [P:24].

searching for sources. By modeling the magnetic fields, the CRs traverse, they might be used
as pointers toward UHECR sources.

2.2.2 Cosmic ray flux

Assuming that the sources of cosmic rays are uniformly distributed over the sky, we are able
to calculate the raw flux �raw(�) of CRs by “counting” cosmic ray events and correcting with
the exposure of the used detector. We have depicted the flux in Fig. 2.2. Since detectors have
a finite energy resolution and the flux is monotonically decreasing, energy measurements
are more likely to pile up in higher energy bins. This migration effect distorts the spectrum.
Therefore, �raw(�) is solely a prior for the real flux �(�). To obtain the �(�) from �raw(�) we
need to do a complex unfolding process that corrects this migration effect [P:25, P:26].

The spectrum of UHECRs covers a vast energy range of more than two orders of magnitude.
We describe different regions via local power laws of the form

�(�) = d#
d�

∝ �−� , (2.2)

# is the number of observed particles and � is the spectral index of the leading contribution
inside the local energy interval. Between these regions, we find the so-called features of the
cosmic ray flux. These features are sudden changes of the flux transitioning into a different
dominant power law. The position of these features and the switch from one power law to
another indicates changes in the main contributors to the flux and, hence, the underlying
physical processes.

In this section, we assume that the flux is isotropic, even though this is not strictly true for
all regions of the energy individually [P:27, P:28]. We discuss this in Sec. 2.4.2.

Currently, there is a consensus that the spectrum above an energy of 1017 eV contains
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Figure 2.2: Scaled all-particle cosmic ray flux measured by the Pierre Auger Observatory. The flux
is scaled by �3 to highlight notable features. Most of the spectrum is well above the equivalent
collision energy of the LHC. There are three notable features: the second knee, the ankle, and
the suppression at the highest energies which are all reviewed in Sec. 2.2.2. Reproduced from
data taken from [A:1]; official publication [P:29].

three notable features: the second knee{2}, the ankle, and the suppression at the highest
energies. The exact origin of these high-energy features is still subject to active research and
not completely understood. Here, we discuss the most common explanations.

The second knee is a sudden steepening of the all-particle spectrum [P:29] at an energy
of about 1.5×1017 eV. Similarly to the first knee, this is (most likely) due to a decrease in
population in the cosmic ray flux from our galaxy. In this case, that of the heavier elements.
At this energy, the local galactic acceleration mechanisms are most likely not “extreme
enough” to fuel the spectrum anymore [P:31].

The ankle is a sudden hardening of the CR spectrum. At this energy, the cosmic rays
approach the threshold being able to escape their galactic boundaries. Hence, it most likely
marks the transition from the dominance of galactic to extra-galactic cosmic rays and, in
addition, a transition from light to heavier elements [P:32]. There are many models trying
to explain this. Notable explanations are provided by the dip model [P:33] and the mixed
composition model [P:34]. However, it is not entirely clear if one of them is the correct one.

The suppression is a strong decrease in flux at energies above 3×1019 eV. The nature of
the suppression is still a subject of heavy debate. A straight-forward way of giving an
explanation is the GZK effect [P:18, P:19]. At about 5×1019 eV, protons start to interact with
the photons of the CMB. The CMB is a remnant of the era of recombination [P:35, P:36]; the
point in time when the Universe had expanded enough to allow for the formation of neutral
hydrogen. The CMB is a photon gas exhibiting a black body spectrum of a temperature
of about 2.7 K [P:37]. In the rest system of the high-energy protons, this gas is heavily
blueshifted. This allows photons with energies higher than (about) 1.2×109 eV to excite the

{2}There is another knee at around 3×1015 eV that is due to the decrease of light elements [P:30].
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nucleon. This yields �0 and �+ via the Δ resonance

? + �CMB → Δ+ →
{
? + �0

= + �+

}
→ ? + secondary particles, (2.3)

reducing the energy of the proton during its travel to Earth. Although this is a convenient
explanation, it is also possible that the steep decrease at the end of the spectrum indicates
the limit of acceleration of UHECR sources. At this point, there could just not be enough
accelerators in our Universe that are capable of accelerating particles to these energies.
To uncover which of these explanations is correct, it is necessary to reconstruct the mass
composition at the highest energies from the high-energy data.

The resonance described by the GZK covers only protons. To achieve a similar nucleon
resonance in heavier nuclei, the necessary energy for a Δ resonance would increase if we
assume that the nucleus is just an ensemble of nucleons of equal energy. However, there are
other effects, such as the giant resonance [P:38], that yield a similar effect than the GZK for
protons.

2.2.3 The shower cascade

When high-energy{3} cosmic rays enter the atmosphere, they interact with air molecules
inducing a cascade of millions of secondary particles. The atmosphere acts as an inhomo-
geneous calorimeter. The probability of interaction is proportional to the air density and
increases towards the ground. A convenient way to describe traversed matter is given by the
integrated slant column density

-(ℎ) = 1
cos�

∫ ∞

ℎ

dℎ′ �(ℎ′), (2.4)

where �(ℎ) is the local air density at height ℎ above sea level and � is the zenith angle{4}

of the air shower event. The secans factor accounts for the longer path it takes through the
atmosphere if the event is not perfectly vertical. - is referred to as slant depth. Using -
as the variable of progression, the shower cascade follows approximately the differential
equation [P:2]

d#8

d-
= −

(
1
38

+ 1
�8

)
#8(�8 , -) +

∑
9

∫ ∞

�8

d� 9 #9(� 9 , -).9→8(�8 , � 9), (2.5)

where �8 is the interaction length of the particle 8 in air, 38 is its probability of decay in the
infinitesimal element d-, #9d� 9 is the flux of particles of type 8, and .9→8 is the yield of a
particle of type 8 from particles of type 9.

Due to momentum conservation, the shower cascade propagates into the direction given
by the momentum vector of the initial cosmic ray. We denote the straight line defined by the
first point of interaction and the momentum vector as the shower core.

We put the sub-components of the shower cascade initiated by a hadron primary in four
different classes (see Fig. 2.3). First, we have the hadronic shower component. It consists
primarily of pions but also other mesons. These decay relatively fast and, therefore, are
mostly found near the shower core and during the early stages of the shower. Secondly, we
have the muonic component. It is comprised of muons and anti-muons that are generated
by the decay of charged pions and kaons. Due to their long mean lifetime (∼2 s) in the atmo-
sphere, most muons reach ground level without interacting. They are related to the hadronic

{3}We define high-energy CRs as CRs which exhibit an energy above 1 PeV coinciding with the first knee.
{4}Angle between the CR momentum vector and Earth’s normal surface vector.
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Figure 2.3: Left: Schematic representation of the path CRs take from their source to Earth’s
atmosphere. Right: Important decay processes in the hadronic shower cascade. Both the sources
of UHECRs and their exact propagation processes are still a mystery. When they enter the
atmosphere, the atmosphere acts as an inhomogeneous calorimeter. The electromagnetic sub-
component of the shower interacts with the nitrogen molecules of the atmosphere, producing
fluorescence light in the UV region, which can be measured by specialized fluorescence detectors.
This sub-component is driven by the π0 produced in the shower cascade.

interactions in the shower (see Sec. 2.2.3.B). Therefore, having accurate measurements gives
us insights into the mass of the primary particle. Thirdly, we have the electromagnetic
component. It consists of the photons, electrons, and positrons generated by the secondary
mesons and muon decays. It also inherits around 90% of the initial energy of the primary.
The atmosphere quickly absorbs this component. One of the processes involved in this is the
excitation of nitrogen molecules (see Fig. 2.4). The de-excitation of nitrogen yields isotropic
fluorescence light with a wavelength in the ultraviolet (UV) region, which is detectable by
fluorescence telescopes. Models like shower universality (see Sec. 3.3.2) even differentiate
between the electromagnetic component produced from muon decays and that of other
sources. Finally, there is an “invisible” component{5}. This sub-component is comprised
of particles, such as neutrinos, which are not detectable by most of the employed detector
setups. We only account for the first three components and assume the losses due to the last
component are comparably small.

A Heitler model

The Heitler model is an approximate solution of Eq. (2.5) for purely electromagnetic show-
ers [P:16] induced by photons. The model provides us with a view of the electromagnetic
sub-component discussed in the last subsection. The main idea is that only two dominant
effects govern the development of the electromagnetic shower cascade. Photons produce
electron-positron pairs via pair production, and electrons and positrons, on the other hand,

{5}In fact, the component is only very hard to detect.
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2 High-Energy Cosmic Ray Physics

produce photons via bremsstrahlung (see Fig. 2.4). Therefore, after each interaction, the
number of particles doubles. Using the electromagnetic interaction length �, the number of
particles at - is

#(-) = 2-/�. (2.6)

At a critical energy of �c ≈ 87 MeV, ionization losses take over the radiation losses. Particles
in the shower cascade below this energy do not add additional particles to the cascade.
Hence, the maximum number of particles is determined by

#max =
�

�c
, (2.7)

where � is the initial energy of the CR. Using Eq. (2.6) and Eq. (2.7), we can find out at which
shower depth the shower starts to “die out”. This depth of the shower maximum is

-max = � log2
�

�c
. (2.8)

Essentially, for electromagnetic showers, the number of particles and depth of the shower
maximum scale with energy and logarithmic energy, respectively. Usually, in Eq. (2.8), the
natural logarithm is used instead of the binary logarithm absorbing the conversion constant
into �. We only keep it for the sake of clarity.

B Heitler-Matthews model

The Heitler-Matthews model is an extension of the Heitler model to approximate showers
originating from primary nuclei [P:39]. It assumes that only the pions play a role for the
development of the shower cascade. Since there are three kinds pions – two of which are
charged – the decay ratio is 2:1 (charged:neutral). All of them are unstable. The charged
pions decay approximately after the hadronic interaction length �ℎ . Neutral pions decay
very fast with a very high probability into two photons. Hence, they transfer energy into the
electromagnetic cascade. In contrast to this, charged pions interact again building up the
hadronic part of the shower. Afterward, when they reach a critical energy threshold, they
decay into a muon and a neutrino. The former are the origin of the muonic sub-component.

We assume that each interaction produces #π pions. After = interactions the average
energy of the pions is �π = �/#=

π . In the case that the distance to the next interaction point
exceeds the decay length of a pion the production of further pions is suppressed. The decay
length depends on the energy of the pion. In the framework of the Heitler-Matthews model,
this critical energy is fixed to �hc = 20 GeV [P:39], despite being dependent on the primary
particle energy. The maximum number of interactions is

=max =

⌊
ln(�/�hc)

ln#π

⌋
, (2.9)

where ⌊·⌋ is the floor operator. Since only charged pion decays generate muons, in this model

#μ =

(
2
3
#π

) =max

=

(
�

�hc

) ln 2
3#π

ln#π

, (2.10)

are produced. The number of produced muons is a power law of the initial energy with
an exponent lower than unity. Moreover, studying the neutral pions, we are able to obtain
an estimate on the shower maximum. Since #π/3 neutral pions are produced at each
interaction, and each neutral pion decays into two photons, the energy for the photons is
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Figure 2.4: Illustrations of shower development according to the Heitler model (left) and the
Heitler-Matthews model (right). The Heitler model considers a purely electromagnetic cas-
cade spawned by a very high-energy photon. In the atmosphere, the photon decays into an
electron-positron pair via pair production. The electron and positron then produce photons
via bremsstrahlung. This process yields an exponential increase of particles in the cascade
until a critical threshold energy is reached. In the Heitler-Matthews model, a proton decays
in the atmosphere into a number of pions due to hadronic interactions. In turn, the charged
pions decay into many lower energy pions. Neutral pions are the drivers of the electromagnetic
component of the hadronic shower decaying with a branching fraction of almost 99% into two
photons [P:22].

�/(2#π). Assuming that the proton first interacted at-0 we can modify Eq. (2.7) accordingly:

-max = -0 + � log2
�

2#π�c
. (2.11)

Again, at this shower depth, the shower begins to die out because the ionization losses take
over.

To account for heavier primary nuclei, we are able to generalize this model by using the
superposition model since the initial energy is much larger than that of the binding energy
of the primary particle. We treat the shower cascade as � simultaneously induced proton
shower cascades and ignore the inter-nuclei interactions. Using the substitutions � → �/�,
we generalize Eq. (2.11) to

-max(�, �) = -0 + � log2
�

2#π�c�

!
= -max(�, 1) − � log2 � (2.12)

and Eq. (2.10) to

#μ(�, �) = �#μ(�/�, 1) = �1−
ln 2

3#π
ln#π #μ(�, 1). (2.13)

We expect that a shower initiated by heavier nuclei for the same primary energy produces
more muons and has a shallower -max. Although the Heitler-Matthews model gives only
a qualitative explanation of the hadronic shower cascade, it describes the main effects quite
well. The results do not change significantly, even if we account for the fragmentation of
heavier nuclei [P:40].

2.2.4 Longitudinal shower profile

The electrons and positrons in the shower cascade experience constant energy losses by
ionizing nitrogen molecules. During de-excitation, the molecules emit UV light isotropically.
Consequentially, the shower cascade has a longitudinal fluorescence light profile that gives
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2 High-Energy Cosmic Ray Physics

us the possibility to estimate the depth of the shower maximum and even the energy of the
shower. Using - as from Eq. (2.4), the shower profile approximately follows the Gaisser-
Hillas (GH) function [P:41]. It is given by

d�
d-

∝ # (-) = #max

[
- − -1

-max − -1

] -max−-1
Λ

exp

[
-max − -

Λ

]
, (2.14)

where Λ is treated as a pure fit parameter for hadronic showers, -1 is the depth the of first
interaction, and #max is the number of contributing particles at the depth of the shower
maximum. Eq. (2.14) describes a purely electromagnetic shower very well. For an electro-
magnetic air shower, Λ is the interaction length. Using Eq. (2.14), the extraction of -max is
straightforward. We provide an overview of the procedure in Sec. 3.2.1.

After determining the free parameters in Eq. (2.14) by measurements, we obtain the
calorimetric energy �cal of the shower by integration. This is not the energy of the primary
particle since muons and other non-ionizing components are not accounted for. Hence,
converting �cal to the actual energy of the primary particle requires a model for this invisible
part of the shower cascade. Consequentially, a fluorescence measurement depends indirectly
on theoretical models for the calibration process.

It is noteworthy that the longitudinal shower profiles follow a universal behavior [P:42,
P:43]. By changing coordinates from - to the slant depth Δ- = -−-max in Eq. (2.14), we can
approximately align the profiles of different primaries. For protons{6}, the shower-to-shower
fluctuations are very large due to the randomness of -1. However, the coordinate change
removes this dependency. The framework of Universality uses this as a starting point for a
“pattern-matching process” (see Sec. 3.3.2).

2.2.5 Lateral particle distribution of extensive air showers

Another way to indirectly detect UHECRs is by measuring the particle content in one slice
of the shower cascade. Most commonly, this slice is at ground level. In this case, we call
this the shower footprint and the reason Extensive Air Showers (EAS) have their name.
For electromagnetic showers, the Nishimura-Kamata-Greisen (NKG) function describes this
footprint very well [P:44, P:45]. It is given by

�NKG ∝
(
A

A<

) B−2 (
1 + A

A<

) B−4.5

, (2.15)

where A is the distance to the shower axis, A< is the Molière unit{7}, and B is the shower age
which is defined as

B =
3-

- + 2-max
. (2.16)

We define A as the shortest distance between the straight line defined by the shower axis and
a point on ground level. Hence, it is the distance between a detector and the shower axis in
the shower-detector plane.

To describe hadronic shower footprints more accurately, we use a modified version of
Eq. (2.15). The modified NKG function reads

�mNKG ∝
(
A

Aopt

) � (
A + As
Aopt + As

) �+�
, (2.17)

{6}For more massive nuclei the fluctuations are reduced due to the superposition.
{7}A constant connected to spread due to Coloumb scattering.
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where Aopt and As are parameters that depend on the used detector, and A is, again, the
distance to the shower axis. It is a purely phenomenological extension that is convenient to
use for hadronic showers.

2.2.6 Simulation of air showers

If we want to test our analysis methods or detector setups, we need simulations of the
physical processes we are going to encounter. This is especially important since air showers
are stochastic processes. It would be incredibly hard to develop a purely analytical model
that describes shower-to-shower fluctuations. To simulate EAS, we rely on the COsmic Ray
SImulations for KAscade (CORSIKA) [T:C] software. The most commonly used version,
CORSIKA 7, is a single-core program written in Fortran. It computes the propagation of air
shower cascades through the atmosphere in a step-by-step fashion. This involves following
all individual particles that are above a certain energy threshold and tracking all of their
interactions and decays. Without this threshold, a proton shower at the highest energies
would take years to simulate [P:46]. Still, due to the sheer number of particles, CORSIKA
simulations are computationally expensive. The higher the energy, the higher the number of
particles that need to be followed. This, in turn, means that the execution time of CORSIKA
scales with the energy of the initial particle (see Sec. 2.2.3.B).

Moreover, to simulate hadronic air showers, we need an accurate model of the hadronic
interactions at the target energies. Currently, there are three different models used: EPOS-
LHC (EPOS) [P:47], QGSJetII-04 (QGSJ) [P:48], and Sibyll2.3 (Sibyll) [P:49]. They all follow
slightly different design philosophies producing roughly similar results. We only use the
first two in this thesis in Chapters 6 to 7. Energy-dependent quantities, such as cross sections,
are far out of the reach of current human-made accelerators, such as the LHC (see Fig. 2.2).
Hence, these high-energy hadronic models have to rely on extrapolations motivated by
collider physics.

Although all of the models follow different core principles, they all share an unfortunate
similarity. They predict too few muons on ground level if compared to recent measure-
ments [P:50]. This makes them all inevitably part of active research. Still, the simulations
enable us to do essential cross-checks and, after simulating the detector responses (see
Sec. 3.1), to test our models.

CORSIKA produces two important output files that correspond to the longitudinal shower
development and the particle distribution at the ground level. Both are important for the
Fluorescence Detector (FD) and Surface Detector (SD) simulation, respectively. We denote
the former as .long files and the latter as .part files.

2.3 The Pierre Auger Observatory

The flux of UHECRs is extremely low. Hence, we need a huge effective detection area to
detect a statistically significant amount of them making direct detection methods unfeasible.
However, we are able to exploit the properties of the shower cascade (see Sec. 2.2.4 and
Sec. 2.2.5) to detect UHECRs indirectly favoring large-scale ground-based detector arrays,
which use the atmosphere as a calorimeter.

Up-to-date Auger is the largest CR detector, specifically designed to measure UHECRs
and their decay products at energies above 1018 eV [P:51, P:52]. It covers an area of roughly
3000 km2 in the Argentinean Pampa Amarilla (see Fig. 2.5) [A:1]. Being far away from any
industrial center, this very flat part of South America provides a stable, clear air condition at a
high altitude of about 1400 m above sea level. The data-taking process started in 2004 during
the construction and is still ongoing. Auger follows a hybrid detector concept: In addition
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Figure 2.5: Overview of the FD and SD of Auger. The black segmented lines around the FD
stations represent the azimuth viewing angles of the 24 florescence telescopes. The green box
provides a zoomed in version of the Infill and 433 m array. For visibility we removed the regular
SD detectors. The cross marks the position of the central data acquisition center in Malargüe.
The background map is from [T:D].

to solely measuring the longitudinal profile of the ionized atmosphere with the FD, like in
experiments like HiRes [P:20], there is a complementary SD. The SD consists of different
grids of Water-Cherenkov detectors (WCDs). They allow for point-like measurements of
the shower footprint. The benefits of this design are two-fold: First, it allows for a cross-
calibration of the two detector setups. Secondly, we obtain a reliable way to increase the
up-time of the detector since the FD alone only operates during clear moonless nights,
which occur only about 15% of the time [P:53]. In Fig. 2.5, an illustration of the observatory
is provided.

This hybrid detector concept is easily extendable. By adding more detector systems that
measure and focus on different subsets of the shower, we are more likely to understand
its particle content fully. Hence, at the moment of writing, the observatory has been going
through an upgrade process. The upgraded observatory, denoted as AugerPrime (AP), adds,
among other things, various new detectors to the SD and uses upgraded electronics. We
describe AP in Sec. 2.3.4.

2.3.1 The fluorescence detector (FD)

The FD system of Auger consists of four detector buildings housing six independent fluo-
rescence telescopes each [P:52]. All four detector sites face toward the center of the surface
detector array, covering a field of view of 180° in azimuth and roughly 30° in altitude. The
name of the sites is Coiheco (CO), Los Leones (LL), Loma Amarilla (LA), and Los Morados
(LM). Their positions position relative to the SD array is depicted in Fig. 2.5. Due to their very
high sensitivity, it is only possible to use them during moonless nights. Otherwise, their
electronics would take significant amounts of damage because of the high amplification
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used. Hence, they follow a duty cycle of up to 15%.
In Fig. 2.6, an illustration of one of the 24 fluorescence telescopes is depicted. The flu-

orescence light emitted by the shower cascade enters the telescope through a circular UV-
transmitting filter shielding the detector from background light. A segmented mirror redi-
rects the light on a camera in the focus point. Depending on the site, the mirror consists of
either rectangular or hexagonal pieces. The camera consists of a 22×20 grid of 440 hexagonal
Photomultiplier Tubes (PMTs). Each of these PMTs represents one pixel in the final digitized
image read out at a rate of about 12 mHz [P:52, P:53].

Due to its direct detection principle, the FD sets the energy scale for the entire experiment.
Consequentially, it is highly important to calibrate the FD telescopes regularly to ensure valid
and consistent measurements. To do this, we need an absolute and a relative calibration.
The absolute one is a time-consuming process. For each FD telescope, a well-understood
light source has to emit light directly onto the mirrors. Previously, a giant cylinder called
drum [P:54] had to be mounted to the aperture. Due to the extreme amount of effort [A:2], a
new calibration system will be used for AP. It is called the XY-scanner [P:55], which is a small
spherical, Lambertian light source that can be moved over the entire detector area. For the
relative calibration, a special LED installed in each FD site is used. The relative calibration
keeps track of changes between the absolute ones [P:56].

2.3.2 The surface detector (SD)

The surface detector array consists of over 1600 WCDs that are arranged in a triangular grid
with a spacing of 1500 m [P:57]. Due to its design, the main array achieves full efficiency
at about 1018.5 eV. At an energy of 1019 eV, on average, at least five stations trigger for each
air shower event. In addition, there are two smaller sub-arrays called the 750 m- and the
433 m-array, which have a spacing of 750 m and 433 m, respectively. They target lower energy
ranges than the main array and are of no importance for this thesis.

The WCDs employ a cylindrical body containing 12,000 l of ultra-pure water with a height
of 1.2 m and a diameter of 3.5 m. Inside the water, each station has three PMTs mounted
symmetrically at the top of the tank (see Fig. 2.6). They are evenly spaced out. Each one
has a distance of 1.2 m from the center of the detector. In this way, the measured signal
of all PMTs reduces the azimuthal dependence of the Cherenkov light emitted from the
charged relativistic particles. The inside of the tanks is coated with a liner to reflect all of the
Cherenkov light isotropically. The electronics of the WCD stations – called Unified Board
(UB) – digitizes the PMT responses with a sampling rate of 25 ns into 10 bits. There are two
signals for each PMT: the high-gain and the low-gain signal. The former is gained from the
last dynode, and the latter from the anode directly. The time signals recorded for an air
shower event are 19.2 µs long which corresponds to 768 bins.

The onboard electronics calibrate the signals by using the signal deposited by background
muons [P:58]. Using a measurement over a 61 s time window the PMT responses fill a charge
histogram. The charge histogram has two peaks. The second{8} one is related to the response
of a vertically centered muon traversing through the tank after a geometrical correction.
Conveniently, we call it the Vertical Equivalent Muon (VEM) charge &VEM. Total signals
from the tanks use VEM as the unit since the charge measurement is related to the measured
particle density. Henceforth, we will use VEM as a (regular) unit. For the trigger process,
there is another kind of calibration. By putting the pulse heights of the measurement into
another histogram, the most likely pulse height can be obtained. We denote it as �VEM.
This again relates to the pulse height a vertical muon would produce. This allows finding
consistent threshold levels for slightly different PMTs. A commonly used quantity is the area

{8}The first peak comes from other electromagnetic particles.
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Figure 2.6: Left: Illustration of one of the 24 FD telescopes (taken from [P:52]). Right: Rendering
of upgraded WCD station (modified from [P:60]). The original tank was missing the SSD and
radio antenna.

over peak value 0p defined via

0p =
&VEM

�VEM
. (2.18)

In measurements, this quantity varies for each PMT and depends on the detector age [A:3].
Saturation of the electronics due to many particles traversing the WCDs is a common

problem occurring, especially near the shower core at ground level. If signals are below
600 VEM, the low-gain channel of the PMTs is still usable. However, above this threshold,
signals have to be recovered by methods such as those presented in [P:59].

The SD stations complete the hybrid detector concept of the observatory. However, due
to the mismatch between the uptime of the SD and the FD, the latter covers only a subset of
the phase space of the former. Hence, we have to account for differences in hybrid data sets.

2.3.3 Environmental monitoring

Since the atmosphere acts as a huge, inhomogeneous calorimeter for EAS, both the FD and the
SD measurements depend on the environmental conditions [P:61]. Although atmospheric
monitoring is much more critical for the former, these conditions also affect the SD. For
example, on very cold days, the flat SD detector plane has a larger atmospheric depth -.
Consequentially, the showers observed are in a later stage of development than usual. Hence,
an essential part of the operation of the observatory is the constant survey of environmental
parameters, such as the air density and the temperature.

Weather stations constantly measure temperature and atmospheric pressure at different
parts of the observatory. At the FD sites, there are cloud cameras installed to estimate
cloud coverage. To estimate the atmospheric profile, two laser facilities [P:62] are employed:
the Central Laser Facility (CLF) and the EXtreme Laser Facility (XLF). They emit light at a
well-defined intensity and frequency. All FD sites detect this light to calibrate the energy
estimate.
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This procedure can be cross-checked via the Light Detection and Ranging (lidar) stations
at each FD site [P:63]. These send pulses of laser light into the sky and measure the light
back-scattered. The lidar stations are able to scan the entire sky over the observatory. Hence,
they obtain data about cloud coverage and cloud height.

2.3.4 Upgrade: AugerPrime

Auger has been taking data since 2004. Initially, it was funded until 2015. However, to
further benefit from the established infrastructure, the observatory is currently undergoing
an upgrade, called AugerPrime (AP), to extend its lifespan [P:64]. This endeavor is focused
not only on improving available detectors but also on adding new detectors to the SD. These
should provide complementary measurements of the shower to better separate the muonic
and electromagnetic sub-component. In the best-case scenario, this separation would make it
possible to estimate the cosmic ray mass on a shower-to-shower basis. The upgrade extends
the operation time of Pierre Auger Observatory well into the 2030s, allowing for a significant
increase in statistics.

For this work, the most important parts of the upgrade are the addition of the Surface
Scintillator Detector (SSD) on top of the WCD stations (see Fig. 2.6) and the replacement of
the UB (see Sec. 2.3.2) with the Upgraded Unified Board (UUB).

A Upgraded Unified Board

The additional detectors make it necessary to upgrade the old UB electronics. This upgrade
comes in form of the UUB, which is a more powerful version of the old UB. It increases the
sampling rate by a factor of three to 8.3 ns and comes with a larger digitization size of 12 bits
for each Fast Analog/Digital Converter (FADC) bin. In addition, the new board also yields
an increase in computation power and memory by a factor of ten [P:65]. As a consequence,
the upgrade also allows for the employment of advanced trigger concepts such as that Neural
Network (NN) triggers [A:4].

B The Surface Scintillator Detector

The SSD provides a direct upgrade to the station-based detection principle of Auger (see
Sec. 2.3.2). It runs in slave mode to the WCD and provides an alternative measurement of
the shower footprint. Each SSD is a 4 m by 2 m flat detector mounted on top of the WCD
stations. It consists of multiple scintillator bars containing optical wavelength-shifting fibers
that transfer the light yield to a central PMT. The calibration of the SSDs follows that of the
WCDs. However, the signal unit, in this case, is called Minimum-Ionizing Particle (MIP).

In contrast to the WCD, the response of the detector is almost independent of the track
length of the particles passing through the detector. Hence, the particles of the electromag-
netic sub-component of the shower cascade (see Sec. 2.2.3) produce similar signals as those
of the muonic sub-component. By using the signals of the WCD and the SSD, it might be
possible to disentangle the signal of the different shower components.

C Other features of the upgrade

Additionally, apart from the SSD, there are other significant improvements implemented
during the upgrade process. These focus primarily on enhancing the hybrid detection
principle even further. In general, there is no reason why the presented methods in the
following chapters could not be used for these new parts of the observatory to improve the
reconstruction of physical quantities. The major upgrades are listed here in no particular
order.

19



2 High-Energy Cosmic Ray Physics

Small Photomultiplier Tube The saturation limit of the WCD is relatively low. Since the main
interest of the observatory lies in the detection of UHECRs, this is rather inconvenient. The
saturated stations introduce biases in all of the available analyses that rely on station signals.
A simple workaround for this is to add another PMT in the WCD to complement the three
regular ones. This Small Photomultiplier Tube (SPMT) will extend the dynamic range of the
WCD greatly, allowing for signals with up to 20 kVEM [P:65]. In addition, this matches the
dynamic range of the SSD, aligning both of those detectors further [P:66].

Undergound Muon Detector The Underground Muon Detector (UMD) is an extension to the
750 m-array (see Fig. 2.5) and, in particular, to the Auger Muons and Infill for the Ground
Array (AMIGA) [P:67]. Its target energy range lies around the ankle in the CR spectrum.
It is a direct muon detector using the soil as a natural filter for the electromagnetic sub-
component. This allows for an unbiased estimation of the lateral muon density for muons
above 1 GeV [P:68].

Radio Detector Even though all of the improvements discussed previously enhance the
hybrid detection, this is only true for showers with zenith angles below 60°. Horizontal air
showers are hard to detect with the current setup, and specialized analyses are required
to gain any knowledge from them [P:69]. This is due to the strong attenuation of the
electromagnetic component of the air shower by the atmosphere for very inclined showers.
However, this component is still detectable by radio antennas. The radio detector is another
addition to the WCD tank (see Fig. 2.6) which measures the coherent radio emission of air
showers [P:70]. An advantage of this detection principle is that it provides an alternative
energy scale for CR to that given by the FD [P:71].

2.4 Science case: key results and open questions

Understanding the physics behind CRs provides insights into the most extreme microscopic
and macroscopic processes in the Universe. On the one hand, we can analyze at particle
energies of UHECRs that are currently out of reach for modern particle accelerators. This, in
turn, could yield new advances in microscopic theories such as QCD. On the other hand, in
the future, we probably will understand what kind of accelerators in which galaxies could
be the source for these particles.

Although the recent advances and discoveries in UHECR physics are driven by the new
generation of CR detectors, such as Auger [P:72], there are still many open questions that
need to be answered. In the following, we highlight a subset of these results and mysteries
that are important in the context of this thesis.

2.4.1 Muon deficit

One of the most challenging questions that UHECRs pose today is the over-abundance
of muons. If Monte Carlo (MC) air shower simulations (see Sec. 2.2.6) are compared to
measurements of shower footprints, the number of predicted muons is much lower than the
measured number [P:50, P:73].

If we trust modern hadronic models, we would obtain a mass composition dominated by
nuclei heavier than iron at very high energies. The quantification of this effect is one of the
key results of Auger. To measure the muon deficit, we need data from shower footprints
dominated by the muon sub-component. One method of doing this with the SD main
array is the data pre-selection of very inclined air showers [P:50] (see Fig. 2.7) for which the
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Figure 2.7: Left: Relative muon content as a function of the reconstructed energy for very inclined
air showers compared to expected muon contents from CORSIKA simulations using different
hadronic interaction models. The shower cascade of very inclined air showers is, due to the
attenuation, mostly comprised of the muons at the ground level. Using these measurements
reveals a substantial deficit of muons if compared to the simulations of QGSJ and EPOS (taken
from [P:50]). Right: Best fit results of a mass composition fit to the energy spectrum published
by Auger (taken from [P:74]). In this model, the amount of protons decreases strongly at around
1.1×1019 eV just around the start of the GZK suppression region (see Sec. 2.2.2). Afterward, the
composition gets heavier and heavier.

electromagnetic component is attenuated by the atmosphere. The obtained signals are then
compared to the simulations using the modern hadronic models (see Sec. 2.2.6).

The muon deficit also poses unique problems to newly developed analyses. Before using
them on measurements, usually, these need to be tested on simulations to quantify their
systematic errors and predictive power. Due to the mismatch of the simulations, however,
this is somewhat tricky. The process of going from simulations to measurements is non-
trivial and has to be newly explored for each employed method.

2.4.2 High-energy suppression of the flux and anisotropy

Initially, one of the driving ideas behind Pierre Auger Observatory was to check if there
really is a high-energy suppression (see Sec. 2.2.2) in the spectrum. Relatively early in the
lifetime of the observatory, ten years of taken data have shown that this is unambiguously
the case [P:75]. The suppression is clearly visible in the spectrum at about 40 EeV [P:76] (see
Fig. 2.2). This disproves the results of other CR detectors, such as AGASA [P:21].

Although the suppression is very close to the value predicted by the GZK-effect, it is still
unclear if the GZK is the reason for this. The exact fraction of protons at this high energy is
unknown. Hence, an acceleration limit of local sources could also explain the suppression.
We could unravel this if we had better knowledge about the mass composition of CRs above
30 EeV, such as methods that could estimate the mass at a shower-to-shower level.

It is also notable that Auger has provided the most precise measurement of the ankle
region [P:26, P:74] up to date. One of the more recent results from Auger is the slight
anisotropy in the flux [P:27, P:28]. For energies above the position of the ankle, there is a
5� dipol in the flux pointing outwards of our Galaxy (see Fig. 2.8). This result supports the
assumption that from this energy on UHECRs are mainly extra-galactic. Even though there
are feasible candidates, no definite source of these overdensities could be identified [P:24].

21



2 High-Energy Cosmic Ray Physics

Figure 2.8: Dipol anisotropy of CR spectrum for CRs above 8 EeV (equatorial coordinates). Auger
alone does not cover the entire sky due to its fixed position in Argentina. This is seen in the
white region on top of the plot. Taken from [P:24], originally from [P:27].

2.4.3 Neutral messengers

EASs are not restricted to charged nuclei. Neutral particles, such as photons and neutrinos,
can also induce air showers (see Sec. 2.2.3.A). These exotic air showers are fundamentally
different from the hadronic ones. Hence, it is much easier to distinguish them from the
hadronic air showers.

Currently, Auger focuses on providing limits for the flux of neutral messengers. These flux
limits help rule out exotic non-standard physics, such as special Lorentz Invariance Violation
(LIV) models [P:77]. Furthermore, since magnetic fields do not affect them, it is possible to
point toward their source more easily. This is especially interesting in the age of Gravitational
Wave (GW) telescopes. After the detection of GW events, high-energy neutrinos or photons
could give a follow-up signal.

2.4.4 Mass composition

To estimate the mass composition of UHECRs, mass-sensitive high-level observables are of
particular interest. Comparing their statistical moments to theory yields knowledge about
the gradual change of the composition itself. One such parameter is the depth of the shower
maximum: on average, proton showers are deeper than iron showers. This has the advantage
that it is directly measurable with FD. In Fig. 2.9, we show the first and second moments in
bins of energy compared to the theoretical prediction of QGSJ. Over the target energy range,
the composition changes from a light to a more heavy composition. Another – even more
– mass-sensitive parameter is the muon content of the shower. Currently, we are only able
to measure it via highly inclined events. However, future works are going to benefit benefit
from AMIGA and UMD enabling direct detection.

To address most of the open questions in UHECR physics, we must have an accurate
knowledge of the mass composition at the highest energies. This boils down to the devel-
opment of novel analysis methods that, at the time of writing, can potentially tap into the
power of the new detectors added by AP. To test such methods is also one of the objectives
of this thesis.
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Figure 2.9: First (left) and second moment (right) of the depth of the shower maximum -max
measured by FD binned in energy. The red and blue dashed line depict the expected values (see
Sec. 5.4.2) from QGSJ for protons and iron showers, respectively. We see a clear indication that
the mass composition changes from light to heavy towards higher energies. Adapted from [P:78].
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Words can be communicative only between those
who share similar experiences.

(Alan Watts, Philosopher)

A 3D rendering of a cylindrical water-Cherenkov tank
having an antenna and a solar panel built on top[.]

DALL·E 2 prompt:

To contextualize the NN-based models used in this thesis, we have to discuss the regular
reconstruction of high-level shower observables in simulations and measurements taken
by Auger. We define these observables as generic shower properties that are not directly
measured by the participating detectors, such as the inclination (zenith) angle � or the
primary particle energy �. We use these reconstructed high-level observables in three ways:
as direct inputs for our NN, as a tool for simplifying our input phase space, and as a direct
comparison to our predictions. For example, to normalize our input data, we use geometric
shower properties to align our showers in the same way (see Sec. 5.3.2).

In addition to standard methods, we review advanced methods that try to estimate mass-
sensitive observables of showers since they have the same goals as the presented NN analysis.
These methods distinguish themselves by not being a direct part of the commonly used
analysis chain of the Offline framework. This framework is currently considered the primary
analysis tool of the Pierre Auger collaboration.

In Sec. 3.1 we shortly present the Offline analysis framework and the standard data format
used by the Auger. Afterward, in Sec. 3.2, we dive into selected parts of the standard
reconstruction following the implementation in Offline. This part primarily focuses on the
SD side of things since we use the SD array in the later analysis as well. In the end, we review
the advanced non-NN-based reconstruction methods in Sec. 3.3.
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3.1 Offline analysis framework

Currently, the Offline Analysis Framework (Offline) is the main{1} analysis tool of Auger [T:E].
Its primary purpose is the up-to-date standard reconstruction of high-level shower observ-
ables from measurements taken by the various detectors of the observatory. Furthermore,
it is also used for standard analyses, to simulate events from air-shower simulations, such
as CORSIKA or AIRshower Extended Simulations (AIRES), and various data preparation
tasks.

At its core, Offline is a modularly structured program written mainly in the C++ program-
ming language. Essentially, it provides an easy way of running different subprograms, called
modules, in a certain order via .xml steering files, called bootstraps. Each module can be
invoked via these bootstraps, where standard parameter values and standard processes can
be overridden. This makes it simple to use – even for non-programmers. In addition, Offline
provides all of its functionality in the form of a C++ library to enable advanced usage of its
algorithms in custom applications.

Offline saves information{2} in the ROOT [T:F] data format. This format provides a tree-
like data structure which is an ideal way to represent event-based measurements of physics
experiments. In the case of Auger, the topology of the data trees is defined via a self-written
C++ class hierarchy which is called Auger Data Summary Trees (ADST). In general, an
ADST contains a jagged data structure. Different shower events trigger different amounts of
stations. Consequentially, for each “event row”, we have a differently sized chunk of memory.
Hence, despite the efficiency of the format the “non-linearity” adds complexity which makes
it potentially slower for high-throughput processes, like in the case of NN. Therefore, before
using the data reconstructed with Offline, we transform all data into chunks of Hierarchical
Data Format (HDF5) files. We have chosen the HDF5 data format due to its wide-spread
use, its great support in almost all programming languages, and its straightforward way of
saving data in rectangular memory. To convert ADST files to HDF5 files, we use a converter
written in C++ that acts as an interface between the Offline ADST and the HDF5 library.

To identify certain fields in the ADST data set we use the following convention. We name
variables via a combination of the name of the class they belong to and the name of the
variable indicated by its getter method:

name_of_class name_of_member class.member .

Almost all quantities used in the later stages of this thesis come directly from the ADST
files. They only have to be pre-processed (see Sec. 5.3). However, some quantities have to be
first computed from these base quantities, and others are extracted from the CORSIKA files
directly.

Note that all air shower events used in this thesis (see Chapter 5) have been produced by a
recent version of Offline in the active development branch. All high-level variables, such as
the zenith angle �, are taken from the reconstruction algorithms also used in data analyses.

3.2 Standard reconstruction

Before we discuss the standard reconstruction, we first introduce the most essential termi-
nology. In this thesis, we work exclusively with showers that have been detected by the

{1}There is/was another independent reconstruction framework called built into the Central Data Acquisition
System (CDAS) software. However, this framework is not in development anymore. Only legacy version
remain.

{2}There are ways in Offline to save the output in other file formats. However, ROOT files are the most common.
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WCD stations of the SD. This data set is commonly called the SD data set. Another im-
portant data set is the Hybrid data set, consisting of events for which the FD also detects a
signal. To calibrate the SD energy predictor (see Sec. 3.2.3), this Hybrid data set needs to be
pre-selected. We want only high-quality measurements which can be reconstructed by both
detectors independently and sufficiently well. For example, events for which the depth of
the shower maximum -max is not in the Field Of View (FOV) of the FD camera could have an
undetermined bias and must be removed. This process yields the subset called the Golden
Hybrid data set.

A large source of uncertainty in the standard analysis lies in the so-called shower-to-
shower fluctuations. These are stochastic in nature and caused mostly by the randomness
of the first couple of particle interactions. Two showers induced under the same conditions
would show different shower footprints. This is especially true for lighter primaries, which
are not subject to the superposition of multiple nuclei (see Sec. 2.2.3.B).

Since the main topic of this thesis is the application of an Artificial Neural Network (ANN)
to extract information from shower footprints, we will only discuss the standard reconstruc-
tions involving the WCD of the SD and selected parts of the standard reconstruction of the
FD. At the time of writing, no standard method of using the SSD in the reconstruction was
available. We only provide basic information in this case.

3.2.1 Overview of the FD reconstruction

The FD measures the (binned) time signals induced by fluorescence light along a projection
of the longitudinal shower profile [P:52]. Hence, the distance to the shower axis and its exact
propagation direction is initially unknown. However, due to the (signal) timing information,
it is still possible to determine the direction the shower came from, assuming the trajectory
of the shower is well approximated by a straight line. We call this line the shower axis. It is
collinear with the impulse of the primary particle pointing towards its extended trajectory.
To estimate the shower axis, we need to know the Shower Detector Plane (SDP). The SDP is
the unique plane that is spanned by the detector position and the shower core (see Fig. 3.1).
Assuming that the emitted light is traveling with the speed of light 2 and the shower core
lies on a straight line, the trigger time C8 of pixel 8 of one of the telescopes of the FD can be
modeled as

C8 = C0 +
'p

2
tan

("0 − "8
2

)
, (3.1)

where "8 is the angle corresponding to pixel 8, "0 is the angle between shower axis and
ground plane in the SDP, and 'p is the minimum perpendicular distance between telescope
and shower at the time C0. Using "2-square minimization, we obtain estimates for "0, C0, and
'p, which together define the shower plane (see Fig. 3.1).

After extracting the geometrical information, we are able to evaluate the time signal infor-
mation to estimate the longitudinal shower profile (see Sec. 2.2.4). However, the measured
signals represent only the photon flux. Hence, we need to convert this flux into the deposited
energy d�/d- as a function of the slant depth - (see Eq. (2.4)). This process is quite chal-
lenging. First, we need to disentangle the flux into different sub-components, and afterward,
the attenuation needs to be accounted for. In the end, we convert the corrected flux by using
the fluorescence yield [P:79].

To estimate -max and the calorimetric energy �cal of the shower, the algorithm performs a
fit of the resulting profile to the Gaisser-Hillas function in Eq. (2.14) (see Fig. 3.1). The shower
depth of the shower maximum -max is a free fit parameter. We obtain it directly. It should
be mentioned, as discussed in Sec. 2.2.5 and Sec. 2.2.4, that this is the only way of measuring
the shower depth of the shower maximum, which makes it invaluable for the cross-test of
other methods that try to reconstruct it from indirect measurements at Auger. To extract the

27



3 Current Reconstruction in Use

250 500 750 1000 1250

X/(g cm−2)

(d
E
/d

X
)/
(a

rb
.

u
n

it
s)

GH fit

Figure 3.1: Left: Illustration of geometry reconstruction using FD (see Eq. (3.1)) and the SDP.
Taken from [P:53]. Right: Energy deposit per slant depth (d�/d-) of simulated longitudinal
shower profile (points). The black line shows a best fit using the GH function (see Eq. (2.14)).

shower energy, we need to perform an additional step. We obtain the calorimetric energy
of the shower from an integral of the longitudinal profile function over -. To convert this
integral into the primary particle energy, we must account for the fraction of shower particles
that are invisible to FD, such as muons which hardly interact with the atmosphere [P:80].

Note that although Eq. (2.14) fits the profiles quite well, it has limitations. Sometimes the
fit gives parameter values – usually associated with physical processes – that are un-physical,
such as negative values of -1. The fit function is only phenomenological, having problems
reproducing the shower profile at the earliest interactions. This is not only the case for
measurements that are subject to noise and imperfect measurement conditions but also for
simulations (see Sec. 2.2.4).

To obtain the shower profile from the FD, we have to follow the reconstruction procedure
described above. Each step introduces systematic uncertainties due to the assumptions
and physical measurements. All uncertainties that affect the profile also directly affect
the estimation of -max. Accounting for all these uncertainties, we obtain a precision of
about 15 g/cm2 at the highest energies [P:81]. In addition, to estimate the energy, we also
have to account for systematic errors introduced by the integration and the transformation
from calorimetric to shower energy. These uncertainties on the FD energy scale amount to
14% [P:82, P:83, P:84].

This energy measurement is instrumental since it can be used to determine the energy
scale of the SD of Auger. Without this “more” direct measurement, the energy predictors
would need to be calibrated against simulation data. This, in turn, would give us much larger
systematic uncertainties because of inconsistencies, such as the muon deficit (see Sec. 2.4.1)
and the differences between the currently used hadronic interaction models.

Since FD is based on the direct observation of the shower profile, the quality of the re-
construction relies on the amount of longitudinal profile which is inside the FOV of the FD
telescope (see Fig. 3.2). However, we cannot directly remove events exhibiting incomplete
profiles. This could yield a composition bias due to distortion of the measured -max distri-
bution. For the FD reconstruction, a data-driven approach, called fiducial FOV cut, is used
to ease these problems [P:81, P:85]. The acceptance boundary [-l , -u] is parametrized [P:86]
in such a way as to ensure that the mean shower depth value in any given energy interval
does not deviate more than 5 g/cm2 when shrinking the interval.

By further requiring a precision below 40 g/cm2 and a minimum observation angle above
20°, we obtain a high-quality data set that can be used for calibration purposes (see Sec. 3.2.3).
In Sec. 5.2, we discuss the effect of this quality selection on the amount of data.
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Figure 3.2: Illustration of the influence of the FOV of the FD telescopes on the sampling and subse-
quent reconstruction of the longitudinal shower profile. It depends on both the shower geometry
and the distance to the observing telescope. If these are unfavorable, the measured profiles are
truncated. Our preferred event geometry is that denoted in panel (C). Taken from [P:81].

3.2.2 SD reconstruction using the WCD stations

Fundamentally, while the FD measurement represents a projection of the longitudinal com-
ponent of the shower, the SD observes points of the time-dependent footprint at the ground.
The footprint represents a planar cut through the space-time profile of the shower cascade at
the ground. Hence, the effective size{3} and the shape of the footprint are dependent on the
inclination angle � of the shower. For increasing �, the more elliptic and larger the effective
area is. Moreover, the effective size of this footprint also scales with primary particle energy
�. The larger this size, the higher the number of stations that will potentially trigger. Hence,
� and � correlate directly to the effective footprint size.

Commonly, the station with the largest deposited signal is called the Hottest Station (HS).
Due to the triangular structure of the SD-array grid (see Sec. 2.3.2) the stations around
this station form differently sized hexagons (see Fig. 3.4). We call these unique hexagons
“crowns” if the center of the hexagon is the HS. Therefore, the first crown is formed by the
six{4} stations closest to the HS. All following crowns are built in the same manner. The
(maximum) number of stations in crown = is 6=. With high probability, the HS is also the
closest station to the impact point of the shower core on the ground.

As for the FD, the reconstruction of SD events – after the triggering process – has two
steps. In the first step, the shower geometry needs to be reconstructed. Afterward, we use
this knowledge to perform a fit of the Lateral Distribution Function (LDF) (see Eq. (2.17)).

A High-level trigger conditions of the SD

Each WCD{5} constantly measures the deposited signal. This comes mainly from background
particles. If all of the working PMTs of a station measure a coincident signal above a certain

{3}In the sense of the area that where the signal is above the WCD threshold.
{4}In certain parts of the array, e.g. the edge of the SD, this number can be smaller.
{5}This is also true for any other detector on top of the WCD.
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Figure 3.3: Representation of a shower footprint for a shower induced by a simulated iron
primary. We placed the HS in the center of the triangular grid. Colored hexagons signify
triggered stations. Left: Timing of the WCD triggers relative to the HS. The arrow indicates the
direction the shower propagates to and ) is the corresponding azimuth angle. Right: Signals of
the WCD and SSD normalized to the WCD and SSD signal in the HS. The left part of a hexagon
shows the WCD, and the right part the SSD signal strength. A partially white hexagon indicates
that the corresponding detector exhibits no signal. Since the SSD has a smaller effective detection
area, it is possible that it does not detect a signal even if the WCD does.

threshold, the local station triggers, sending this information to the CDAS. If at least three of
such triggers happen in a time window of 50 µs, CDAS checks for their spatial correlation.
To build an event from the triggers, they must satisfy specific trigger patterns depicted in
Fig. 3.4.

These events – called T3 events – are potentially just coincidences that might happen when,
for example, atmospheric muons trigger stations. Hence, they have to pass additional, more
strict criteria{6} before being considered for reconstruction. A necessary condition is that the
trigger times of the stations in a T3 event must be compatible with a planar shower front
moving with the speed of light. If all criteria are met, the event is promoted to a T4: a physics
event.

To ensure that T4 events are of high quality, there is another high-level trigger. This trigger
can be applied before or after the reconstruction of the event. We focus only on the latter.
After reconstruction, the station nearest to the impact point of the shower core must have at
least = functioning stations in its first crown. If this is the case, the event is promoted to an
=T5, where = ∈ [4, 5, 6]. The most valuable of these are the 6T5 events. Among other things,
they are used in the SD energy calibration.

B Geometric reconstruction of showers using their footprint

The shower geometry is entirely defined by the shower core (see Sec. 2.2.3). Since it is a
straight line, we need to find its direction vector and one unique point the line intersects. For
the former, we want to use the collinear unit vector and denote it as the shower axis â. As a
unique point, it is convenient to use the impact point of the shower core on ground-level rc.

{6}The procedure identifies approximately 99% of physics events. For example, the conditions reject T3 events
induced by lightning.
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Figure 3.4: Left: Two examples of coincidence trigger (T3) pattern. The different colored lines
make up concentric hexagons around the HS. The =th hexagon is called the =th crown. We
denote it as�= . The solid circles represent an example topology for a 3-fold coincidence. For such
a coincidence, all stations must satisfy a time-over-threshold trigger and at least one triggered
station must be in �1 and a second one not further than �2. If we also add the dashed circle, we
obtain an example topology for a 4-fold coincidence. For such a coincidence all, participating
stations can be any valid single station level trigger where the additional station can be as far
as in �4. Right: Sideview of SD setup for shower plane measurements (see Eq. (3.2)). Far away
from the point of first interaction, the shower plane can be approximated by a plane front.

We are able to obtain â and rc by a fit to the shower front. The shower front is a sphere
inflating with 2 originating from the point of first interaction. Far from it (see Fig. 3.4), the
shower front is roughly planar. We exploit this to gain prior knowledge of â.

Let (x8 , C8) be the four-vector inside the shower plane at station 8 which triggered at the
time C8 . Since the shower plane propagates with constant speed 2, the four-point of station 8
and station 9 must fulfill

2(C8 − C 9) = â · (x8 − x 9). (3.2)

Therefore, we can use a direct fit by choosing an arbitrary reference point. From the fit, we
obtain the reference time and the shower axis for the plane front approximation. We denote
it as âpf. If an event contains only three stations, the fall-back value is derived by solving
Eq. (3.2) exactly by constructing a linear system of equations.

To describe the curved shower front, we need to slightly modify Eq. (3.2). We want to find
a (virtual) point of origin (xo , Co). Assuming the shower front is spherical, we obtain

20(C8 − Co) = |x8 − xo |. (3.3)

The point of origin is obtained via a fit that accounts for the uncertainty of the timing. To
estimate the shower axis â, another point on the shower core is required. For this, we use rc.
A rough approximation of rc is the barycenter of all stations weighted by their signals. This
is used as an initial value in the LDF fit (see Sec. 3.2.2.D).

C Time signals of the UB-WCD

The total signal (tot of WCD station 8 is the integral over the time signal called traces, detected
by the PMTs. A UB trace has 768 bins (see Sec. 2.3.2). However, the signals are normally much
shorter than this time window. The signal start bin 1s (SdRecStation.SignalStartSlot)
marks the start of a signal. This is also the bin that approximately corresponds to the trigger
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time of the detector. In Analog/Digital Converter (ADC) counts, the total trace signal of a
PMT is

(ADC =

1e∑
1=1s

((ADC(1) − �(1)), (3.4)

where �(1) is the baseline of the FADC [P:58] and 1e is the end bin of the trace given by Offline
(SdRecStation.SignalEndSlot). To convert this to a value that is independent of the used
electronics, we require the station calibration value &VEM (see Sec. 2.3.2) that yields the
equivalent of integrated counts to the average signal deposited by a vertically through-going
muon. Using the signals of all working PMTs, we obtain the total signal via

(tot =

〈
(ADC

&VEM

〉
. (3.5)

Historically{7}, time traces (off(C) taken from Offline are given in units of the VEM peak,
�VEM. Hence, the integral over (off(C) does not correspond to the deposited signal. Hence,
we convert it using the area over peak 0p (see Eq. (2.18)),

((C) = (off(C)/0p. (3.6)

In Fig. 3.5, we show a trace taken from a simulated event using the hadronic interaction
model QGSJ for a oxygen primary. We highlighted the start and end bins via vertical dashed
lines.

In simulations, we can access the sub-traces coming from the sub-components of our
shower (see Fig. 3.5 (right)). These play a vital role in the Universality method discussed
in Sec. 3.3.2. Due to the fact that the total and the component traces are simulated indepen-
dently, the sum of all sub-traces does not match precisely the total trace.

The trace is made up of the deposited signal of many particles. Each particle 9 produces
a detector response at the time C 9 that follows roughly a one-sided exponential decay [P:87].
Therefore, the expected trace follows

((C) = const
∑
9

' 9Θ(C − C 9) exp

(
− C
�

)
, (3.7)

where ' 9 is the magnitude of the response, which is proportional to the deposited energy of
the particle, Θ is the Heaviside function, and � is a decay constant that depends mainly on
the absorption properties of the water in the WCD and the reflectivity of the liner. Moreover,
� also partially depends on the electronics of the PMTs.

D Lateral distribution function of total signals

Since the triggered SD stations only sample parts of the shower footprint, we need to define
a self-consistent way to estimate the “magnitude” of the corresponding shower. We denote
this estimate as the shower size.

Since signals correspond to particles traversing through our detectors, we parameterize
the LDF of the signals on the ground level with the modified NKG function (see Eq. (2.17)).
Keeping its functional form, we obtain

((A) = ((Aopt) 5mNKG(A) = ((Aopt)
(
A

Aopt

) � (
A + As
Aopt + As

) �+�
, (3.8)

{7}In this way, a single muon would on average have an amplitude of 1.
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Figure 3.5: Example UB PMT traces of a triggered detector for a simulated oxygen-induced
shower using the QGSJ model of hadronic interactions (left) and averaged traces of sub-
components in the region of interest (right). The response of all PMTs differs only marginally
for this inclined event. The signal is dominated by muons. This is due to the high inclination of
the shower and the large distance to the shower axis.

where As is set to 700 m for all arrays due to its strong correlation with � and A is the
perpendicular distance to the shower core called the shower-plane distance. We define
((Aopt) as the shower size. The choice of Aopt depends on the array geometry.

Since we want to build an estimator, we want the signal at Aopt to be only minimally
fluctuating. For the Auger SD main array, this distance is 1000 m, for the 750 m-array it
is 450 m. To fit the LDF an elaborated log-likelihood minimization is used that also takes
non-triggered stations and saturated stations into account [P:52]. We call candidate stations,
all those that trigger due to the air shower. To enable the reconstruction of low-multiplicity
events, � and � are parameterized using high-multiplicity events. The LDF fit (see Fig. 3.6)
provides us with the expected signals at each distance to the shower axis, assuming no
asymmetry between up- and downstream stations{8}.

Unfortunately, due to attenuation, (1000 strongly depends on the amount of traversed
atmosphere and, consequentially, on the zenith angle �. To make shower events relatable,
we want to obtain the expected value of (1000 at some reference zenith value. Assuming that
the event distribution is isotropic, the number of detected events # follows

d#

d sin2 �
=

d#
d cos2 �

= const. (3.9)

The trigger efficiency of the array remains over 99% up to a zenith angle of 60°. The median of
the angular distribution in this zenith range lies at 38°. Hence, we chose this as the reference
angle �ref, which defines the signal (38.

Assuming the attenuation depends only{9} on �, we can exploit the relation in Eq. (3.9).
This is called Constant Intensity Cut (CIC) method [P:41]. Then, (38 is defined as

(38 =
(1000

5CIC (�) =
(1000

1 + 0G + 1G2 + 2G3
, (3.10)

{8}Stations that triggered before the shower front reached the core position and stations that triggered after it
was reached.

{9}Only recently, an energy dependence has been introduced into this parameterization.
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Figure 3.6: Left: LDF fit (black dashed line, see Eq. (3.8)) of total signal (tot of candidate stations
(magenta points, see Sec. 3.2.2.D) for a simulated oxygen-induced shower using the QGSJ model
of hadronic interactions. For the simulation, we added 10 dense stations (orange points) at a
perpendicular distance of 1000 m to the (true MC) shower core. The signal of these (off-grid)
stations matches the expected signal given by the LDF fit at A = 1000 m. Right: Difference
(magenta points) of trigger time C of a candidate station and the time it would take a planar
shower front Cpsf to reach that station. We have shifted the differences that it is zero at rc and
have fitted a quadratic function to the points (black dashed line). This shows the curvature of
the shower front.

where 0, 1, and 2 are fit parameters and G = sin2 � − sin2 �ref (see Fig. 3.7). In the past, 0, 1,
and 2 have been derived via a counting method [A:5] exploiting Eq. (3.9). Presently, a more
advanced method based on Poisson "2 minimization is used [A:6]

Offline enables us to add SD stations, which are not part of the SD grid, during an air
shower simulation. We call these off-grid stations dense stations. The position of a dense
station is defined by its distance to the (true MC) shower core and an azimuth angle using
the impact point of the shower core on the ground as the origin. The dense stations are still
placed on the ground level. Among other things, the dense stations are used to estimate
the deviations in the shower size. For the 1500 m-array, they are positioned at a distance of
1000 m for a set of evenly spaced azimuth angles. Thus, these stations are arranged on the
unique ellipse at ground level, whose main axis lies on the projection of the shower axis to
the ground.

3.2.3 SD energy calibration via Golden Hybrid events

The basic idea behind the SD energy measurement is the construction of the zenith-independ-
ent standard signal (38, which represents the effective shower size at 38°. It combines a signal
measured at a standardized distance, which is optimized to the geometry of the detector, a
correction based on the atmospheric column, which has been traversed by the shower, and
the zenith-dependent response of the employed detector. Hence, following Sec. 3.2.2.D we
now have an indicator for the energy of the shower. The energy is related to (38 via a power
law, which reads

�SD = �

(
(38

VEM

) �
, (3.11)
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Figure 3.7: Left: CIC function 5CIC computed from Golden Hybrid data up to 2017 (see Eq. (3.10)).
The yellow regions represent the 95% confidence bands of the 5CIC parameters. Right: FD energy
vs (38 for Golden Hybrid events up to 2020 (see Eq. (3.11)).

where � and � are constants inferred from the calibration process (see Fig. 3.7).
For Golden Hybrid events, we can perform the SD and FD reconstruction independently of

each other. Therefore, for each value of (38, we have a corresponding value of �FD, which is
one of the main advantages of a hybrid detector design like that of Auger. Using the energy
�FD from Golden Hybrid events (see Sec. 5.2.2), we can fix the parameters � and � with a log-
likelihood minimization. This log-likelihood accounts for various effects, such as the steeply
decreasing spectrum, the shower-to-shower fluctuation, and the detector resolutions [P:88].

3.2.4 Reconstruction using SSD information

At the moment of writing, the procedure of using the SSD signals for a hybrid reconstruction
is not fully fixed. Hence, we only will give general remarks.

Similarly, as for the WCD stations, we can construct an LDF using the total signals (S
tot of

the SSD stations. This SSD LDF should exhibit a slightly different behavior than the LDF of
the WCD, providing us with extra information. Using this together with (1000 potentially
enables us an event-by-event mass separation for pure SD events [P:89, P:90] in addition to
a better energy estimate.

Furthermore, having two measurements at the same position of the shower for two differ-
ent types of detectors could also allow us to separate muonic from electromagnetic signals
for each tank position. One – heavily investigated – method to do this is the so-called matrix
formalism which assumes that the fluxes of the sub-components of the shower relate to the
measured signals in both detectors via a simple matrix:

(
(W

tot
(S

tot

)
=
©«
. . .

. . .

ª®¬
(
ℱμ
ℱem

)
, (3.12)

where (W
tot is the total signal in the WCD and ℱμ and ℱem are the muonic and electromagnetic

fluxes [A:7], respectively. Inverting the matrix yields the relation between the signals in the
WCD and SSD and the signals from the muonic and electromagnetic flux.
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3 Current Reconstruction in Use

3.3 Reconstructions of mass sensitive parameters

A central topic in CR physics is the need for accurate knowledge of the primary particle
masses (see Sec. 2.4) of air showers. These masses, however, are incredibly hard to reconstruct
due to their close relation to the reconstructed energy of an air shower. When focusing on
the total signal distribution, a proton-induced air shower can appear like a less energetic
iron-induced air shower.

A workaround for this lies in the identification and reconstruction of mass-sensitive pa-
rameters. The most commonly used mass sensitive parameters are the depth of the shower
maximum -max, which we have discussed in Sec. 2.2.4, and the relative muon content 'μ

(see Sec. 2.4). We define the relative muon content by

'μ =
#μ〈
#

p
μ

〉 , (3.13)

where #μ is the number of muons at the ground and
〈
#

p
μ

〉
is the average number of muons

produced in a proton shower with the same energy at the ground. For protons, Eq. (3.13) is
by construction on average 1; for iron showers, 'μ is around 1.3 to 1.4.

Here, we introduce the most commonly used analytic approaches using non-NN-based
methods to extract mass-sensitive parameters. Note that there are currently also data-driven
analyses in this direction. We discuss them in Sec. 4.3 after introducing NNs.

3.3.1 Delta method

The shape of the early part of the time trace is related to the early particles arriving at
the detectors. These early particles are dominated by muons since the particles of the
electromagnetic shower component experience more scattering in the atmosphere. The
spread of the muons depends mainly on the origin of their production.

A quantity that describes this is the so-called risetime C1/2 of the WCD traces. It is defined
as the duration the signal needs to reach from 10% to 50% of its total integral [P:91, P:92].
Similarly to '�, we relate C1/2 to a benchmark value that quantifies its station-wise relative
deviation. For each station 8, we obtain

Δ8(A, �) =
C
(8)
1/2 − Cb(A, �)
�C1/2(A, �)

, (3.14)

where Cb is the expected benchmark rise time value and �C1/2 its second-order moment, mea-
suring the uncertainty. The average value of the Δ8 for an event depends on the underlying
primary. Therefore, it can be used as a mass estimator [A:8]. This is called the Δ method.

Phenomenologically, the average value over the Δ8 can be also used to modify the relation
in Eq. (2.12). To first order, the depth of the shower maximum is given by

-Δ
max = 0 + 1 〈Δ〉 + 2 lg(�SD/eV), (3.15)

where 0, 1, and 2 are fit parameters and 〈Δ〉 represents the average value of Δ8 for all stations.
The fit parameters are determined by calibrating with the FD measurement of the depth of
the shower maximum [P:93].

The benchmark relates the measurement with the muonic average. Therefore, it is prob-
lematic using simulations to get the parameters in Eq. (3.15) [P:92]. Due to the muon deficit,
it would yield a shift, if compared to real data, that cannot be dealt with by means of calibra-
tion since there are no direct mass measurements. Furthermore, the correlation between the
depth of the shower maximum, as defined in Sec. 2.2.3.A, and as defined in Eq. (3.15) is not
unique due to its dependence on the muons. In spite of all these deficiencies, the Δ method
remains a straight-forward way to estimate -max from SD event data.
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3.3 Reconstructions of mass sensitive parameters

3.3.2 Air shower universality

As addressed in Sec. 2.2.4, air showers induced by photons show a universal behavior [P:42,
P:94]. For hadronic showers, this observation can be generalized in a phenomenological way
since certain aspects, such as the energy spectra of the electromagnetic sub-component [P:95]
or the universal shower profile (see Sec. 2.2.4), appear universal.

Air shower universality exploits this similarity by parameterizing the (main-contributing)
shower sub-components, decoupling the components in the process [P:96]. We quickly
reiterate (see Sec. 2.2.3) them here: For Universality, we differentiate between

• the muonic component μ,

• the electromagnetic component eγ(μ) from muon decay,

• the electromagnetic component from hadronic component eγ(π),

• the electromagnetic component eγ from all other sources.

For each sub-component, a model of the expected signal to be deposited has to be developed.
These models describe the signal for each sub-component measured in the SD stations. This
signal model is accompanied by a time model, which essentially describes the expected trace
shapes in the stations (see Sec. 3.2.2.C).

All of these parametrizations depend only on a subset of global shower parameters. This
subset usually consists of the core position rc, the relative plane front time Cpf, the zenith
angle �, the azimuth angle ), the depth of the shower maximum -max, the energy of
the shower �, and the relative muon content 'μ (see Eq. (3.13)). The reconstruction of
-max and 'μ to estimate the primary particle mass is the main objective of the Universality
method. Moreover, Universality also acts as an independent estimator for the shower energy.
Normally, this is done by a global log-likelihood minimization which accounts for the entire
SD event.

At its, core Universality is an elaborate template-matching algorithm. By performing the
Universality fit procedure, we try to find the appropriate shower that would explain the
measured observables of this shower by finding appropriate total signals and signal shapes.
This is the most significant advantage of the method since it is entirely analytic. Although
due to its complexity, all of the parametrizations are derived from simulations, we are still
able to scale parameters, such as 'μ, for which simulations do not match with measurements,
recovering its predictive power.

In recent years, many different groups and people have [P:97, P:98, P:99, P:100] tried
to tackle Universality. This popularity shows another advantage of Universality: it is (in
principle) independent of the underlying detector type. Theoretically, it can be generalized
for any combination of detectors opening a plethora of exciting applications. However, in
each case, a new parametrization is needed. This yields complexity and has many nuances.
Therefore, slight changes in the model could potentially have large effects on the outcome and
predictions. In this work, we view the Universality reconstruction as the analytic counterpart
of the NN-based approaches.
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4 Using Artificial Neural Networks for the Recon-
struction of Shower Properties

My CPU is a neural-net processor; a learning
computer. The more contact I have with humans,
the more I learn.

(Terminator 2: Judgment Day)

Physicists shocked about a neural network that extracts
information from physics data without human inter-
ference, oil painting[.]

DALL·E 2 prompt:

ANNs are information processing algorithms modeled loosely similar to how the human
brain and its neurons thought to process data. Their structure is – generally speaking – well
represented by a (specially designed) directed graph. Henceforth, we refer to the topology
of nodes and edges as the architecture of the network.

In the simplest implementation, each node in the graph represents a neuron that is able
to weigh and pass information{1} received from neurons (or itself) to other neurons. The
exact way how each of these neurons mixes and transfers the information is learned during
a process called training. During training, information is propagated through the network.
The response of the NN is then evaluated against some pre-defined metric, and the network
is adjusted in such a way as to fulfill this metric. It has been shown that a special class of
ANNs are universal approximators [C:2]. If they are large enough, they can approximate
any analytical function with arbitrary precision. The huge advantage of this is that it is
not necessarily required to know the form of the analytic function which belongs to the
information-response pairs mentioned before. Therefore, we do not need to model the
dependencies ourselves. This simplification also means that NN-driven algorithms do not
have to be explicitly programmed. We assume that [C:2] is approximately true for any large
enough NN. Due to the high complexity{2} and the training procedure, methods based on
NNs belong to the field of computer science of machine learning.

In the last couple of years, the area of machine learning based on NNs has surged in
popularity and usefulness{3}. An increase in affordable, parallel computing power, efficient
training algorithms, and the general availability of data allowed the use of much larger NNs
architectures called Deep Neural Networks (DNNs). The first well-known application of

{1}Normally, encoded as floating point numbers.
{2}Let # be a part of a network that consists of a set � of = and a set � of < nodes. If we connect all nodes from

� and � we would need = · < (initially) independent weights.
{3}Using GoogleScholar, the number of research papers containing ‘deep learning’ and ‘physics’ in their titles

was around 7000 in 2015. Now, in 2022 it is about 33 000.

39



4 Using Artificial Neural Networks for the Reconstruction of Shower Properties

such DNNs has been in the hard-to-solve task of image recognition [C:3]. A Convolutional
Neural Network (CNN) [C:4], dubbed AlexNet, outperformed every model submitted to the
ImageNet Challenge 2010 by over 10 percent points [T:G]. Only a few years later, a new
network [C:5] surpassed human-level classification performance. Nowadays, many tasks
humans reigned supreme are performed by DNNs in a much faster way. Even creative
processes, usually hard to tackle with computer algorithms, are not safe anymore from these
advances. DNN-based image generation from text prompts, such as DALL·E 2 [C:1], show
this quite well.

DNNs have many different applications outside of the classification. They are also used
in tasks such as

1. the extraction of novel features from input data,

2. the (fast) generation of new data samples,

3. the interpretation of situations based on audio-visual data,

4. and numerical regression.

These applications have various use cases in physics data analysis. The main focus, however,
will be on the last point, which is especially interesting for the analysis of air showers. Using
a NN-driven approach, we can relate complex properties of air showers, e.g., the shower
footprint, to high-level observables, e.g., the energy or the depth of the shower maximum.

The normal research workflow of scientists is based on the utilization of analytic functions
to model experimental results. This approach works fine when we have ‘easy-to-exploit’
dependencies or know all of the underlying physics. However, the data may contain complex
correlations that are a priori unknown and very hard to uncover. Approaches based on
DNN tackle this problem by working in a way that is driven by the data itself and solely
guided by the pre-defined metric in the training process. This data-driven analysis, in turn,
benefits the regular analysis since the NN result gives us a threshold of for how good the
approach can become. For example, we could construct a data-driven form of the purely
analytic Universality framework to check the parametrization of the used signal model (see
Sec. 3.3.2).

In this work, we consider DNNs as a tool to analyze our physics data. In the case
that established analytic approaches yield the same result as carefully{4} crafted DNN, it
is reasonable to assume that the data has no correlations anymore that we can exploit. From
our point of view, we obtain a threshold analysis and simultaneously a powerful predictor
out of regular training.

In Sec. 4.1 we introduce conventions and handy notations to simplify the explanations in
the rest of the chapter. Afterward, we discuss the basics of NNs in Sec. 4.2. We explain
the training process, basic architectural concepts, and a couple of advanced network layers.
Finally, we demonstrate how we apply NNs to classification tasks. All of this discussion gives
us the tools to review the current main analysis done with NNs in Auger in Sec. 4.3. We
show the basic ideas and architectures which we use and modify in the subsequent chapters.
Finally, in Sec. 4.4, we discuss how we gauge the quality of our network predictions and
in which way we compare the predictions of different NNs that predict the same shower
observable.

{4}Unfortunately, this is hard to quantify.
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4.1 Conventions and notation

4.1 Conventions and notation

In this thesis, we work with multidimensional arrays. These act as information mediators
between different parts of NNs. Each variable G is an element of ℝ=1×···×=" where " is
the number of array-like dimensions and the different =8 correspond to the sizes of the
components. For example, the complete information of all time signals of the PMTs of #B

WCDs of one event (Sec. 3.2.2.C) could be represented by a multidimensional array G with
G ∈ ℝ#B×768×3, where #B is the number of triggered stations.

To simplify our notation, we define a couple of operators which act on such these multidi-
mensional arrays. Let G ∈ ℝ=1×···×=" , we define O� as

O�G = =1 × · · · × =" and O�,9G = = 9 . (4.1)

Therefore, it retrieves the ‘size’ of G. Sometimes it is useful to know how many independent
elements a multidimensional array has. We define the counting operator #

#G = =1 · · · =" . (4.2)

Sometimes, instead of a single G we work with sets of differently sized multidimensional
arrays, e.g., the trace information together with global shower properties, such as the zenith
angle. In this case,we write {G(1) , . . . , G(=C )}, where =C is the number of elements in the set.
Henceforth, we omit the adjective multidimensional for the sake of brevity.

In this work, we focus only on supervised learning (see Sec. 4.2.1). We denote G (-) as
the array (set of arrays) of the input, ? (%) as the array (set of arrays) of the output, and H
(.) as the real values which correspond to ?. We denote H (.) as labels or targets for the
inputs G (-). For example, G could represent the shower footprint and H the maximum of
the shower depth. Normally, O�H = O�?, however there could also be a post-processing
step that transforms ? into the shape of H.

We differentiate between architectures Aℛ and models ℳ. An architecture defines how a
set of free parameters control the flow of information between the inputs G (-) and outputs
? (%) and also in which way these parameters are adjusted during the training process. We
differentiate between two types of such parameters: Hyperparameters Υ and regular model
parameters{5} �. Hyperparameters are parameters that define the topology of a NN, the
used inputs, and the training process. They are set before the regular training process. For
example, the learning rate  (see Sec. 4.2.1) that defines how much the network parameters
� are adjusted in each step of the training process is a typical hyperparameter. Regular
parameters � are estimated at training time. They affect the propagation of information
itself. If we compare this to regular fit models, the degree of a polynomial and the choice
of minimization algorithms would be typical hyperparameters Υ, whereas their coefficients
would be regular parameters �. Using this definition, we denote an architecture Aℛ as a set
of fixed hyperparameters. From an architecture Aℛ, we obtain a model ℳ by fixing all of
the parameters � via the training process. Consequentially, a single architecture can spawn
many different models depending on how � has been fixed.

If we have a fixed sets of hyperparameters Υ and regular parameters �, we obtain the
output % by using - as an input for ℳ

% =
{
?(1) , . . . , ?(#o)

}
= ℳ

(
-;Υ, �

)
= ℳ

({
G(1) , . . . , G(#i)

}
;Υ, �

)
, (4.3)

where - and % are sets of #i and #o arrays, respectively. Normally, we have # input-output
pairs - = {-8} and . = {.8} for which we obtain a set of predicitons % = {%8}. Henceforth,
we use G, H, and ? interchangeably with -, ., and %.

{5}Commonly, in the field of statistics and machine learning the variable � is used for the parameters. However,
to avoid confusion with the zenith angle, we decided to use � instead.
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4 Using Artificial Neural Networks for the Reconstruction of Shower Properties

Let D be a data set with # elements. We define it as

D =
{
(G 9 , H 9)

}
=
{ (
{G(1)9 , G

(2)
9 , . . . , G

(#i)
9 }, {H(1)9 , . . .}

) }
, (4.4)

where G(8)9 are #i inputs and H(8)9 are #o different outputs (see Sec. 4.1). In Eq. (4.4) the inputs
and outputs which share the same 9 belong to each other.

If the dimension of one of our arrays has the form

O�G = =1 × =31 · · · × =3= (×=C) × =2 (4.5)

we call =1 the batch dimension (see Sec. 4.2.1.A), =3G the spatial dimensions, =C the time
dimension, and =2 the channel dimension. For example, a mono-color video file would
have two spatial dimensions, a single time dimension, and one channel dimension. The
sizes of the spatial dimensions correspond to the width and height of the image. The
time and channel dimensions correspond to the length of the video and the color channels,
respectively. This definition is similar to that necessary to encode the SD time signals of the
shower footprint. The batch dimension corresponds to the number of videos passed to our
model simultaneously. Without loss of generality, we generalize Eq. (4.3) to be able to take
an arbitrary number of inputs to accommodate the batch dimension.

4.2 Neural networks as tool for analyzing physics data

As already mentioned, NNs are essentially complex graphs through which information is
passed via multidimensional arrays. The nodes of this graph are not restricted to simple
operations. Each node of the graph could also be replaced by a new (sub-)graph exhibiting
the same input and output edges (see Fig. 4.1).

We call a set of nodes that form a logical unit a network layer. A common procedure is to
stack many of these layers to build a more complex architecture without the need to define
every node by itself. Consequentially, if it is reasonable, we call logical units of multiple
layers sub-networks. Sub-networks perform a specific task that distinguishes them from
other parts of the network. For example, in Chapter 7, we use a sub-network that is designed
to extract features from encoded traces.

Essentially, the process from having enough raw data to a functioning NN model is as
follows: First, we have to collect and pre-process the to-be-used data. The pre-processing
step depends strongly on the problem and the chosen architecture. By doing this, we want
to prevent, for example, extremely high values in the input data that could yield unexpected
results and divergences. In this section, we assume that this step (see Sec. 5.3) is already
performed for our inputs and outputs. Secondly, we have to construct a reasonable architec-
ture. Most of the time, an NN architecture is constructed by inspecting previous networks
that try to achieve similar goals adjusting or extending them for the specific problem. We
take an existing architecture and fine-tune it based on our problem. Thirdly, we use the data
to train the network via a suitable metric. Both, the training process and the choice of the
metric are non-trivial. Lastly, we have to do a quality control of the resulting NN model.
This quality control can yield an iterative process that starts again at the first step with slight
modifications.

In this work, we use TensorFlow (TF) [T:H] to implement the NNs. TF is an open-source
library providing all the necessary tools to build, train, and evaluate NNs with pre-defined
inputs. It works by building directed graphs evaluated efficiently on Central Processing Units
(CPUs) or Graphics Processing Units (GPUs). All (graph-)functions in the framework are
automatically differentiable, which is highly beneficial for the training process (see Sec. 4.2.1).
Due to its efficiency, we use the Python interface to build our NNs.
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Figure 4.1: Illustration of the graph representation of a simple ANN showing some of the
terminology described in Sec. 4.2.

4.2.1 Training procedure

We distinguish between different types of machine learning depending on how the model
learns from data during the training process. In this work, we focus on the most common
one called supervised learning [C:6]. During training, we supply the network model with a
set of inputs and outputs. Henceforth, we refer to each pair as one data point{6}. For each
data point, we obtain one prediction that depends on the choice{7} of the network parameters
�. In the context of NN, this calculation is called a forward pass. Using a metric, we then
evaluate if the prediction is close to the expected output and adjust the parameters � in such
a way as to improve the prediction.

Hence, we optimize � by minimizing the metric. We obtain the optimal values of model
parameters �̂ via

�̂ = arg
�

minℒ[Υ](?, H;�) = arg
�

minℒ[Υ](ℳ(G;�), H;�), (4.6)

where ℒ is the cost functional. For a fixed set of Υ it generates the metric for our network
training called loss function. Normally, the loss function is a convex function. For the sake of
brevity, we drop the y on the hyperparameters Υ in Eq. (4.6) and move the dependecy of �
into ℳ, leaving us with the following minimization problem

�̂ = arg
�

minℒ(ℳ(G;�), H). (4.7)

{6}From the machine learning task of image recognition, this is also generally referred to as input -9 with the
label H9 .

{7}To a certain degree the predictions also depend on the hyperparameters Υ.
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4 Using Artificial Neural Networks for the Reconstruction of Shower Properties

Simulations of detector responses of CORSIKA shower using Offline (see Sec. 3.1) are a prime
candidate for supervised learning since we have access to MC values. Beyond supervised
learning, there is also unsupervised learning. Its prominent use cases are in data clustering,
anomaly detection, and finding novel features. In each of these applications, there is usually
no easy access to labeled data. Moreover, hybrid versions of training called semi-supervised
learning combine supervised and unsupervised learning to some degree.

A Data preparation of inputs and outputs

Since NN models use a high number of free parameters, we have to prevent over-training.
Over-training occurs when a NN does not learn correlations in a data set but memorizes it
instead. Then, although it performs well on the previously seen data, it cannot generalize.
Therefore, we need methods to check the prediction of the NN models during and after the
training procedure (see Eq. (4.7)) and ensure that they do not deviate from their “ought-to-
be” path. One way of doing this is by splitting the data set D into three non-intersecting
parts. First, we require a data set used for tests after the training itself. It acts a control
group on which we do all of our cross-tests to evaluate the quality of the predictions of our
networks. We call this part the Test Data Set (TeDs). Secondly, we have the Training Data Set
(TrDs). As its name suggests, the TrDs is the part of our data we use to train the model itself.
It is the only part of our main data set that is directly used to adjust the model parameters �.
Finally, we have a Validation Data Set (VaDs). This is either a part sampled{8} from the TrDs
or a third independent data set. The VaDs is not used to evaluate the performance in the
testing stage. It is only used during the training at specific points to see if the model is still
able to generalize outside of the TrDs. Over-training is detected by tracking the performance
of the TrDs and VaDs. If the loss of the VaDs plateaus or strongly increases while that of the
training decreases, it is very likely that the network is over-training. We denote the number
of elements in each of the three data sets as #te, #tr, and #va. If the VaDs is drawn from the
TrDs, we will give the validation fraction 5va

{9} called validation split. In the following, we
use the subscripts tr, va, and te if we refer to any of the subsets.

Since data sets for the training of NNs are usually enormous, it is convenient to sub-divide
our base data sets used as input in the neural network. This reduces the computational
cost dramatically by enabling parallelization. We call these subsets batches. The number of
samples #�,1 in each batch 1 are not necessarily constant. Let �� the function{10} that draws
in each training step #�,1 batches from D We define

{
(G 9 , H 9)

}
1
= {��(D; 1)8}1 = ��(D; 1) = ��

({
(G8 , H8)

}
; 1
)
. (4.8)

The sequence of data points (G8 , H8) taken for each batch depends on the implementation.
During training, it is common to randomly draw a constant number of elements without
replacement. When this process exhausts the data set or after a pre-defined number of
batches, we restart the process. We call this an epoch{11}. Batches between epochs do not
need to be necessarily the same. Commonly, the end of an epoch marks the point at which
we process the VaDs to check the training process.

{8}Note that these data points are then not used for the training.
{9}#va = 5va#tr , #tr → (1 − 5va)#tr

{10}In many implementations a generator function �� provides these batches to the NN framework.
{11}Actually, we should modify Eq. (4.8) by the epoch number 4 as another input for ��. However, out of

convenience we neglect it.
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B Stochastic gradient descent and weight updates

For NNs, direct minimization is unfeasible. There are no efficient, stable algorithms to
account for all of their parameters. However, due to their design and implementation, they
are differentiable (see Sec. 4.2). Hence, the standard approach is an iterative process based
on the gradient descent algorithm [C:7] and modifications thereof. In each optimization step
8, we compute the direction of the steepest descent of the loss function via a first-order Taylor
approximation with respect to the current values of �8 . The most basic update step for one
data point can be written as (see Eq. (4.8))

�8+1 → �8 − 
%

%�
ℒ(ℳ(G8 ;�), H8)

����
�=�8

, (4.9)

where  is a hyperparameter called the learning rate. We have illustrated this process in
Fig. 4.2. Although using Eq. (4.9) also works for larger NN, it would take an extraordinary
amount of time to run an optimization on a single data point basis. To make this iteration
faster by using parallelization, we can use an entire batch of training data (see Sec. 4.2.1.A)
to make the update. This generalization is called Stochastic Gradient Descent (SGD). It
generalizes Eq. (4.9) to

�8+1 → �8 −


#1

#1∑
:=1

%

%�
ℒ(ℳ(G;�), H)

����
(G,H)=��(D;1): ,�=�8

. (4.10)

Common problems of SGD{12} are overshoots due to a wrong choice of the learning rate  in
very flat solution spaces, getting stuck because of a too little learning rate, and instabilities
due to noise. We counteract these by modifying Eq. (4.9) slightly. Under the assumption
that the training process is behaving well, we will come closer to a global minimum in each
training step. Hence, it makes sense to reduce the learning rate the longer the training runs.
This successive reduction is called learning rate decay. Learning rates can also be scaled to
account for local minima or plateaus in the loss. This is referred to as adaptive learning rate.
Moreover, to prevent sudden changes in training rate and gradient direction due to noise or
special samples in the data set, we introduce a step-dependent momentum term. This term
tracks previous learning steps to steer the training in the right direction. After adding all
these ideas to Eq. (4.10), the update from 8 to 8 + 1 reads

�8+1 → �8 − �8 −
8
#1

#1∑
:=1

%

%�
ℒ(ℳ(G;�), H)

����
(G,H)=��(D;1): ,�=�8

, (4.11)

where 8 is the step-dependent rate of learning and �8 is step-dependent momentum. The
exact implementation of 8 and �8 depends on the algorithm. The very commonly used
algorithm Adaptive Moment Estimation (Adam) [C:8] can combine all ansatzes discussed
and, additionally, adds terms that prevent the collapse of the network training in the start
phase. In this work, we use Adam for all network training processes if not mentioned
otherwise. There are also even more advanced algorithms based on exponential decay and
specialized momentum terms [C:9, C:10].

C Backpropagation

The gradient calculation goes from the output to the input of the neural network, exactly
the other way around as the forward pass (see Sec. 4.2.1). Hence, it is called backward

{12}This is also true for the regular gradient descent algorithm.
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Figure 4.2: Left: Illustration of the subdividing of the data set. In the first step, we split the data
set into one that is for the training procedure and one that is completely separated from it (thick
solid line). For the training, it is common to subdivide the used data further (double dashed
line). Right: Illustration of the gradient descent algorithm. The cross marks a local minimum in
the “solution space”. The black lines are contour lines for the loss function. The arrows indicate
the steps in the gradient descent algorithm (see Sec. 4.2.1.B). In this particular case, the step size
is reduced after each step, as in Eq. (4.11).

pass through our model ℳ. Since NNs are directed graphs the gradient calculation is
straightforward. During the forward pass, we obtain for the outgoing edge : of node #

H: = #({G:}; {�1 , . . .}), (4.12)

where G: are the outputs of previous nodes that are required to produce the output H: from
the local model parameters {�1 , . . .}. For each node we can find a path from the loss function
by following edges against their direction. If there would be a path for going from the loss
to node 8 via the nodes 8 + 2 and 8, we obtain

%�(8)ℒ = %�(8)#
(8+2) = %

#
(8+1)
1

# (8+2)%�(8)#
(8+1) = %

#
(8+1)
1

# (8+2)%# (8)# (8+1)%�(8)#
(8). (4.13)

The algorithm which stores the function calls of the forward pass and the first-order deriva-
tives of the backward pass is called backpropagation. It is a cost efficient way of computing
the gradient of the loss term in Sec. 4.2.1.B.

All of these weight update algorithms assume that the initial weights have already been
set. However, there is no easy way to find an ideal set of starting values. Commonly,
the initial weights are randomly set using specialized distributions for each layer, such as
the Glorot uniform distribution, which depends on the number of available weights [C:11].
Finding a “good” distribution for certain layers is still part of active research.

D Loss functions

For regression problems, we usually use the Mean Squared Error (MSE) as a loss function
since it minimizes the bias and variance of ΔH and is computationally inexpensive. It reads

ℒmse =
1
#1

#1∑
8=1

(
ℳ(G8 ;�) − H8

) 2
. (4.14)

However, the MSE also is prone to overweight outliers. A natural extension of the MSE loss
lies in the assumption that ΔH follows a Gaussian distribution. By adding another output to
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our network, we transform Eq. (4.14) into

ℒe-mse =
1
#1

#1∑
8=1

[ (
ℳ1(G8 ;�) − H8

) 2

2ℳ2(G8 ;�)2
− ln"2(G8 ;�)

]
, (4.15)

where ℳ1 and ℳ2 are two NN outputs. We interpreted ℳ2 as the � of the prediction.
Therefore, the network has the possibility to reduce the effect of hard-to-predict values and
gives us feedback on this.

Another advantage of the MSE loss in Eq. (4.14) is that it is easily expandable for factorizable
and unevenly distributed problems. Sometimes, it is helpful to weight our data to counteract
the effects of unequal distributions where the training could ignore parts with insufficient
amounts of data. Moreover, sometimes we are able to categorize our data into multiple
different kinds of classes. Modifying Eq. (4.14) accordingly, we get

ℒm-mse =
1
#2

#2∑
8=1

1∑#1
9 �(G 9 ∈ C8)�(G 9)

#1∑
9

�(G 9 ∈ C8)�(G 9)
(
ℳ(G 9 ;�) − H 9

) 2
, (4.16)

where �(G 9 ∈ C8) is one if G 9 is part of the class 8 and zero otherwise, �(G 9) is a weight for
point 9, and #2 the number of classes. In CR simulations we use the primaries as natural
classes in later chapters.

Since we are especially interested in a mass-independent predictor, we can also add a term
that penalizes non-zero means of the classes:

ℒm-mse+extra = ℒm-mse + ��

#2∑
8

#1∑
9

〈
ℳ(G 9 ;�) − H 9

〉2
9∈C8 , (4.17)

where �� is a hyperparameter to adjust the importance of the extra term. The average goes
over all 9 belonging to class �8 .

E Early stopping and automatic decrease of learning rate

Wrong choices for the learning rate yield instabilities in the training process. For example, if
we use a too-high learning rate, we are likely to jump over local minima. To counteract this,
we modify the training on-the-fly. If, after a pre-defined number of epochs, the prediction of
the validation set did not improve anymore, we stop the training directly without waiting to
finish the remaining epochs. We use the weights from the epoch that gave us the best value
on the validation set. Before this forced stop of the training, we try to recover the training
process by reducing the learning rate by a pre-defined factor. In most cases, the network is
then able to find a better local minimum.

4.2.2 Important architectural concepts

In physics problems, we usually exploit symmetries and correlations to simplify our analyses.
To obtain a working model predicting physics data, we have to reflect these symmetries and
correlations in the architecture. Finding a suitable architecture is, therefore, not trivial. Often
we have to repeat this process for each individual task we want to tackle. To simplify this
process, we regularly use “atomic” building blocks of layers that connect different parts of
the network. Here, we will shortly take a view over the most common of these and other
important parts of a NN.

In general, a NN architecture acts as a funnel for “important” information. As a rule of
thumb, in each successive layer the amount of passing information is slightly reduced. In the
best-case scenario, this leaves only a couple of final nodes that are then combined to reach a
final prediction.
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A Activation functions

Many of the standard layers provide only linear transformations between their input and
output. If we would mindlessly stack these layers, we would end up with a giant, overly
complex linear model. Such a model could certainly be collapsed into a much simpler
version, and it would make it impossible to catch non-linear correlations in the base data.

To circumvent this, we add a source of non-linearity to each of the layers. This can be
achieved by different means{13}. The easiest way to do this, however, is by introducing
non-linear functions called activation functions. These are added to each layer separately,
being applied on each output value of the layer. Activation functions directly influence the
backpropagation process (see Eq. (4.13)) by adding an additional term to the derivative chain.
Choosing an unsuitable activation function results in bad convergence rates, instabilities, and
a slow inference process. For example, a well-known problem for activation functions, such as
the sigmoid or tanh function, is the vanishing gradient problem [C:12, C:13]. The derivative
of these functions for high and low values is close to zero. Since the weight updates directly
scale to the derivatives (see Eq. (4.13)), the updates of the � become suppressed. This slows
down the training or potentially even stops it.

The most common activation function which solves this basic problem is the Rectified
Linear Unit (ReLU). We have depicted it in Fig. 4.3. It is a linear function that is zero for
negative values{14}. Its non-linear behavior is solely due to the jump of its derivative from
one to zero at G = 0. Because of this, ReLUs are computationally inexpensive. A problem
with the basic ReLU is that it cuts information partially away, which could yield instabilities
zeroing all of the data. Therefore, most generalizations of ReLU try to soften the hard cutoff
at the origin to prevent this “dying” ReLU problem [C:14].

Notable generalizations that tackle these problems are the Parametric Rectified Linear Unit
(PReLU) [C:5] and the Scaled Exponential Linear Unit (SELU) [C:15]. The former just adds
a negative ReLU to ReLU scaled by a trainable factor. This factor is usually chosen to be
very small. However, it is enough to reduce the risk of information being blocked in some
nodes. The SELU replaces the zero in the negative half-plane with a scaled exponential
that saturates to some constant negative value for very low G. It also scales the slope of the
straight line in the positive half-plane. These changes are made in such a way that a zero
mean and unit variance is achieved in each layer which regularizes the training process.

Another disadvantage of the ReLU activation function lies in its exacerbation of the irre-
producibility of models and results [T:I]. Mainly, this is due to the jump in the function. This
problem can be tackled by a Smooth Rectified Linear Unit (SMELU). The SMELU connects
the zero value in the negative half-plane with the linear function in the positive half-plane
by a quadratic function. This quadratic function is chosen in such a way that its minimum
is at the left transition point and its slope is one at the right transition point. We derived the
functional form in Appendix A.4. We obtain

�SmeLu(G; �) =



0 G < −�
G G > �
(G + �)2/(4�) other

. (4.18)

Since no complex functions are used, and its derivative is known, it is extremely fast to
calculate

We mainly rely on the standard ReLU in the employed networks. However, at some point,
we cross-check our results with more complex activation functions.

{13}For example, we could build networks that use higher moments of inputs or other functional representations.
This method is similar to a kernel approach.

{14}Therefore, the ReLU is essentially a hard high-pass filter.
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Figure 4.3: Visual representation of common activation functions and their derivatives. All
extension trying to circumvent the dying ReLU problem by allowing for non-zero values or a
smooth transition between the linear function and the zero in the negative half-plane.

B Skipping connections

The update steps of Eq. (4.11) are proportional to the derivative of all activation functions and
weights between the loss function and a node (see Eq. (4.13)). If a network is extremely deep,
it is possible that some of its parameters can not be properly updated anymore. To stabilize
the training process, we add shortcuts, called skipping connections, to our architecture.
These connect “earlier”{15} parts to “later” parts of the network, skipping layers in between.
Such a shortcut enables the network to decide during training if the skipped layers are
required for the inference process.

Most commonly, such shortcuts are realized in two ways. The output of a layer could just
be added to the output of a later layer. This is called residual connections [C:16]. Another
idea is to concatenate the output of a layer to the output of a later layer. In this way different
levels of abstraction can be analyzed together in later parts of the network. Sub-networks
using this scheme are referred to as densely connected [C:17].

4.2.3 Basic building blocks in neural networks

Since we use TF to build and train the networks, we do not have to implement any of the
standard layers. They are already part of the software framework and are already highly
optimized for parallel execution. In the following, we discuss all layers used in the network
architectures in this work.

A Fully connected layer

One of the simplest layer types used commonly in NNs are fully connected layers, called a
dense layer. In a dense layer with < nodes, all inputs are connected to all of the < nodes.
Then the inputs are weighted linearly, resulting in < outputs. It can be represented by a

{15}We refer here to parts nearer to the input.
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matrix multiplication
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where �8 9 are trainable weights, and �18 is a trainable constant vector referred to as bias. We
did not add an activation function for visualization purposes.

Since a dense layer connects all inputs with all outputs, theoretically, it should be able to
catch all possible correlations if we make it large enough. It provides the network training
process with the freedom to decide which of these is most important to make accurate
predictions. This, however, comes with a cost. The standard dense layer represented
in Eq. (4.19) has =< + < free parameters. Therefore, it has a quadratic O(=<) memory
consumption. This can go out of hand rather quickly. Also, a high number of trainable
weights also translates to a more challenging training process which potentially can be
dominated by noise. A visual representation of a dense layer is found on the right side in
Fig. 4.1.

B Convolution layer

If the inputs are a priori uncorrelated, dense layers are a good choice. However, if our
data consists of time series or images, which potentially exhibit local correlations, we can
exploit this by using a different approach. In this case, convolution layers are more suitable.
They work like regular discrete convolutions put in parallel whose set of filters 5 are model
parameters fixed in the training process.

Let O�G = #1 × · · · ×  and O�H = #1 × · · · × ! (see Eq. (4.1)). Then, the convolution
operation is given by

H; =
(
G ∗ 5;

)
(u) =

∑
v∈ℤ=

 ∑
:=1

G: (v) 5
:
; (u − v) , (4.20)

where u (v) is an =-dimensional integer index and 5 :
;

the filter corresponding to input :.
Therefore, for each individual filter 8, there is a separate filter : for the input :. We assume
that all filters have the same dimensions. Therefore, we have  !(# 5 ) free parameters. These
are much fewer free parameters than a dense layer would have. At the borders of our inputs,
the behavior of the convolution operation is defined by the user in a similar way as in all
common implementations of the fast Fourier transform. In regular-mode the convolutions
are only performed at positions where the entire filter lies inside of G. In the same-mode,
zeros are padded in such a way to the input G that there is a valid filter position for each
original position. In this case, G and H differ only in the channel dimension. In Fig. 4.4, we
depicted the convolution operation in the one-dimensional case for two steps.

Sometimes, it is beneficial to further reduce the number of free parameters by using
separable convolution layers. These use lower-dimensional filters to construct a higher-
dimensional filter by using the Kronecker product. In two dimensions this is similar to doing
a matrix multiplication with a transposed =-dimensional vector and another =-dimensional
vector yielding an = × = matrix. In this way, we save =2 − 2= free parameters per filter.

{15}If there is a multidimensional input the behavior depends on the framework. In TF this is only true for trailing
dimensions.
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Figure 4.4: Representation of the operation defined in Eq. (4.20) for the one-dimensional case
and a filter of size 3. The filter is moved step-by-step over the input combining 3 successive
inputs.

Far away from the border regions, convolutions are translation invariant. Let Λ! be the
shifting operator. Without loss of generality, we denote for a one-dimensional filter with
 = 1

Λ!H; = (G ∗ 5 ;) (D + B) =
∑
E∈ℤ

G (E) 5 ; (D + B − E) (4.21)

=
∑
E′∈ℤ

G (E′ + B) 5 ; (D − E′) = ([Λ!G] ∗ 5 ;) (D) . (4.22)

Therefore, a filter can identify patterns on the whole available space.
Instead of running the convolution over the entire input, it is also possible to use it only

on a subset. Usually{16}, this is done by defining a stride length ;B . Instead of performing
the operation defined in Eq. (4.20) for all valid integer indices u we increment{17} u by the
stride length. This directly reduces the size of the output by the stride length: O�H =
#1 × =/;B · · · × !.

We can compute the size of the output after applying the filter via

O�,9H = 1 +
O�,9G −  9 + 2;?

;B, 9
, (4.23)

where 9 is the spatial or temporal dimension the filter is used on and ;? is a padding size.
This padding can be used to allow for the filter to be used also on non-valid points at the
corners of the input.

C Dense convolution layer

We can combine the concept of succeeding convolution layers (see Sec. 4.2.3.B) and densely
connected shortcuts (see Sec. 4.2.2.B). In this way, in each layer, all features extracted by all
previous layers remain accessible by the next convolution. These kinds of shortcuts simplify
the training and allow for larger NN architectures.

Commonly, dense convolution layers are built by applying a convolution that conserves
the non-channel dimensions of the input. Afterward, the output of this layer is concatenated
to the input and then used for the next iteration. Each time the number of channels increases
by the filter size of the used convolution.

{16}Another common idea is to connect non-neighboring parts of the inputs by using dilated convolutions.
{17}Note that a stride length of 1 would be just a regular convolution.
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D Long short-term memory layer

Until now, we have only discussed acyclic nodes and layers. Recurrent layers allow the
output of a node to be used as another input for the same node affecting subsequent inputs.
Like the convolution layers, they are tools to analyze sequential data, such as time signals. In
this case, the internal state of the layer is updated for each time bin. This enables the layer to
correlate a large number of bins which makes them superior in many direct applications since
we do not have to standardize our input time series or specialize our architecture. Networks
using a recurrent architecture are usually referred to as Recurrent Neural Networks (RNNs).

An advanced example of a recurrent layer is the Long Short-term Memory (LSTM) layer.
The (internal) architecture of a LSTM resembles

BC−1

3C−1

2C

BC

3C

3C

· +

�

5C

tanh�

·8C

�

·>C

tanh

(4.24)

where BC is the C-th inner state, 3C the C-th output of the cell, called hidden state, 2C the C-th
input bin, � the sigmoid function, and tanh the tangens hyperbolicus. The tanh ensures that
it is possible to add and delete memory. Part of the inner state is forgotten via the forget gate
( 5C), and afterward, more information from the current bin is added via the input gate (8C).
We interpret the C as a time step. The inner state BC acts as the memory of the LSTM cell. All
of the rectangular � and tanh nodes in Eq. (4.24) perform the following transformation

6C = �6(,63C−1 +*62C + 16), (4.25)

where,6 and*6 are specific weight matrices, 16 is a bias, and �6 is either a � or tanh. The
�-type are called gates. They act as funnels for the information content passed to other parts
of the cell. For the new inner state BC follows

BC = 5C BC−1 + 8C tanh(,B3C−1 +*B2C + 1B). (4.26)

Similarly, the new hidden state 3C is

3C = >C tanh BC . (4.27)

An LSTM can return either only the hidden state of the last step or all of the hidden states
building a new time series with the same length as that of 2C . The initial inner and hidden
states of an LSTM are usually set to zero. However, we can set them to any arbitrary values.

Due to this complexity and the recursive nature of LSTMs, their execution is hard to
parallelize. As a consequence, networks that use LSTMs are slower than equivalent networks
which use convolutional layers. Still, they are potent tools that only have a small set of to-
be-adjusted hyperparameters, which are applicable to inputs of any length. They are the
core reason for improvements in specific machine-learning tasks, such as natural language
processing [C:18, C:19] and human-level competence in complex games [C:20].

A regular LSTM goes only in one direction (from C to C + 1). To allow for the correlation
between later and earlier bins, we can use bidirectional LSTMs. Basically, they are just two
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LSTMs that go in different orders through the time series, one from C to C + 1 and one from C
to C − 1. In this way, future bins can be correlated with past bins.

In this work, we will use only LSTM layers as recurrent layers in our networks. Hence,
every time we refer to an RNN, it is based upon those.

E Other important layers

Due to the popularity of NN based models, there is a great number of standardized layers.
Here, we quickly discuss a number of important standard layers which are commonly used.
In Appendix B.1, we discuss additional non-standard layers used in the network discussed
in Sec. 4.3.2.

Dropout: To prevent over-fitting during training and enable the learning of different com-
binations of features it can be beneficial to randomly set inputs of other layers to zero. A
layer that performs this task is called a dropout layer. It just sets a fraction G of its inputs to
zero. In many implementations, such as in TF, the remaining inputs are then multiplied by
a scale factor of 1/(1 − G). This action prevents overtraining. During inference, this layer is
deactivated.

Reshape: A reshape layer rearranges the dimensions of the input arrays. We have O�G =
#1 × �1 × . . . × �= to O�H = #1 × �1 × . . . × �@ where #G = #H. This is useful to prepare
different inputs for advanced layers.

Flatten: A flattening layer collapses all non-batch dimensions. Hence, O�G = #1×#1×. . . #3

transforms to O�H = #1 × #1 · · ·#3. Usually, this kind of layer is one of the last layers in
neural networks to funnel all values of the output array into a final dense layer.

Concatenate: Sometimes, the outputs from different parts of the network represent different
kind of features that have to be connected but not yet mixed in any way. This is the task of the
concatenation layer. For example, if we have two inputs O�G1 = #1 × #1 × . . . × #3 × � and
O�G2 = #1×#1×. . .×#3×�we obtain an output of the formO�H = #1×#1×. . .×#3×(�+�).

Pooling: A pooling layer of size (B1 , B2 , . . .) reduces the size of its inputs by coupling neigh-
boring values in one or multiple of its dimensions. In TF there are two modes for this:
average and max. In the one-dimensional case, B neighboring values are taken and the
operation of the mode is applied. Afterward, the next non-intersecting B neighboring values
are processed. Looking at the input and output dimensions we have O�G = . . . × #? and
O�H = . . . × #?/B, respectively.

Lambda: A lambda layer is a common concept that allows users to create layers on the fly. It
works like a lambda function where users can provide their own methods that are executed
by the network. For example, it is very convenient to add singleton dimensions to inputs
with a lambda layer. These singleton dimensions are sometimes needed to satisfy the shape
conditions of layers, such as convolutional layers.

4.2.4 Notes on classification

In Chapter 7, we use NN-based classifiers to identify events induced by different primary
particles. Let #2 be the number of distinct classes, then the output of a classifier is, usually,
#2 rational numbers. Each of these numbers indicates how likely the input corresponds to
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one of the classes. To obtain the final prediction, we have to define a decision function �2 ,
which estimates the most-likely primary particle from these #2 numbers. For example, a
simple decision function would be the argmax function which returns the class exhibiting
the largest value in the#2 NN output values. For a binary classification problem, it is enough
that a classifier predicts a single scalar output. A common decision function, in this case,
would be a step function at a pre-defined threshold. If the network output lies below the
threshold, the input is classified as the first class, and if it lies above the threshold as the
second class.

To evaluate the quality of our predictions, we use the accuracy A. The accuracy is
the fraction of correctly predicted classes after using the decision function �2 on the NN
predictions. We define the accuracy A on the TeDs of a prediction via

A(H, ?) =
#
(
H ∩ �2(?)

)
#te

=
1
#te

#te∑
8

�H8?8 ∈ [0, 1], (4.28)

where � is the Kronecker delta. For #2 classes a random predictor has an accuracy of
A = 1/=2 . A A < 0.5 for a binary class implies that the chosen decision function should be
inverted.

For classification, a powerful tool for visualization of the performance of our classifier is
the confusion matrix �. We define it as follows

� =

=1,1 =1,2 · · · =1,#2

=2,1 =2,2
. . .

...

...
. . . . . .

...

=#2 ,1 · · · · · · =#2 ,#2

©«

ª®®®®®®®®®®®®®®®®®®®®®¬

classes

predictions (4.29)

where =0,1 represents the number of values belonging to class 0 while predicted to be in
class 1. In this matrix, the sum over the diagonal is the number of input and output pairs
that are classified correctly. The lower left part (blue) and upper right part (red) contain the
numbers of miss-classified values. For the binary classification case, Eq. (4.29) simplifies to

�binary =

(
TP FN
FP TN

)
, (4.30)

where True Positive (TP) and True Negative (TN) are the number of correctly classified inputs
and False Positive (FP) and False Negative (FN) are the number of wrong classifications.

4.3 Status of neural network based analysis in Auger

There are two methodological different NN-based ansatzes that have been recently published
by Auger [P:101, P:102]. Like the advanced conventional methods in Sec. 3.3, both focus on
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the reconstruction of shower properties, which are essential for estimating the primary
particle mass. However, they differ in the scope of their inputs and used architectures.
The first approach uses mainly localized information to predict a muon signal in on WCD
station. The second one uses global shower-level information to reconstruct global shower
properties. We define shower-level information as all MC and reconstructed properties that
describe the shower and its propagation through the atmosphere. For example, the shower
inclination angle � is a shower-level property. Moreover, we define station-level shower
properties as all quantities that depend on a particular position on ground level, such as the
signal in the PMT of the WCD stations of the SD.

A caveat of both of these networks is their dependence on simulation data for the training
process. Due to the mismatch between simulations and measurements, a direct application
of the NNs on measurement data yields erroneous results. Therefore, proper corrections
and cross-tests are required.

In Chapters 7 to 8, we use network architectures based on those found in both analy-
ses [P:101, P:102]. Therefore, we provide, in this section, a short overview of both. Our
primary focus, thereby, lies on the used network architectures.

4.3.1 Extraction of the local muon signal using SD detector stations

A shower event has a plethora of station-level information for each of the triggered SD
stations. It is a valid question if and in which way we are able to exploit this information
to reconstruct station-level shower properties, such as the signal produced by the muonic
sub-component in the WCD. Knowing it for each of the stations benefits the estimation of the
primary particle mass since the muon content depends on the mass of the primary particle
(see Sec. 3.3).

Historically, this ansatz started with the estimation of the total muon signal [A:9, A:10]
which was followed up by mixing the predictions with results from the delta method [A:11].
From this point, the analysis evolved reconstructing the entire muon trace [P:101, A:12].

A Extraction of total muon signal

To extract the total muon signal (μ, a NN purely made of dense layers (see Sec. 4.2.3.A)
has been employed [A:9, A:10] which uses nine shower parameters as inputs: The decadic
logarithm lg of the Monte Carlo energy of the shower

ℰmc ≡ lg (�mc/eV) , (4.31)

the total signal (tot, the distance to the shower axis A, the zenith angle �, the angle between
the to-the-ground projected shower-axis and the detector !ad, the rise time C1/2, the fall
time{18} C 5 , the difference between start and end time Cd (∝ (1e − 1s)), and the ratio Ap of the
maximum of the total trace and the total signal. We define Ap as

Ap =
(tot (1max)

(tot
, (4.32)

where 1max is the bin in which most signal was deposited in the detector. Thus, in total, two
event- and seven station-level input parameters are utilized.

In total, we have two shower-level and seven station-level input parameters. The difference
in scales of all inputs was removed by standardization. For standardization we transform
each variable G via

G → G − 〈G〉
�G

(4.33)

{18}Similar to the rise time. But in this case the time for the integrated signal to reach 50% to 90%.
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setting the mean to zero and standard deviation one.
The base data set for this analysis has been comprised of the WCD station information

from events simulated using the hadronic interaction model QGSJ. Only stations have been
kept that are non-saturated and have a total signal of above 10 VEM. Energies below the full
efficiency of the SD have not been included. The zenith � was kept below 45°.

An evolutionary algorithm [C:21] has been used as an optimization tool to find the best-
suited architecture. The algorithm had the choice between layer widths, number of layers,
and activation functions. This resulted in the architecture depicted in Fig. 4.5 [P:103]. As
optimizer for the network training, Adam has been selected (see Sec. 4.2.1.B). The final
network model reconstructed the muon signal with a relative error of below 10%. Moreover,
it did not significantly lose performance when switching to simulations using the hadronic
interaction model EPOS. Hence, the station-level approach is almost independent of the
hadronic interaction model.

The final architecture can be classified as a densely connected, multilayer, feed-forward
network (see Fig. 4.5). In the original work [A:9], the first layer of the network is incorrectly
described. If we implemented it like stated there, we would reduce our statistics by a factor
of two because of the ReLU functions directly after the input and the used standardization
procedure. Therefore, we believe that either another nine-unit dense layer is in between the
input or the 18-unit dense layer or that the input layer has just a linear activation function.
The entire network has (without the 9-unit layer) 2002 free parameters. This is compared to
image classifiers like ResNet [C:22] small.

B Extraction of the muon signal trace

The signal traces of the WCD might contain a rich set of hidden information that we do not
exploit in standard analysis. Therefore, the next step to improve on the analysis described
in Sec. 4.3.1.A lies in the inclusion of the signal traces. To accomplish this, a different
architecture is required since we want to account for the local temporal correlations. Using
LSTMs (see Sec. 4.2.3.D) as a core component of such an architecture (see Fig. 4.5) is a natural
choice.

For this analysis, an advanced network has been designed in [P:103] (see Sec. 4.3.1.A).
Instead of predicting the total muon signal, the NN predicts the parts of the muon signal
trace. It uses the standardized secans of the zenith angle, the standardized shower distance,
and 200 bins{19} of a trace as inputs [P:103] . The muon trace analysis uses a relaxed version
of the cuts in Sec. 4.3.1.A. The zenith angle cut is at 60°, and the total signal cut is at 5 VEM.

Again, the prediction of the trained model does not strongly depend on the hadronic
interaction model giving satisfactory results. Moreover, it could also be shown that lateral
distributions of the muon sub-component and the electromagnetic sub-component match
well with the predictions [P:103].

4.3.2 Footprint analyses using deep neural networks

To reconstruct event-level shower properties, it is reasonable to use all of the available data
gained from the SD measurements. Similar to the traces of the SD stations, the correlations
between station-level information of the shower footprint may contain hidden information
previously not exploited by standard analysis. To test this, we can use NNs.

The Air Shower Extraction Network (AixNet) architecture was designed exactly for this use
case [A:13, A:14]. Since we use NNs based on this architecture in Chapters 7 to 8, we discuss
in this section the general architecture of AixNet and review the most recent changes in each

{19}From 1B on. If the trace is not long enough it is zero-padded.
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Figure 4.5: Left: Illustration of the architecture used for the estimation of the total muon signal
(

(tot)
μ (see Sec. 4.3.1.A). The architecture consists only of stacked dense layers. The number after

the colon indicates the number of nodes. Right: Illustration of the architecture used for the
estimation of the muon signal trace (μ(C) (see Sec. 4.3.1.B). The first number behind the colon for
the LSTM layers represents the number of LSTM units, and the number in the parentheses is the
size of the time dimension (see Sec. 4.2.3.D). Hence, we use the complete output of the LSTM.
The output of the two dense layers is used as initial values for the inner and hidden states.

of the end steps [P:102, P:104]. We have depicted AixNet in Fig. 4.6 The core design idea of
the architecture is to separate the air shower reconstruction into three smaller networks with
different scopes.

A Architecture of Aixnet

The first sub-network (N1) condenses the information of signal traces of length !C into = 5
features. We call it Trace Feature Extractor (TFE). Since the physics of the detecting traces
is the same for each WCD station the same, the TFE uses the same weights for each trace
individually. Due to this weight-sharing, the TFE is independent of the size of the encoded
footprint. Hence, this sub-network extracts longitudinal shower information of the shower
development from the shower footprint. In the current iteration of AixNet, the TFE is built
from two sequential LSTM layers (see Sec. 4.2.3.D). One bidirectional that correlates past and
future time steps of all PMT traces with 120 bins and one that takes the output to generate
ten unique features.

In the next step, the trace features are concatenated to =0 additional, encoded station-level
parameters creating a shower footprint feature map. This feature map is used as input in
the second sub-network (N2). Henceforth, we denote it as the Spatial Correlation Analyzer
(SCA). Its main objective is to correlate the spatial information of the footprint feature map.
Therefore, it is the core part of the footprint analysis. Since the objective is similar to the
analysis of images, a mix of densely connected (see Sec. 4.2.3.C) 2D-convolution layers (see
Sec. 4.2.3.B) is used. Currently, the implementation uses group equivariant convolutions
with hexagonal 3 × 3 convolutions (see Appendix B.1). In this way, the rotational symmetry
of the triangular grid is directly encoded in the network architecture.

In the last step, the output of the SCA is used as input for a prediction unit. Henceforth,
we refer to this as Feed-Forward Predictor (FFP) (N3). For each event-level target to-be-
reconstructed, the FFP uses the same{20} sub-network architecture to funnel the output of the

{20}However, the weights for each of these parallel sub-networks are not the same.
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(̂ (C)

= C features”

N1

“extract

(̂c

= 5

⊕

�̂

=0 additional features
= 5
+ =

0

�

“spatial

N2

analyzer”

“predict

N3

targets”

?1

...

?=

Figure 4.6: Illustratiuon of the AixNet architecture. The network can be separated into three
different sub-networks marked by boxes. N1 is a trace feature extraction network. It extracts = 5
features from encoded event traces of the length !C . Each trace is treated the same way by using
weight sharing. The novel features are then concatenated to =0 additional human-engineered
features creating a feature map �. The feature maps � are used as input for the SCA. The SCA
correlates the features in each of the bins and between different bins of the shower footprint
encoding. It tries to find correlations between the station positions. Its output is then used as
input in the last sub-network (N3). This last part can be one single or multiple prediction units
that funnel the outputs SCA into dense layers. One of the main advantages of the architecture
of AixNet is the modular design.

SCA into a dense layer. The number of units of this final dense layer depends on the target,
e.g., for the shower energy, we need only one unit, and for the shower-axis vector, we need
three. In the newest design [P:105], the funneling is realized by using residual shortcuts and
pooling layers to reduce the spatial dimensions of the input before flattening it.

Due to its modular design, the base architecture of AixNet can be used to relate a shower
variable to the shower footprints. This makes it easy to reuse the architecture for each
scalar target we want to predict. We use an architecture based on AixNet in Chapter 7 and
Chapter 8.

B Training and performance

The loss function used for the training of AixNet is a linear combination of the MSE loss
functions of the predictors. The weighting was determined by studying the training process.
For its -max predictor a version of Eq. (4.16) has been used to reduce the inter-primary bias of
the predictions [P:104]. The training data is comprised of reconstructed events of air shower
simulations based on the hadronic interaction model EPOS.

For all targets that have an equivalent in the SD standard reconstruction, such as the
shower energy and the zenith angle, the network performs at least as well as the standard
reconstruction on simulation data [P:104]. Predicting on different hadronic interaction mod-
els the network has not been trained on results in similar precision but global biases. After
correcting for differences between simulations and measurements the -max prediction of the
network shows similar behavior than the FD measurement [P:106].

4.4 Used evaluation metrics to compare NN predictions

After training a neural network, we have to estimate how well the predictions of the network
model match the target values on the TeDs. We do this by evaluating the predictions on a
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fixed set of metrics. In this way, we are able to estimate the quality of the predictions and lay
the groundwork for the comparison of different models which predict the same target.

4.4.1 Metrics for the comparison of predictions of NNs

We start by making basic definitions of statistical quantities following [T:J]. Let {G1 , . . . , G# }
be a set of # independent values drawn from an arbitrary distribution and G a random
variable corresponding to this distribution. We denote 〈G〉 as the sample mean of the set

〈G〉 = 1
#

#∑
8=1

G8 (4.34)

and �2
G as the sample variance

�2
G = VAR(G) = 1

#

#∑
8=1

(G8 − 〈G〉)2. (4.35)

Using the variance, we define the standard error SE of G as [T:J]

SE(G) =
√

VAR(G). (4.36)

In Appendix A.1 we dedicated a part of the section to less used quantities, such as the
standard error of the standard deviation (see Eq. (4.36)) which we need for our analysis in
Sec. 7.3.

To evaluate the quality of the predictions of NN we require a set of metrics that we use to
compare the prediction ? with the target value H. Usually, we compute these metrics in bins
over other quantities, e.g., the MC energy �MC. Since we want the prediction value ? to be
very close to the value of H, we define the difference

ΔH =
〈
H − ?

〉
=

1
#

#∑
8=1

Δ8H, (4.37)

where Δ8H = H8 − ?8 , to check for potential biases in the predictions of the NN. A small bias
corresponds to a good accuracy. Since the width of the distribution of Δ8H is a measure of
the precision of the predictions, we utilized the unbiased standard deviation

�ΔH =

√√√
1

# − 1

#∑
8=1

(Δ8H − ΔH)2 (4.38)

of the set of differences Δ8H. We want that our NN predictions do not depend on the
underlying primary. To estimate the primary-dependent bias, we use

Δp-FeH =
��〈ΔFeH

〉
−
〈
ΔpH

〉�� , (4.39)

where ΔFeH and ΔpH are the average differences for protons and iron (see Eq. (4.37)), respec-
tively.

In later chapters the variable symbol H will be replaced by the symbol of the target. We
use the naming convention that H? is the name of symbol for the prediction.

There are many ways to assess the performance of a regression model. As an addition to
the above performance metrics, we define the following three metrics to be used in Chapter 6.
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First, we use a modified version of the MSE. Since we compare muon signals, we modify
Eq. (4.14) via

<2 =

〈 (
(μ − (

p
μ

) 2
/VEM2

〉
= <Δ(μ ,2/VEM2 (4.40)

to remove the units. We test the dependence on the training split and training procedure
solely with this metric. However, because the muon signal covers multiple scales, its absolute
value is hard to interpret. Therefore, we also have to define relative metrics. We define the
relative error of the predicted muon signal as

<' =

〈
(μ − (

?
μ

& + (μ

〉
, (4.41)

where & is a small constant that prevents instabilities due to very low muon signals. As final
metric, we use an estimate for the precision of the (μ predictions of the model. For this, we
use the standard deviation � of the difference between predicted and real muon signal value
normalized to the averaged real muon signal

<� =
�Δ(μ〈
(μ

〉 , (4.42)

which we interpret as a measure for the resolution.

4.4.2 Methods of comparing different distributions

Let F and I be two sets of values which we have to compare. To obtain an estimate of the
linear correlation between F and I, we use the Pearson correlation coefficient. We define it
via

�P(F, I) =
〈(F − 〈F〉) (I − 〈I〉)〉

�F�I
. (4.43)

The figure of merit mf(F, I) defined as

mf(F, I) = |〈F〉 − 〈I〉 |√
�2
F + �2

I

. (4.44)

is a quantity often used in Auger, which gives a rough idea about the separation of two
distributions. For example, F and I could be the proton and iron subset of a mass separating
variable G. The higher mf(Gp , GFe) is, the better the separation between the masses. As a
shorthand notation, we use mfp-Fe(G).

We have to be careful when comparing figure of merits from different sources. A much
higher value might suggest that we have a much better separation. However, this is not
necessarily true (see Fig. 7.70). Especially if F and I follow non-gaussian distributions, we
could increase and decrease the figure of merit without changing the separation at all.

4.4.3 Estimating the spread of predictions from multiple models

Let ? 98 be the 8-th prediction for the real value H 9 . Using Δ98 = H 9 − ? 98 , we define

�2
9 =

1
# − 1

∑
8

(
Δ98 − Δ̄9

) 2
, where Δ̄9 =

1
#

∑
8

Δ8 9 , (4.45)

as the variance of the predictions for the target 9 in a TeDs. This is an estimate on how accurate
the predictions of a network or multiple networks are. In Sec. 7.3 we use this prediction
spread to assess the uncertainty of the predictions of a NN under certain conditions. For
example, we use Eq. (4.45) to obtain the spread of the prediction of multiple models derived
from the same architecture Aℛ under the same conditions.
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It is a capital mistake to theorize before one has
data. Insensibly one begins to twist facts to suit
theories, instead of theories to suit facts.

(Sherlock Holmes, Arthur Conan Doyle )

An old library cramped full of computer hard drives
with extremely high, rusted shelves and endless hall-
ways, photo[.]

DALL·E 2 prompt:

For the training of NNs via supervised learning, we need large amounts of labeled data (see
Sec. 4.2.1). In physics, these data sets are provided by MC simulations. To get a detector
simulation for Auger, we adopt a two-step process. First, we simulate an air shower using
one of the hadronic interaction models discussed in Sec. 2.2.6. Usually, CORSIKA is used for
this task. Afterward, we simulate the detector responses of all participating detectors and
reconstruct the shower with Offline. In the following, to distinguish between both types of
simulation, we denote the CORSIKA simulations as air shower simulations and the detector
simulations simply as simulations.

Since, at the highest energies, CORSIKA simulations are computationally expensive, we
rely on already existing{1} UHECR air shower libraries. Due to the low statistics in the shower
libraries, we use each unique shower multiple times by randomizing the impact point of the
shower in the Offline simulation. From the detector simulation, we produce simulation
libraries to be exploited in the network training and subsequent testing process.

After training and validating our NNs on simulation data, we have to assess how they
perform on measurements done by Auger. Due to the expected differences between detector
simulations and air shower measurements, we have to correct the predictions of our NNs. For
this evaluation, we use Offline to obtain the reconstruction of the air shower measurements.
We focus the reconstruction only on SD events and Golden Hybrid events.

To improve the training process, we have to pre-process the input data. An vital step
to allow for event-level analysis is to encode the shower footprints from the triangular
arrangement of the SD into a rectangular grid. The encoding step enables us to use regular
TF algorithms designed for rectangular memory. In addition, by exploiting the symmetries
of the triangular grid, we can reduce the phase space of the problem during the encoding.

At the beginning of this chapter, we review all simulation data sets used in this work
(Sec. 5.1). Here, the CORSIKA air shower libraries and the Offline detector simulations have

{1}Specifically, for this purpose a simulation task force exists in Auger.
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been tabulated. In addition, we have defined subsets of the simulation libraries used as
training inputs. Afterward, in Sec. 5.2, we focus on the measurements taken by Auger which
we use in Chapter 8 to test the NNs defined in Chapter 7. In addition, we examine the most
striking differences between air shower simulations and the measurements. In Sec. 5.3, we
discuss the procedures we use to pre-process our data. Finally, in Sec. 5.4, we introduce
additional variables used in the subsequent analyses as inputs and outputs for our NNs.

5.1 Overview of air shower simulation data sets

In this work, we only use air shower simulations based on the hadronic interaction models
QGSJ and EPOS (see Sec. 2.2.6) for training and testing our NN-based models. We have
selected simulations based on QGSJ to generate the training data sets for our NN models,
as done in the station-level analysis (see Sec. 4.3.1). The event-level analysis discussed in
Sec. 4.3.2 makes use of air shower simulations based on the hadronic interaction model
EPOS. We have chosen QGSJ to directly obtain a cross-check of the results in the event-level
analysis based on AixNet. Henceforth, we denote the collections of air showers simulated
with CORSIKA shower libraries and the SD detector simulations based on these showers as
simulation libraries.

Since we are interested in investigating the effect of the UUB electronics and the addition
of the SSD on the predictions of the NN, two SD simulation libraries for each of the hadronic
interaction models have been generated using the same version of Offline. All of the detector
simulations use an ideal version of the 1500 m array of ideal{2} WCD tanks (and SSD detectors).
The ideal array is depicted in Fig. D.1. Note that there are no holes in the array, in contrast
to the real array (see Fig. 2.5). In addition, we have simulated dense stations for the data sets
based on QGSJ (see Sec. 3.2.2.D). The dense stations are located at a shower plane distance
of 1000 m and employed only for cross-checks, meaning that we do not use them as inputs
for our NNs.

For all produced data sets, we have used the development version{3} of the development
version of Offline of the SVN revision 34 510. The latest change of the repository has occurred
on 22.11.2021.

5.1.1 Simulations based on the Napoli-Praha shower library

For the current work, we opted for simulations based on the Napoli air shower library with
Praha extension (NapLib) shower library [A:15] and its Praha extension [A:16] to train our
networks. This choice is motivated by mainly three reasons: First, the NapLib shower library
is large enough for the network training. Secondly, is has been used in the past, which allows a
comparison with previous results. Finally, the air shower events are distributed uniformly in
the logarithmic energy given by 1018 eV to 1020.2 eV and in sin2 � for the zenith interval given
by 0° to 65° for four separate primaries: proton, helium, oxygen, and iron. For each primary
particle, the NapLib shower library is continuous, and in each of the CORSIKA simulations,
the same standard atmosphere has been used. Note that the simulation data also covers
parts of the phase space at which the 1500 m SD array is not fully efficient anymore. We do
not cut away these parts since NN models perform usually worse at the boundaries of the
phase space. Therefore, we want this region not to be coinciding with the 100% efficiency
points of 1018.5 eV and 60°.

{2}Meaning that they have the same detector response under the same conditions.
{3}During the generation of the data sets, the Auger collaboration migrated to Git. However, the SVN history

should not have been affected by this.
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Table 5.1: Overview of the local mirror of the NapLib shower library. The original data is hosted
at IN2P3. The number of CORSIKA showers varies slightly due to data corruption and copying
errors.

18-18.5 18.5-19 19-19.5 19.5-20 20-20.2 size / TiB

QGSJetII-04 p 4934 5472 4998 5153 2012 6.22
He 5068 4986 5007 5065 2008 6.51
O 5225 5000 5006 5010 2003 7.03
Fe 4725 4997 5027 5090 2000 7.47

EPOS-LHC p 5861 4686 5002 5013 2006 6.47
He 4910 4955 5011 5009 2013 6.70
O 4923 4919 5007 5005 2003 7.16
Fe 4877 5019 4874 5001 2010 7.60
γ 9955 10000 9999 9984 5.32

Table 5.2: Overview of UB simulation libraries based on the NapLib shower library. The file
sizes of the EPOS data set are much smaller because we did not simulate dense stations (see
Sec. 3.2.2.D).

18-18.5 18.5-19 19-19.5 19.5-20 20-20.2 size / GiB

QGSJetII-04 p 36084 48686 51228 49691 18112 178.4
He 34666 50218 50384 49768 19968 183.2
O 37520 51779 49793 49517 19917 187.1
Fe 38967 46912 50623 50010 19904 188.9

EPOS-LHC p 33208 56695 48645 48544 19502 118.2
He 37687 47489 48674 48711 19556 117.8
O 39084 47687 48565 48625 19480 120.0
Fe 41098 47330 48551 47296 19533 121.2
γ 22512 74172 95752 85616 130.5

The contents of the locally stored version of the NapLib are summarized in Table 5.1.
Because of copying errors and corrupted data at the main storage hosted by the IN2P3
Computing Center in Lyon (IN2P3) in Lyon [T:K] the number of files varies slightly between
primaries.

As mentioned in the second paragraph of Chapter 5, we reuse the CORSIKA air showers
multiple times to increase the number of simulated events. For each of our available hadronic
models, a unique shower is simulated ten times for the UB and the UUB electronics. The
content of resulting simulation libraries is summarized in Table 5.2 and Table 5.3.

The base data sets require large amounts of disk space. As a conseunece, we cannot afford
to use the full data set for each training process since it would make the training extremely
slow on our computing cluster, especially, if multiple networks would be trained at the same
time on the same machine. Even after extracting only the necessary information from the
.adst files, this is still a problem. To circumvent this issues, we generate subsets from our
base data set by randomly drawing #ds events without replacement.

For each of the generated subsets, we define non-overlapping training, validation, and test
sets by drawing from the subsets randomly (see Sec. 4.2.1.A). Since we choose #ds, we are
able to generate smaller data sets. The greatest advantage of these data sets is the reduced
training time and the reduced resource requirements enabling us to train many networks
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Table 5.3: Overview of UUB simulation libraries based on the NapLib shower library. Again,
the sizes of the EPOS data set are smaller because we did not simulate dense stations (see
Sec. 3.2.2.D). The increased number of events in the lowest energy bin of QGSJ is due to saving
each use of a CORSIKA shower in a single file.

18-18.5 18.5-19 19-19.5 19.5-20 20-20.2 size / GiB

QGSJetII-04 p 52730 49055 51234 49722 19148 284.7
He 48591 50414 50388 49832 19086 287.2
O 49157 51961 49854 49817 18945 294.0
Fe 49387 46971 50638 50049 19894 296.9

EPOS-LHC p 25997 57735 50126 50020 19434 184.5
He 28849 48510 50007 50110 20130 192.4
O 33192 48870 49968 50070 20030 197.7
Fe 34623 48645 50009 48739 19477 192.7
γ 14422 64280 93387 84832 169.7

in short amounts of time. We use such ‘lightweight’ data sets later for various cross-checks
and the analysis of the variation of hyperparameters providing us with information about
network configurations.

In local storage, there is also an older simulation library based on NapLib simulations
which is mainly used in the non-UUB analysis of Sec. 6.1 and Sec. 6.2. This is for historic
reasons. This library has been simulated with version r2v9p5 of Offline (see Sec. 3.1) for
which no UUB simulation is available. In this simulation library, each of the showers of
NapLib has been used six times.

The existence of this old library might raise the question, why we generated additional
simulated libraries if we had access to an already finished one. The reason for this lies in the
older version of Offline. At this point in time, Offline was not capable of simulating the UUB
electronics and the SSD detector. Furthermore, the data set was missing the energy ranges
of [1018 eV, 1018.5 eV] and [1020 eV, 1020.2 eV]. Consequentially, we re-simulated the NapLib
library to remain consistent. However, in the end, there are no large differences between
our UB simulation and that of the older library. Henceforth, we refer to the library that has
already existed before this work as the old NapLib simulations. Note that even though this
library has been created by a much older version of Offline, we still can use the trunk version
defined in the last paragraph of the introductory text in Sec. 5.1. In general, .adst files are
backwards compatible.

In Table 5.4, we have summarized the data sets used in the station-level analysis in Chap-
ter 6. Due to historic reasons, we use the old napoli library for the initial analysis in Sec. 6.2
(see Row 5.4.a and Row 5.4.b). At the time of doing the analysis, the new libraries had not
been created. For the second part, however, we use a data set sampled from the new UUB
library based on QGSJ air shower simulations (see Row 5.4.c).

For the event-level analysis in Chapter 7, we solely use the data sets drawn from Table 5.2
and Table 5.3. In Table 5.5, we have tabulated all of the data sets. Most of the data sets are
used in Sec. 7.1 to fix the architecture that we use in Chapter 8.

In this work, we do not provide the exact stations (see Table 5.4) and shower events
(see Table 5.5) used in our data sets. We expect that using a similar sampling strategy as
described in the corresponding analysis chapters is enough to reproduce the results. Even
if we would provide the exact ids of the events, the training would – most likely – result
in different predictors due to the non-determinism of parallel computing. In Sec. 7.3.2, we
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5.1 Overview of air shower simulation data sets

Table 5.4: Overview of the data sets used in Chapter 6 for the station-level analysis. The first
column provides a unique identifier for the data set. The numbers refer to the amount of SD-
stations taken into account. From one shower event, there could be multiple stations. We use
QGSJ and EPOS as abbreviations for QGSJ and EPOS, respectively. We added old and new in
parentheses to signify from which of the base data sets the data is drawn. New refers to data
sets drawn from the newly simulated data (see Table 5.2 and Table 5.3) and old refers to the
simulations already available. If the size of the validation set is given in form of a floating point
number, it refers to the validation fraction that is used if not statet otherwise (see Sec. 4.2.1.A). In
this case, the validation set is sampled randomly from the training data set and not fixed before
the training process.

model primaries energy range TrDs VaDs TeDs

a UB, QGSJ (old) p, He, O, Fe [18.5, 20.0] 72000 48000 144282
b UB, EPOS (old) p, He, O, Fe [18.5, 20.0] - 49691 90462

c UUB, QGSJ (new) p [19.0, 19.5] 246767 0.2 27419

Table 5.5: Overview of our data set used in Chapter 7 for the event-level analysis. The first column
provides a unique identifier for the data set. We use QGSJ and EPOS as abbreviations for QGSJ
and EPOS, respectively. For this analysis, we use only data sets from the new simulation libraries
described in this section. If the size of the validation set is given in form of a floating point
number, it refers to the validation fraction that is used if not syayey otherwise (see Sec. 4.2.1.A).
In this case, the validation set is sampled randomly from the training data set and not fixed
before the training process.

model primaries energy range TrDs VaDs TeDs

a UB, QGSJ p, He, O, Fe [18.0, 20.2] 95989 0.1 23998
b UB, QGSJ p, Fe [18.0, 20.2] 95976 0.1 23994
c UB, QGSJ p, He, O, Fe [18.0, 20.2] 395950 0.1 43995
d UB, QGSJ p, He, O, Fe [18.0, 20.2] 479938 0.1 119985
e UB, QGSJ p, He, O, Fe [18.0, 20.2] 444391 0.1 55549
f UB, EPOS p, He, O, Fe [18.0, 20.2] 479879 0.1 119970

g UUB, QGSJ p, He, O, Fe [18.0, 20.2] 95982 0.1 23996

h UB, EPOS p, Fe, γ [19.0, 20.0] 96000 0.2 24000
i UUB, EPOS p, Fe, γ [19.0, 20.0] 95998 0.2 24002
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Figure 5.1: Average number of triggered stations binned in logarithmic MC energy. The two
dashed horizontal lines represent the break points at which entire crowns can be filled. In the
UUB data set, more stations trigger due to a bug in the UUB triggers. The trend of the triggered
stations can be parametrized by a polynomial of second order. Hence, the effective trigger area
and, therefore, the effective size of the shower footprint increases roughly linear with energy.

show that even under very strict initial conditions, the predictions of networks with the
same architecture can deviate from each other after training. However, even though single
predictions are different, on average the networks perform quite similar.

Due to a bug in the UUB triggers of the used version of Offline, the number of triggered
stations #triggered is – on average – much higher than that of UB (Fig. 5.1). We have depicted
this number of average triggered stations in bins of logarithmic energy for the data sets of
Table 5.2 and Table 5.3.

5.1.2 Simulations based on the Karlsruhe shower library

In contrast to the NapLib, the Karlsruhe air shower library (KarLib) consists only of proton
and iron showers at fixed zenith angles and fixed energies. For each hadronic model, primary,
zenith angle, and energy, the library has 120 unique CORSIKA showers. These 120 showers
are simulated for 12 different atmospheres, which correspond to the 12 months of the year.
For the library, the fixed energy values 1018.5 eV, 1019.0 eV, 1019.5 eV, and 1020.0 eV have been
used. The fixed zenith angles are 0°, 12°, 22°, 32°, 38°, 48°, 56°, and 65°. In total, we have
3840 unique CORSIKA showers for each primary and hadronic model.

The KarLib provides us with an ideal testing ground to check the dependence of our
models on shower-to-shower fluctuations and on different atmospheric conditions. Since
KarLib is only used for cross-checks after the models have been already trained, we do not
need to create subsets like in Sec. 5.1.1. For a test, we just use the entire library corresponding
to the continuous training set.

We have tabulated the detector simulations of the KarLib in Table 5.6. In this, the UB
QGSJ part of the library is primarily used. We have used each CORSIKA shower 10 times
giving us up{4} to 10 events. Note that we did not list the UUB simulation library due to data
corruption during copying.

{4}Sometimes, trigger conditions are not met and some of the showers do not produce events.
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5.2 Overview of data measured by the Pierre Auger Observatory

Table 5.6: Overview of the new simulation libraries based on CORSIKA showers of the KarLib.
We use QGSJ and EPOS as abbreviations for QGSJ and EPOS, respectively. We only list the total
number of events for each primary due to the simplicity of the libraries.

model electronics proton iron no. of reuses

a QGSJ UB 37356 39000 10
b EPOS UB 22230 22403 6

5.2 Overview of data measured by the Pierre Auger Observatory

As basis for our analysis of real measurements with NN in Chapter 8, we use the latest,
official data reconstruction performed by the Observer Task Force (Observer) [A:17] and a
small extension thereof. The Observer task force usually produces an official data set for
each of the bi-yearly International Cosmic Ray Conference (ICRC). The ICRC is considered
the most important conference in the field of CR physics. This data set contains all possible
combinations of reconstructed detector events up to a pre-defined point in time before the
conference. For this purpose the Observer task force uses a special tagged version of Offline
(see Sec. 3.1), which is outside of the active development cycle. The standard Observer
application of this officially tagged version of Offline is used for the reconstruction.

The last time the collaboration has been successfully pulled through this process was for
the ICRC 2019. As a consequence, the most recent official data set does not contain the
full range of all reconstructed events. To access the full range, we have complemented this
data set by the reconstruction of the most recent events under the same conditions using the
tagged version of Offline. Since our main interest lies in the analysis of shower footprints,
we only need shower events that have triggered SD stations. Furthermore, we only need
high-quality FD observations. Therefore, we only reconstructed all possible Golden Hybrid
and SD events (see Sec. 3.2). We use the Golden Hybrid events to re-calibrate predictions of
our NNs that can be directly measured by FD, such as the depth of the shower maximum.

Due to the restrictions of our simulation data sets used for training (see Sec. 5.1.1), we have
to filter the reconstructions of the real data. We only use events that have a reconstructed SD
energy �SD higher than 1 EeV and a reconstructed zenith angle �SD of less than 60°.

5.2.1 SD data set

Our SD data set spans the period from 2004 to 2021 which is three years more than the
original data set used for the ICRC 2019. We filter our raw data set of reconstructions with
the cuts defined in Appendix C.2 using the selectADSTEvents application from Offline. We
use only periods which have not been flagged as bad periods [T:L]. Bad periods are time
frames in which it can not be ensured that the SD array functions properly.

In Fig. 5.2, we display the distribution of our data set in bins of reconstructed logarithmic
energy lg(�SD/eV) and reconstructed zenith angle �SD in terms of sin2. The number of
events in each energy bin is steeply decreasing with energy. Comparing the rate of decrease,
different aspects of the spectrum in Fig. 2.2 are visible such as the flattening at about 1018.5 eV
and a steeping at 1019.5 eV. The distribution of all events shows clear deviations from the
expected uniform distribution in sin2. This is caused by the reduced detector efficiency at
energies below 1018.5 eV. For events with reconstructed energies above 1018.5 eV, no deviation
is observed and the data is uniformly distributed. In total we have 1,935,850 events. Due
to the steeply falling distribution we only have 21,566 events with a SD energy �SD above
10 EeV.
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Figure 5.2: Distribution of the SD data set in bins of reconstructed logarithmic energy lg(�SD/eV)
(left) and reconstructed zenith angle �SD in terms of sin2 (right). The black histogram represents
the complete data set while the red histogram includes only events with a reconstructed �SD
energy above 1018.5 eV. To improve visibility, we scaled the latter histogram by a factor of 5.
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Figure 5.3: Distribution of the Golden Hybrid data set in bins of reconstructed logarithmic energy
lg(�SD/eV) (left) and reconstructed zenith �SD in terms of sin2 (right). The vertical dashed line
marks 38°. The striking difference in the zenith distribution compared to the distribution of SD
events in Fig. 5.2 is due to the fiducial field cut (see Fig. 3.2)

5.2.2 Golden Hybrid data set

Since 2019, there are no updated versions of the atmospheric databases [A:18], our extended
version of the Golden Hybrid has only one additional year of data. The Golden Hybrid data
set consists of shower events detected by both the SD and FD that can be reconstructed by
each detector separately. Therefore, the Golden Hybrid data set consists of observations of the
longitudinal shower development and the shower footprint simultaneously. In addition to
the cuts in Appendix C.2, we also apply the cuts for the FD reconstruction used for the energy
calibration (see Appendix C.2) to ensure a high-quality FD measurement (see Sec. 3.2.3).

The distribution of events in the Golden Hybrid data set differs from the distribution in the
SD data set (Fig. 5.3). For example, the energy distribution of the Golden Hybrid is slightly
flatter around 1018 eV. In the energy bins above 1019.5 eV, the distribution exhibits a much
stronger decrease of event numbers, most likely caused by the low flux above this energy in
combination with the FOV cut. The difference in the distribution of zenith angles is due to
the fiducial field cut (see Fig. 3.2). In total, we have 15,850 events in the entire energy range
and only 683 above a reconstructed SD energy of 10 EeV.
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Figure 5.4: Normalized distribution of number of Golden Hybrid events (blue) and SD events
(red) in bins of temperature (left), atmospheric pressure (middle), and air density (right) at the
observatory. The temperature and air density distributions of the Golden Hybrid and SD events
differ clearly showing the different atmospheric conditions during the data taking of Golden
Hybrid hybrid events.

A Handling of multi-FD-telescope data

We want to use Golden Hybrid events because we can cross-check our predictions for observ-
ables, such as -max.

If more than one FD telescope detects a shower event, we have to define how to combine
their observations. The FD telescopes measure showers independent from each other. After
the FD reconstructions, we obtain sets of estimations for shower observables, such as the
shower energy�fd and the depth of the shower maximum-max, and uncertainty estimates for
the estimations. Therefore, we use the variance-weighted average (see Eq. (A.9)) to combine
these measurements. In the case of -max, we would obtain

-max,FD =

∑
8 -max,8/�2

-max,8∑
8 1/�2

-max,8

, (5.1)

where the sum goes over the telescopes.

B Differences between Golden Hybrid and SD data set

The Golden Hybrid events can only be detected in moonless nights due to the restrictions of
the FD (see Sec. 2.3.1). As a consequence, the Golden Hybrid data set covers only a subset of
the phase space spanned by the SD data set. This is not only caused by the additional energy
calibration cuts (see Appendix C.2). Atmospheric conditions that occur during the day, such
as hot temperatures due to direct sunlight, are not accounted for in the Golden Hybrid data set.
Comparing the normalized event distributions for temperature, pressure, and air density for
both types of events (see Fig. 5.4), there is a visible shift to lower temperatures and higher
air densities for Golden Hybrid events. Hence, if we do a correction of our predictions based
on Golden Hybrid events, we have to ensure that our corrections work in regions outside of
the Golden Hybrid events.
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5.2.3 Differences between simulations and measurements

There are plenty of differences between the measurements and the simulation libraries which
we use as training data (see Table 5.2) for our NN. Such mismatches could yield problems
in the inference process and give us biased predictions. We want to validate and correct the
predictions of our NN by checking for non-physical dependencies in the predictions that
clearly stem from the differences between the data sets.

Auger is not an ideal detector. The SD stations and the PMTs inside are subject to age-
ing which changes the detector response over time. Due to the on-board calibration (see
Sec. 3.2.2.C), the ageing does only affect the measurement of total signals minutely. How-
ever, the ageing changes the shape of the measured time traces. Since one of our intentions
of using NNs is to exploit exactly these time traces, it could result in shifts in the predictions.
We account for this aging by analyzing the dependence of our predictions on the runtime
of the array, average runtime of the stations triggered in an event, and the area over peak
0p, which is for UB simulations fixed to 3.2. Another consequence of the detector aging is
the loss of working PMTs in some stations of the array. An incomplete set of PMTs in a SD
station causes the signal measurement to be more dependent on the azimuth direction of the
shower.

Unlike the ideal grid used in simulations (see Fig. D.1), the real detector grid is non-
perfect. The SD station positions have different heights and are not perfectly aligned to the
exact grid positions. Furthermore, even when using the 6T5 cut, we still encounter holes
and non-functioning stations outside of the first crown. For example, this could introduce
biases if the network counts triggered stations to obtain a prior for the energy.

Our simulation library used for training is based on an air shower library that uses only a
single standard atmosphere (see Sec. 5.1.1). Therefore, the NN cannot account for changes in
the footprint due to weather conditions, daily changes, and yearly variations. For example,
a shower in a very dense atmosphere should experience a higher attenuation of its electro-
magnetic component changing the total signals and the signal shape. This, in turn, would
most likely yield in a wrong prediction of the neural network.

5.3 Preparation of input and output data

Before we use the data in the NN-based models, we have to prepare it in such a way that
it benefits the training process. Since there is no metric to find the perfect pre-processing,
we have to rely on what-worked-before, trial-and-error, and ingenuity. If a pre-processing
method is not applicable, usually, it can be seen in the predictions of the models and during
the training process.

5.3.1 Preparation procedures of scalar data and traces

There are two popular methods of preparing data for machine learning models. Both of
them make the data more accessible for machine learning algorithms by using linear trans-
formations. The first method is the already mentioned standardization via Eq. (4.33). The
second method is called normalization. We squash our data into a predefined interval. Most
commonly, this interval is [0, 1]. We transform the scalar values G by using the transformation

G → G − min G
max G − min G

. (5.2)

Note that doing this may cause problems when performed independently on data sets
with very different distributions. Therefore, we use the mean and standard deviation of the
data set used in the training process in cases like this.
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A Standardization of station trigger timing

We follow the same standardization procedure for the trigger times as in [P:104]. We subtract
from the trigger times the average trigger time of the event. Afterward, we divide the result
by the standard deviation of the distribution of average trigger times for our entire training
data set:

Ctrigger →
Ctrigger −

〈
Ctrigger

〉
ev

�Ctrigger−
〈
Ctrigger

〉
ev ,data set

, (5.3)

where 〈·〉ev is the average over the trigger times of all stations in an event and � is the standard
deviation of the differences between the trigger time and the corresponding average trigger
time. Hence, we use an event-level parameter and a parameter derived from all events.

B Pre-processing of scalar data using non-linear transformations

Most of the time, using either normalization or standardization is sufficient to prepare data
for training and prediction of NN. However, sometimes it is beneficial to perform a non-linear
transformation before or after the normalization/standardization procedure.

If 5 (G) is a distribution of the input values G, then 5 (H)|%HG | is the distribution of H = 6(G).
Hence, we can transform the distribution of input values. This can prevent that the network
focuses on over-densities during the training, such as that of the energy distribution in the
training data. The energy is distributed like 1/� (see Sec. 5.1). However, it is uniform in
decadic logarithmic energy. Therefore, lg� is preferably used as a network input rather than
�. We perform such a “flattening” also for the zenith angle �, which is distributed uniformly
in sin2, assuming an isotropic distribution of CR over the sky.

If there are multiple scalar inputs which are independent from each other, we can also
generate ‘higher-order’ features from the inputs by multiplying powers of different input
features in different combinations. These kind of features can be generated as follows: Let
{G1 , G2 , . . . G=} be the set of our input features. We choose an order %. Then, we search all
unique combinations G?1

1 G
?2

2 · · · G?== that satisfy ?1 + ?2 + · · · ?= < %. Doing this yields a new
set of input features of the form

Gnew = {G1 , G2 , . . . , G= , G
2
1 , G

2
2 , . . . G

2
= , G1G2 , . . .} (5.4)

C Preparation of traces

The raw UB and UUB traces contain regions that do not contain information content. To
reduce the memory size, allow{5} a more focused training, and align our input traces, we trim
them on a trace-by-trace basis. In Offline, the index 8 of the bin of the real signal is saved
in SdRecStation.SignalStartSlot. We remove all bins that have smaller indices. Then, if
our target trace length is !C bins, we take bins until the index 8 + !C . If the trace is not long
enough we pad with zeros.

Furthermore, we also believe that the baseline fluctuations do not contain any important
information for our analysis. Hence, we perform a threshold cut to remove this perceived
noise from our input data set. For this, we use a constant value of 103.

For a better comparison with the previous work on event-level NN analysis in Sec. 4.3.2 [P:104],
in addition, we will transform our signals via the decadic logarithm:

B(1) =
lg(1 + (off(1)/VEMPeak)

lg(1 + 100) . (5.5)

{5}We are sure that the network would eventually learn that these parts of the data do not matter for the output.
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Figure 5.5: Illustration of the encoding of the triangular grid into rectangular memory. The
letters represent the position in both grids. The number of nearest-neighbors in the triangular
grid is different from that of the rectangular grid. To properly encode it, we have to add non-
complete crowns in our rectangular representation if we want to use our memory efficiently.
These are represented by uppercase letters (A-F).

This choice linearizes the exponential decay of the trace signal putting the trace scales into
context. In contrast to [P:104], we use the traces directly from Offline for historic reasons.
These are given in units of VEMPeak and can be converted via Eq. (3.6). Since 0p is constant
for simulation, it is only a scaling factor and should not change the result of the analysis.

5.3.2 Encoding of SD grid into rectangular space

The detector stations of the surface detector of Auger are arranged in a triangular grid. We
can describe the positions of the stations in the grid via

d(8 , 9) = 8c1 + 9c2 =

[
8

(
1
0

)
+ 9

1
2

(
−1√

3

) ]
3, (5.6)

where c1 and c2 are an arbitrary choice of base vectors of the triangular grid and 3 is the
lattice constant (for the SD main array 3 ≈ 1500 m). The integer coordinates 8 and 9 uniquely
identify each detector of the array. Coincidentally, positive integer coordinates are how
regularly the elements of 2D-arrays are referenced. Therefore, by shifting 8 and 9 to 8+ and
9+, we get a direct map between (computer) memory and SD station positions.

To make this encoding comparable for all events, we have to choose a fix point. An ideal
choice is to put the hottest station of an event at its center at (8 , 9) = (0, 0) and arrange all
others around it. To encode the =-th crown completely, we need at least an array of the size
(2= + 1) × (2= + 1) (see Fig. 5.5). Hence, we chose this quadratic memory format as basis
for our encoding. To represent (8 , 9) in memory, we just have to choose one corner and use
it as a reference point. The memory coordinates are then (8+ , 9+) = (8 + =, 9 + =). Without
loss of generality, we can use this procedure to encode any information from the stations.
Henceforth, we denote "B as the width and height of our rectangular encoding. We call it
the memory layout size.

5.3.3 Geometrical standardization of shower footprints

Assuming that all stations lie on the same plane, that there are no corner effects, and that there
are no dependencies on the azimuth on shower propagation, we exploit the symmetries of the
grid to reduce the effective phase space of our input data. This is similar to Appendix B.1 and
Sec. 4.3.2.A. However, instead of imprinting the symmetry on our NN, we want to remove it
entirely. We choose grid coordinates 8 and 9 from Eq. (5.6) as the basis of our investigations.
Again, we use the hottest station as the fix point (0, 0); For our standardization procedure,

72



5.3 Preparation of input and output data

a

bc

d

e 5

g
Λ
'

a

gb

c

d e

5
Λ=
'

only 5
a

5152

53

54 55

50

Figure 5.6: Illustration of the rotations defined in Eq. (5.8) on the first crown. The center point
of the rotation is at the grid point which lies in the cell “a”. Applying the rotation matrix Λ' on
the left grid, rotates all stations clockwise around “a”. Following only the cell 5 , the effect of all
other rotation matrices is visible (see Eq. (5.8)). In the right grid, the index of 5 corresponds to
the used matrix =.

we want to find all distance-conserving transformations that preserve the underlying grid
around this fixed grid point.

A SD grid-conserving transformations

Intrinsically, a triangular grid is invariant under rotations of multiples of 60°. Using the grid
coordinates, we express the 60° rotation as(

G′8
H′8

)
= Λ'(60)

(
G8
H8

)
≡
(

0 1
−1 1

) (
G8
H8

)
. (5.7)

The matrix Λ'(60) rotates all grid points by 60° clock-wise (see Fig. 5.6) for our choice of the
base vectors in Eq. (5.6). Henceforth, we will denote Λ'(60) as Λ'. In Appendix A.3, we
show how Λ' is computed for arbitrary unit vectors. By multiplying Λ' with itself = times
we obtain the =-th “grid-conserving” rotation matrix

Λ'(60= (mod 360)) = Λ=
' . (5.8)

Hereby, the unit matrix corresponds to = = 0 (or = = 6). To gain a better understanding of
the matrices in Eq. (5.8), we have depicted their transformations in Fig. 5.6.

In addition to the rotational symmetries, certain reflections also conserve the grid. If we
restrict the reflection axis to go through a station, we find that there are six possible ones.
Those correspond to the reflection symmetries of a hexagon. Fortunately, we require only
one of them since all other reflections can be constructed from the rotations and the reflection
choice (see last paragraph). Therefore, from a general point of view, the choice of this axis
is also arbitrary. For convenience, we choose the straight line defined by c2 (see Eq. (5.7))
because it gives us a simple reflection matrix:(

G′8
H′8

)
= Λ"(60)

(
G8
H8

)
≡
(

0 −1
−1 0

) (
G8
H8

)
. (5.9)

We illustrate the effect of Λ"(60) in Fig. 5.7. Note that the elements of Λ"(60) are only true
if we use the unit vectors of Eq. (5.6). In Appendix A.3, we show how to obtain them for an
arbitrary choice.

Completeness of transformation: Our choice of transformations covers all possible symmetries
of the triangular grid. Since reflections and rotations are the only isometries in the two-
dimensional plane, we only have to show that we can construct all other reflections with
the matrices of Eq. (5.8) and Eq. (5.9). We denote the six distinct reflection operations as
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Figure 5.7: Illustration of reflection defined in Eq. (5.9) on the first and second crown. The
reflection axis connected to Λ"(60) is defined by c2 (see Eq. (5.6)).

Λ"(0),Λ"(30), . . .Λ"(150) where the argument corresponds to the angle of the reflection
axis with respect to the (horizontal) G-axis. The set of Λ"(0), Λ"60, Λ"(120) and Λ"(30),
Λ"(90), Λ"(150) lie 60° apart from each other. If we chose one transformation of each set,
we are able to construct the others via the already defined rotations. Consequentially, we
only have to connect those both groups of matrices. Using Λ"(30) = Λ'(−30)Λ"(0)Λ'(30),
we get

Λ'(60)Λ"(30) = Λ'(30)Λ"(0)Λ'(30) = Λ'(30)(Λ"(0)Λ'(30)Λ"(0))Λ"(0)
= Λ'(30)Λ'(−30)Λ"(0) = Λ"(0),

proofing that this connection exists.

Reduction of phase space Showers are (to first order) uniformly distributed in the interval
[0°, 360°) over the azimuth ). By using the transformation, we can rotate and mirror all
detector responses into an arbitrary 30° slice. This effectively reduces the input phase space
by a factor of 12 and simultaneously makes it unnecessary to choose a special NN architecture
to account for those symmetries.

B Memory efficiency

Due to the encoding of the shower footprint, we need "2
B = (2= + 1)2 times the size of the

station inputs we want to use as input in an NN. If the fifth crown should be completely
(= = 5) represented in the trace, and traces of 120 bins be used, the data for one event
would already amount to ∼10 kB in memory. With new methods and the SSD data, this
value increases even further. Because there is only a finite amount of memory, the choice
in which direction the showers are standardized is not arbitrary (see Fig. 5.5). Depending
on the chosen base vectors in Eq. (5.6), we want to align the showers in such a way that
we maximize the information in our memory. Since all twelve choices to standardize the
shower are equivalent from a physics standpoint, we choose the one that synergizes with
the memory layout.

Stations have a higher probability of triggering when they lie nearer to the shower core.
Therefore, shower measurements are elongated in this direction. By using the diagonal from
top left to bottom right, we put the bins for not completed crowns near the shower axis (see
Fig. 5.5). Not setting those to zero allows us to increase the information density for similar
memory layout sizes. In Fig. 5.8, we compare the fraction of stations we lose by choosing
a certain grid size for this standardization, no standardization, and an ineffective choice of
standardization axis. The effect is especially prevalent for lower memory sizes. The effective
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Figure 5.8: Fraction of stations in the data set that can be encoded inside a square memory
layout with a memory layout size "B for different memory configurations. At a memory layout
size of 7 over 90% of stations can be encoded. The standardization using an effective layout
increases the fraction of stations. Therefore, it is more memory efficient.

standardization beats both other methods{6}. Since this increase of information is free, we
recommend it. Note that with the same argument, the information density could also be
increased by trying different input shapes that are not quadratic.

C Check of the validity of the standardization procedure

If we want to use this standardization procedure, we need sufficient knowledge about the
value of the azimuth angle ) of a shower event. Therefore, we face an intrinsic systematic
error due to the geometrical reconstruction by the SD standard algorithm. To get a handle
on this error, we compare the MC azimuth )MC with the reconstructed azimuth )SD taken
from Offline. We want to use )SD for the standardization procedure. For this analysis, we
analyze proton and iron events which are uniformly distributed in logarithmic energy range
[18.5, 20].

There are two main error sources: On the one hand, the azimuth difference Δ) could be
greater than our “projection window” of 30°, on the other, we expect ambiguities for azimuths
near the corners of the windows. Both errors are intertwined but conceptually different. In
the former case, we face the problem of a highly erroneous reconstruction. Fortunately, Δ)
value outside of the target range are quite uncommon (see Fig. 5.9). The polar plot shows a
histogram of the full possible range of Δ) in logarithmic scale. Even though the difference
distribution exhibits a fat-tail (see Fig. 5.9), from about 300,000 reconstructed showers only
about 1,000 are outside of the valid region. Therefore, we assume that the error through
reconstruction is marginal and can be neglected. Most likely, those erroneous reconstructions
are due to vertical showers. There is a considerable amount of events that are matched to the
wrong rotation matrix (see Fig. 5.10). Unfortunately, this does not change if we demand that
all stations around the hottest station must have triggered. This means that this problem is
not purely related to showers with a small footprint.

What happens when we include the reflection in the mix? Let us take a look at the

{6}Even though the ineffective standardization loses stations, it will perform better than a non-standardized data
set due to the standardization itself.
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Figure 5.9: Difference of the simulated and reconstructed azimuth angle Δ) for all possible
angles (left, logarithmic) and values near the valid interval (right). We find that from about
300,000 events only about 1000 are reconstructed outside (green area, left plot). The outer ring
indicates the average zenith angle in the bin range. Therefore, these are primarily vertical events.
From 1176 events over 95% are from events with zenith angles below 20°. Therefore, even though
the difference distribution exhibits because of this a fat tail, which can be seen in the Gaussian fit
(right), we conclude that the reconstruction error does not greatly influence the standardization
procedure. The colorful band in the right plot indicates the average zenith angle. In the region
of interest, it is almost exclusively about 38°.

differences between the transformed MC and the reconstructed azimuth angle. The azimuth
of the transformed shower footprint is given by

)tr = 60° −
���� ) −

⌊
) − 30°

60°

⌋
60°

︸                 ︷︷                 ︸
rotation

− 60°

���� , (5.10)

where ⌊.⌋ denotes the floor operation{7}. As seen in Fig. 5.11, even when the wrong rotations
are used, the reflection counteracts this. Larger differences stem from very vertical showers.
For low zenith angles, the azimuth angle barely plays a role in the shape of the footprint. As
a consequence, the erroneous transformed shower footprint is very similar to the correctly
transformed shower footprint in these cases. Moreover, even if we would only regard the
rotation, this effect should be minimal. We conclude that this error is also negligible.

Other error sources that are not completely accounted for in the simulations are the
variation of the ground height, the geomagnetic effect, and the borders of the array. All
of these effects break the symmetries we are exploiting in this standardization procedure.
Henceforth, we assume that all of them are relatively small.

5.3.4 On-the-fly data augmentation

To enhance the possibility of generalization of our networks, we perform on-the-fly aug-
mentations of our input data sets. This enables us to generate data sets dynamically that,
in theory, we are able to reproduce by fixing the seed. We implemented it via threading.

{7}Please note that ⌊−8. 9: . . .⌋ = −8 − 1(8 ≤ 0). Therefore, ⌊−0. 9: . . .⌋ = −1.
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During training, we run a parallel thread that chooses the indices for a fixed number of
batches of our input data. The data in the batches is then modified and stored in memory in
such a way that the training algorithm has easy access.

A Automatic garbage collection

The Pythonprogramming language is very memory-demanding. Common workarounds for
very large data sets, such as memory mapping, fail and still fill (in many implementations)
the memory step-by-step to reduce the Input-Output (IO) on the hard drive. Although much
faster than loading it in the beginning, it still does not solve the problem of data sets being too
huge to fit into the memory. Other workarounds in TF directly use a batching process, which
makes it impossible to randomize data points between those super batches from which the
regular batches for network training are created.

Since we feed our networks via an additional thread, we also have more control over which
data stays in memory without being too invasive. After a pre-defined number of batches, we
wipe the allocated space clean to ensure that Python cannot “optimize” at the wrong places.

B In-place dimensional reduction of input data

Another trivial (but useful) application of on-the-fly data augmentation is the modification
of the input data outside of the network. In this way, we are able to reuse data sets that
contain larger shower footprints and longer trace lengths saving disk space in the process.
Moreover, we can use this to allow for an easy way to check the effect of the dimensionality
of our input data.

C Black tank augmentation

At each moment of running the Observatory, there are a certain number of SD stations in
the array that do not respond to CDAS. They are denoted as black tanks. There are many
reasons for something like this to happen, e.g., broken detector station or no power in the
onboard battery due to the weather conditions. We can obtain information about the black
tank rate from [T:M]. The average number of black tanks in the array is of the order of 30.
Moreover, the SD array has holes (see Fig. 2.5). At this regular grid positons, no stations have
been placed. Both of these effects are not included in regular simulations.

To make the network more robust against this kind of “corrupted data”, we have included
the option to remove a certain percentage of randomly chosen non-hottest stations of each
event. The default value of this fraction is 5%, which is much bigger than expected from the
array monitoring. In addition, this kind of (in-training) data augmentation also suppresses
potential over-training due to the implicit increase of different shower footprints.

5.4 Additional features generated from base data

In addition to the shower observables provided by Offline and CORSIKA, we also compute a
hand full of the event- and station-level quantities that are not directly accessible. These can
be novel input features or output targets for predictions. Then, in the course of this work, we
will analyze how some of these new features could improve the predictions of our NN. The
outputs are mostly related to the muon content of the shower: a local or global observable
that we are highly interested in.
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5.4.1 Timing relative to the planar shower front

The timing of the triggers corresponds to a curved shower plane (see Eq. (3.3)). The curvature
of the shower front is an indicator for the propagation processes and the shower maximum
depth -max. However, without exact positioning, it is hard to be inferred from the base data.

Nevertheless, we can put this curvature into perspective. We compare the real trigger
times to the plane front model (see Sec. 3.2.2.B). Using the position of the core as the fix point
where the shower plane is at C = 0, we can rewrite Eq. (3.2) into

C8 = â · (xc − x8), (5.11)

where xc is SdRecShower.CoreSiteCS, â is SdRecShower.AxisSiteCS, and C8 is the time of
the shower plane at detector position p8 . Using the trigger times C8 relative to the core time
Ccore, we can construct the time relative to the shower front

Cpf,8 = (C8 − Cc) − C
pf
8 . (5.12)

This process encodes the curvature in the times and might be a more efficient way to use as
an input for the NNs. From Universality we know that this relative timing gave a boost in
the predictive power of the model [A:19].

5.4.2 Energy dependence and width of the shower depth distribution of different primaries

Since we have only a finite amount of simulation data, we use the following procedure
to approximate the distribution of shower depths depending on energy and primary. We
assume that the underlying distribution of the shower depth is approximately similar to the
“skew normal distribution” [C:23] (see Fig. D.2), which introduces a skewness via the Error
function erf:

pdfskew-normal(G;�, $, �) = pdfGauss(G;�, $)
[
1 + erf

(
�
G − �
√

2$

) ]
, (5.13)

where �, $, and � are fit parameters that correspond roughly to mean, spread, and skewness,
respectively. They depend on the primary and the energy of the shower. Assuming that
they do not vary greatly over the target energy range, we parametrize them in lg(�/eV) by a
linear, quadratic, and linear function{8}, respectively. Hence, the corresponding Probability
Density Function (PDF) has 2 + 3 + 2 parameters. We obtain them by minimizing

lnℒ = −
∑
G

ln pdfskew-normal(G; ?1 , . . . , ?7) (5.14)

via the implementation of the Nelder-Mead algorithm [C:24] from scipy [T:N] using 3000 it-
erations. For each primary, we perform a separate minimization. In Table 5.5 we summarized
the data set.

We want to emphasize that the choice of distribution is arbitrary. Therefore, we want to
validate this approach. To do this, we compare the values of statistical quantities inside
energy bins with that of the value given by the distribution Eq. (5.13) using the parameters
from the minimization (see Eq. (5.14)). We want to investigate the moments of the distribution
and compare them to binned values. The mean

〈G〉 = � + �

√
2
�

�√
1 + �2

(5.15)

{8} 5 (lg(�/eV)) = 0 + 1 lg(�/eV) + . . .
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Figure 5.12: Energy dependence of the average value of -max (top) and of shower-to-shower
fluctuations (bottom) for different primaries of the QGSJ napoli library. We find a good
agreement with the binned values for both, the averages and the standard deviations. The
agreement is better for higher masses due to the increased penetration depth of lower ones. This
explains the slight under prediction of fluctuations belonging to protons.

and variance

�2
G = �2� = �2

(
1 − 2�2

�(1 + �2)

)
(5.16)

are the analytic values for the skew normal distribution. In Fig. 5.12, we show the fit over
the entire energy range for QGSJ.

5.4.3 Muon content of a shower

Since the muon content of a shower on the ground level is closely connected to the primary
particle, it is a prime target for all advanced reconstruction methods. This is true for both, the
local and the global muon number. However, the number of muons and quantities derived
from it, such as the muon signal, have a certain disadvantage. They are unbound and have
a steeply falling PDF.

A Muon fraction at station-level

Since Offline saves the sub-component traces in simulations, we could directly take the muon
signal as an indicator for the local muon density. Normalizing this to the total signal, we get
the signal muon fraction

5 S
μ =

(μ

(tot
, (5.17)

where (μ is the total muon signal. However, since the baseline fluctuations for all sub-
component traces are computed independently from each other, we sometimes obtain un-
physical values for 5 S

μ , such as muon fractions above one.
A more secure method of obtaining the fraction of muons is by counting the number of

photo-electrons induced by different particles in the PMTs. Counting the responses in the
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Figure 5.13: Left: Fraction of muon and total signal 5 S
μ (see Eq. (5.17)) versus muon fraction 5μ

computed from the photo-electron counts of the PMTs (see Eq. (5.18)) for not-high-gain-saturated
stations satisfying (tot > 5 VEM. The dashed black line shows the identity relation. The linear
correlation between both muon fractions is at 0.99. We cut all unphysical 5 S

μ by restricting the
plot area to the interval [0, 1]. The deviation between 5μ and 5 S

μ is due to the independent
baseline fluctuations of the sub-component traces. Right: Average ratio of the integral over the
trace from start bin 1s to 1s + !t and total signal integral from 1s to 1e for different sub-trace
lengths !t. We used the same cuts as in the left figure. We compare the total trace (blue crosses)
and the muon sub-component trace (red pluses). The muon signal converges more quickly to
100% since most of the muon signal is located in the beginning of the trace. If we want to
compute the muon fraction from cut traces, we have to be careful. Even at a sub-trace length !C
of 200, we would over-predict the ratio of muonic signal to total signal.

PMTs, we get

5μ =

∑
8 #8�(8 fromμ∓)∑

8 #8
, (5.18)

where � is the Kronecker delta that only equals one if the 8-th bunch of photo-electrons
comes from a muon. In practice, both, 5μ and 5 S

μ , give us equivalent results (see Fig. 5.13).
A large part of the total muon signal comes from the beginning of the trace (see Fig. 5.13)

since muons arrive at the SD stations almost unhindered. Therefore, we have to be careful
when computing the muon fraction from integrals over sub-traces. By using too-small
sub-trace lengths, we obtain muon signal that is too-large compared to the total signal.

B Relative muon content at event-level

Previous analyses have estimated the relative muon content 'μ (see Eq. (3.13)) via specialized
simulations. By adding an increased number of virtual, off-grid stations (see Sec. 5.1), the
muon signal on the ground can be approximated. However, such specialized simulations
are time-consuming. Depending on how many stations are added, they are usually much
longer than the simulation of the event itself.

Here, we propose a different method: Instead of taking the signal estimations, we rely only
on the raw CORSIKA data. In the .long files (see Sec. 2.2.6), there is a field of the particle
numbers at different shower depths. For each SD event simulated from the corresponding
.part file, we use these numbers at ground level as a prior value for #μ. We claim that
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Table 5.7: Fit parameters for the fit model defined in Eq. (5.19) for the local mirror of the Napoli
library. The values in the brackets are the leading digit errors. Due to the smallness of the
errors, we assume that the fit models represent the average behavior well. The results for both
hadronic interaction models QGSJ and EPOS only differ marginally for the energy dependency.
However, there is a clear difference in the zenith dependency. This is most likely an effect of the
difference in attenuation for both models.

Model lg#p
0 � 0 1 2

QGSJ 6.710(2) 0.945(2) 1.172(1) −1.064(4) −1.496(19)
EPOS 6.750(2) 0.947(2) 1.196(2) −1.085(5) −1.707(22)

this number is proportional to the actual number of muons. The conversion factor might
dependent on � and �, which is removed by the normalization to the proton 'μ.

To get 'μ, we need to estimate
〈
#

p
μ

〉
(see Eq. (3.13)). Since the attenuation of the muons

of the shower is universal, we assume that we can disentangle the average proton muon
number in an energy- and a zenith-dependent part via

〈
#

p
μ

〉
= #

p
0 5

p
μ (�)

(
�

1018 eV

) �
= 5

p
μ (�)

〈
#

p
μ (�)

〉
, (5.19)

where #0 and � are fit parameters. The choice of 1018 eV is arbitrary. This procedure is very
similar to the Heitler-Matthews model (see Eq. (2.10)). To capture the zenith dependence,
we use a CIC-like (see Eq. (3.10)) function{9}

5
p
μ (�) = 0 + 1G + 2G2 , (5.20)

where G = sin2 � − sin2 �ref. We use �ref = 38° as in Eq. (3.10). The
〈
#

p
μ (�)

〉
is dependent

on the used zenith range. However, this dependence is caught by the 0 fit parameter of
Eq. (5.20).

In Table 5.7, we show the fit values for the parametrization. The fit is a simple least square
fit. Although Eq. (5.19) is purely phenomenological, it reasonably reproduces the average
behavior (see Fig. 5.14). After calibration, the muon number is almost independent in energy
for zenith bins (see Fig. 5.14). We conclude that it is sufficient to use this calibrated quantity
to estimate the zenith dependence 5 p

μ . In Fig. 5.15, we show the fit versus the average binned
values. Again, the fit reproduces the behavior very well; errors on the fit parameters are
negligible (see Table 5.7). After full calibration, 'μ shows a good separation for proton and
iron values (see Fig. 5.15). We have attached the results for EPOS in Fig. D.3 and Fig. D.4.

{9}However, we allow for 5
p
μ (�ref) ≠ 1.
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Figure 5.14: Energy dependence of the number of muons (μ+ and μ−) for proton CORSIKA
files simulated with QGSJ of the Napoli library before (left) and after (right) removal of the
energy dependence. We use the logarithmic #p

μ due to the uniform distribution in the energy.
The energy dependence is in good agreement with a linear model. After the removal, the
dependence is (almost) flat for different zenith intervals.
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Figure 5.15: Zenith dependence of the number of muons divided by the expected number at the
energy for proton CORSIKA files simulated with QGSJ of the Napoli library (left) and resulting
'μ for proton and iron of the same data subl set (right). Again, we find a good agreement with
the proposed model in Eq. (5.20). Using the zenith dependence, we can compute 'μ for the
proton and iron showers. We find a visible separation.
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6 Extraction of Local Shower Properties from SD
Station Signals

Imagination was given to man to compensate
him for what he is not; a sense of humor to con-
sole him for what he is.

(Francis Bacon, “father of empiricism”)

Screaming mad scientist on a bridge, [M]unch[.]

DALL·E 2 prompt:

Analyses by the Auger collaboration utilize event-level observables to reconstruct important
properties of air showers. However, the information contained in the responses of individual
detector stations is not usually considered as such but only as part of the ensemble of detectors
triggered by the overall event. It is a legitimate research question in what ways station-level
information could be used to improve our understanding of air showers.ch way station-level
information could be used to improve our understanding of air showers. Studies of this kind
have been performed in [A:9, A:10, A:11, A:12]. Furthermore, it has been shown in [A:20,
A:21] that using single station information can benefit the reconstruction of air-shower events.

We define local shower properties as quantities and observables, which directly belong
to a spatially localized measurement of the shower cascade{1}. The time-dependent signal
of a PMT (trace), for example, which is spatially localized measurement of the temporal
distribution of shower particles, can be categorized as a local shower property. Time traces
are an ideal candidate for machine learning-based analyses, because they are highly complex
one-dimensional signals. Currently they are used in classical analysis approaches to extract a
different observables and features, such as the integrated, total signal (tot, and the empirically
motivated risetime, C1/2, to estimate the depth of the shower maximum (see Sec. 3.3.1). One
of the most interesting local observable, however, is the signal produced only by the muonic
sub-component of the shower (see Sec. 4.3.1), since it is directly dependent on the nuclear
mass of the primary particle (see Eq. (2.10)). Therefore, we focus in this chapter on examining
the local muon signal (μ of a detector.

Machine learning is one of the most emerging disciplines of high-energy physics, and
thus also for Auger. To test for consistency with previous works, we first focus on the
reproduction of similar NN based results (see [A:9, A:12]) and compare the analyses with
reference models, which use fewer free parameters than a standard NN. This allows us to
better judge the quality of the NN for reconstruction purposes. In addition, we want to

{1}Local shower properties are not necessarily independent of the underlying shower.
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examine the added value of the UUB data and SSD trace information for the analysis of the
time traces.

Note that, in this chapter, the short notation ℰ for the logarithmic energy lg(�/eV) is used
(see Eq. (4.31)). This is primarily done because of spacing issues, e.g., Fig. 6.1. In this way,
we are able to keep the terminology consistent. We switch back to the long form of ℰ in
Sec. 6.3.

First, we define reference models in Sec. 6.1, which are going to be compared to the NN
based approach described in Sec. 4.3.1.A. In Sec. 6.2, the results of [P:107] are examined.
Moreover, the added value of additional free parameters of the model is examined using
previously defined reference models. The NN based approaches are tested for their overall
potential and for the most promising case of application. In Sec. 6.3, instead of using
solely scalar inputs, we use a part of the time traces as an input for a NN and examine
the performance. In the course of this study, additional information provided by the SSD
are used to optimize the prediction of the muon component signal. Finally, in Sec. 6.4 a
preliminary study of feasibility is performed on the application of NN based approaches for
the counting of muons passing trough the UMD.

6.1 Reference models for local shower analysis

The main focus of this chapter lies on the extraction of the muon signal (μ from local shower
parameters. To evaluate the performance of the NN models, their predictions are compared
against models that do not use NN based inference, which are called reference models. The
same inputs as defined in [A:9] are used to make the models comparable to the network
defined in this work.

6.1.1 Inputs and outputs for the station-level analysis

A fraction 5μ of each signal deposited in a WCD{2} is due to muons traversing the water (see
Sec. 5.4.3.A). We consider all other sub-components contributing to the signal as noise of the
muon signal. As a consequence, all models utilized in this section produce only the muon
signal (μ or the muon fraction 5μ as a single output.

The total muon signal can be computed in two ways. The more straightforward way
involves the time signal traces of the muon sub-component. Using the sub-component, the
total muon signal is given by

(s
μ =

∫ 1e

1s

d1 (μ (1) , (6.1)

where 1s and 1e are the start and the end bin, respectively. However, since the baseline
fluctuations in Offline for each sub-component are independently computed, the sum of
the sub-components does not equal the total signal. If we want to account for the baseline
fluctuations more appropriately [A:22], we have to use the indirect way given in Eq. (5.18).
Hence, we define (μ via

(μ = 5μ(tot , (6.2)

using the total signal (tot and 5μ computed via counting the photo electrons.
In this analysis, the same nine input parameters are used as defined in [P:107]. They have

been already discussed in Sec. 4.3.1.A. In Fig. 6.1, the individual parameters are summarized
and examined in the form of a linear correlations plot for the simulation data set, with and

{2}Indeed, this fraction can be zero. However these cases are rare in the investigated phase space.
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Figure 6.1: Pearson correlation coefficient (see Eq. (4.43)) with an absolute value above 103 for
all possible combinations of the inputs and outputs of Sec. 6.1.1. The left plot shows correlations
for the entire data set without cuts and the right plot for the cuts made in [P:107] (see Sec. 6.2.1).
The color-coded boxes are just representations of this coefficient. They scale with its absolute
value. Except of !ad and � all input-parameters are linearly (anti-)correlated with the output
for the cut data set.

without quality cuts (see Sec. 6.2.1). The Pearson correlation coefficient �P (see Eq. (4.43)) is
shown for all combinations of input and output parameters, individually. Surprisingly, !ad

and � seem to have almost no linear correlation with the other parameters. All other input
parameters show at least a slight correlation. With a wide margin, (tot is most correlated
with (μ in both cases, the total data set and the data set with quality criteria applied. This is
not surprising, because (μ is on average a large part of the total signal, independently of the
event-level or station-level values of 5μ.

Each cosmic ray shower with a high-enough energy (� & 3 EeV) reliably triggers multiple
of the WCDs of the SD. The average number of triggered stations increases with energy (see
Fig. 5.1). Therefore, less station-level inputs are available for lower energies. This potentially
impacts the training and inference process of the NN by implicitly underweighting traces of
events, in which data from only few detectors are available.

6.1.2 Reference models

In this section the reference models to compare NN based analyses against are briefly intro-
duced. The naming convention for input parameters given in Eq. (4.3) is followed. In the
case of extracting the muon fraction, - is the vector of one set of standardized input values
corresponding to the simulated muon signal (μ. To remain comparable to the NN based
analyses of [A:9, A:10], the muon signal is standardized according to the method presented
in Eq. (4.33); the standardized muon signal is denoted as Bμ. The models are tuned to predict
Bμ. The predicted standardized muon signal are written as Bp

μ . The relation between the total
predicted muon signal (p

μ and the standardized muon signal is given by,

(
p
μ = �tr

(
(μ

)
B

p
μ +

〈
(μ

〉
tr
, (6.3)

where the average muon signal 〈(μ〉 and standard deviation of the muon signals �tr((μ) are
taken from the training data set, and therefore indexed tr.

The simplest alternative model is a constant predictor without any input parameters. By
averaging the test set, an unbiased prediction for the muon signal in the whole data set can
be achieved. In case a model to estimate the (standardized) muon signal performs worse
than the constant predictor, it has to be excluded.
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6 Extraction of Local Shower Properties from SD Station Signals

Furthermore, the total signal is highly correlated with the muon signal (see Fig. 6.1). The
constant-predictor reference model can therefore naturally be extended by adding powers
of (tot as an input for a NN. Instead of a constant, we obtain a polynomial in terms of (tot.
We fix its degree with help of the validation set (see Sec. 6.2.1).

To access the “amount of linear information” in the input data, we use a purely linear
model. Thereby, all of the inputs defined in Sec. 6.1.1 are used in a least-square fit. This
leaves us with ten parameters. Such a model tells us what can be learned alone from the other
less important parameters. Finally, we use an extension of this linear model. The first layers
of dense neural networks mix their inputs in such a way that ‘good’ features are favorably
weighted. Hence, during training, it automatically creates new, better suitable inputs. We
want to emulate this behavior to a certain degree. As additional inputs for our least squares
fit, we use all unique multiplications between each of the inputs{3} (see Sec. 5.3.1.B). Hence,
we generate polynomial features up to a certain degree. This increases the number{4} of
coefficients to 55. In the following, we call this the quadratic model. We do not introduce
ways of restricting the fits in any way to reduce possible fine-tuning biases. We expect that
the performance of these models increases with the number of available parameters.

6.1.3 Performance of reference models

In this section, the performance of the reference models to compare the NN analyses against
is evaluated. For this purpose, the split strategy from Sec. 6.2.1 is applied with the help
of the metrics defined in Sec. 4.4.1. A lower value according to one of the defined metrics
directly is associated with a better performance of the model. The results of the models for
a complete training are tabulated in Table 6.1. Results are obtained by fitting each model to
20 different splits with a training size of 22 000 and a validation fraction of 0.1.

The distribution of signals (μ is of similar shape to the distribution of all total signals (tot:
both distributions show a sharp peak with an exponential tail. Therefore, the predictions of
the constant predictor{5} are quite poor and cannot compete with one of the other models.
All models that outperform the constant predictor contain at least some sort of information
about (μ in their output. The model that receives expansion in powers of (tot as inputs
works acceptably. The maximum power of (tot for each of the splits is fixed separately by
fitting polynomials of the degrees 2 to 9 and using the best performing one. Using 4 as the
maximum power proved to be sufficient. Adding higher powers of (tot does not notably
improve the performance. In Fig. 6.2, the performance (see Sec. 4.4.1) is depicted for all
reference models as a function of the available size of the training data. For small training
data sets, the (tot expansion model is highly unstable.

Adding different parameters acts as a regularization procedure. The linear model does not
only improves the result, but it is also more stable with respect to the (tot power expansion
model (see Fig. 6.2) and only few more free parameters are required. Nevertheless, for bad
choices of training data it is expected to experience instabilities for the extreme values of the
parameters space of the available input. Fortunately, such instabilities do not affect the global
outcome of this study. As expected, the performance improves significantly by employing
the quadratic model.

In the following, we focus on the last three models in depth, since they show reasonable
results and individually outperform the constant predictor model.

{3}If we would have 0, 1, and 2: we would additionally get 02 , 01, 02, 12 , . . . as inputs.
{4}There is one parameter for the constant, nine for the linear model and 45 = 9 + 9 · 8/2 for all unique input

multiplications.
{5}This would not be the case if done when 5μ would be used.
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Figure 6.2: Dependence of <2 (left, see Eq. (4.40)) and <� (right, see Eq. (4.42)) on the size of the
training set for the fit-dependent models of Sec. 6.1. For each point twenty different training
sets have been sampled. All of the tested models perform on a wide range of training size better
than a constant predictor (see Table 6.1). At about #tr = 20000 the models saturate. Only the
(tot expansion seems slightly unstable after this point. However, these effects are minor.

Table 6.1: Values of comparison metrics (see Sec. 4.4.1) computed on QGSJ test sets for a regular
fit of the reference models (see Sec. 6.1.2). The values are obtained by splitting the data set 20
times for a training size of 22 000 and averaging over the output of the resulting models. The
maximum order of the (tot expansion is fixed by taking the best result of polynomials from
orders 2 to 9. As expected, the more we use the entire set of input parameters in different
representations, the better the results.

data set model coefficients <2 <' <�

QGSJ constant 1 142.515 -0.618 0.732
QGSJ (tot expansion 5 19.003 0.069 0.266
QGSJ linear 10 12.914 0.065 0.221
QGSJ quadratic 55 6.777 0.032 0.160
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Figure 6.3: Change of value of <2 for linear, quadratic, and neural network model because of
the removal of one input parameter. Thereby, <∗

2 is the value of the metric without the input on
the x-axis. As expected from Fig. 6.1 the total signal (tot plays a central role in the predictions.
Ignoring it reduces the performance of all models. Furthermore, the quadratic and neural
network model behave very similar. For each datapoint they are almost on top of each other.

6.1.4 Importance of the input features on the prediction

The performance of an estimator or a model is strongly dependent on the quality of its input
parameters and the input data. Triggered by Fig. 6.1, we therefore analyze the dependence of
the models on the set of the available input parameters. We only study the linear, quadratic,
and – for completeness – the NN model by fitting and training them on the regular splits
(see Sec. 6.2.1). While doing this, however, we exclude one of the inputs and study the effect
on the global value of <2 (see Fig. 6.3). Consequentially, in case of the quadratic model, all
higher-order terms containing the particular input parameter are removed as well. As can be
seen already in Fig. 6.1, the total signal (tot plays a central role for every model. Discarding
it, dramatically reduces the performance of all models equally. Furthermore, other inputs
such as �, have a non vanishing influence, even though their contribution is relatively small
compared to (tot. It is noticeable that the quadratic and neural network model behave very
similar.

Therefore, we analyze the inputs of the quadratic model{6} in Fig. 6.4. This time we turn
off one of the 55 inputs and look at those which change the metrics value by 3%. The result is
similar to that in Fig. 6.3 for the linear contributions (first 10 values). From the higher order
inputs only two seem to be relevant in this analysis. Again, both are connected to (tot. We
conclude that most of the higher order terms are not contributing and should under normal
circumstances be left out. Furthermore, we expect that higher order fits - if they are stable -
should improve the performance even further.

6.1.5 Stability of model parameters

To assess the stability of the linear and quadratic models, we analyze their coefficients when
fit in different parts of the phase space. We perform this extra step to check if they exhibit an
energy dependence or if the coefficients themselves are more or less universal. If the latter
is true, we could these models with a fit to low energy data from AMIGA or the UMD and
circumvent most of the problems we are facing in our simulations (see Sec. 2.4.1).

For this study, we train the linear and quadratic model with training data taken from the
three MC energy intervals (18.5, 19.0], (19.0, 19.5], and (19.5, 20.0]. Again, for each interval,

{6}This is not possible for the neural network.
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Figure 6.4: Change of value of <2 of the quadratic model because of the removal of one input
component. The components’ names which decrease the metrics value by 3% are given in
the center of the plot. Their corresponding datapoints are marked by a red circle. Due to
fluctuations, sometimes removing a component yields a slightly better result. As expected from
Fig. 6.3 components connected to the total signal are very important for the prediction of the
quadratic model.

we take 20 test splits to account for fluctuations. For each of the splits, we obtain a unique
value for the coefficient. We use the average of these values. The linear model shows (see
Fig. 6.5) that there is, in fact, an energy dependency. However, comparing the coefficients
using the entire energy range and the different intervals shows us that for almost every
coefficient, the second energy bin has a similar value to that of the entire energy range. It
is possible that we could correct the behavior in some way. Especially since some of the
coefficient changes seem to be almost linear. The quadratic model shows a much stronger
dependence on the energy interval (see Fig. 6.6). For the most important parameters, such
as the total signal, there is a visible spread. We expect that here the situation is much more
complicated, and a simple “upscaling” would take a much more detailed analysis. In the
case such a study would be performed, we recommend using the linear model as a primer
or even going back to the expansion in total signal (tot.

6.2 Extraction of total muon signal and comparison to baseline models

In the following, we want to complement the analysis done in [P:107]. We begin by repro-
ducing their results to ensure that we use the same setup. Afterward, we study the networks
and compare them to the baseline models defined in Sec. 6.1. Our main goal is to find out
if the increase in complexity using a NN-based approach is significant. Without comparing
the NN with simpler or conceptually different models, we are unable to fully appraise their
predictive power [C:25]. Hence, this approach will put the NN results into context. In this
case, this is comparably easy since the used architecture is quite simple, having only around
2000 free parameters.

To get a similar number of samples as in [P:107], we use two of them from the old QGSJ
data set (see Sec. 5.1.1). This could yield potential problems with shower degeneracy and,
as a consequence, unexpected behavior. To exclude this, we use only unique showers in
our EPOS data set (see Table 6.2). It acts primarily as a cross-test which is not used in the
fitting/training steps. Additionally, this also reduces the problem of the non-uniform energy
distribution of the WCD events (see Fig. 6.7).
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Figure 6.5: Average value of coefficients of linear model when trained in various energy intervals
for 20 different splits of the QGSJ data set. The x-axis label � denotes the intercept of the linear
fit. The fit coefficients show a dependence on energy. Using the full energy range yields almost
the same coefficient than the second energy range.
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Figure 6.6: Average value of coefficients of quadratic model when trained in various energy
intervals for 20 different splits of the QGSJ data set. As in Fig. 6.5 there is a clear dependence on
energy for the fit coefficients. Unfortunately, it is much stronger than in the linear model.
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Figure 6.7: Energy distributions of test and training set for the QGSJ data set. The deviations
from the uniform distribution of the training set are due to the sampling procedure. It uses
a different bin size. The scarcity at lower energies is due to efficiency of the array. Showers
are distributed uniformly in energy. However, the number of detectors triggered depends on
the energy. The non-linear part in the lower energies is caused by the non-100% efficiency of
detector array in this region.

Table 6.2: Summary of the data sets used and loss due to the cuts defined in Sec. 6.2.1. For QGSJ
we work with two simulations of one shower and for EPOS with only one. CORSIKA files are
from the old NapLib. The cuts remove almost 80% of the data. Furthermore, only about 10% of
the combined detector signal remains. This is a consequence of the implicit cuts on the distance
to the shower axis. All detectors near the shower core are discarded.

had. model events WCD data data loss

before cuts after cuts amount / % signal / %

QGSJ 116123∗ 1208091 264282 78.12 89.22
EPOS 59407 626791 138533 77.90 89.18
∗ This is not to be confused with the number of showers.

6.2.1 Quality cuts, data transformation, and split strategy

We use the same quality cuts as proposed in [P:107]. First, we limit ℰmc to the interval
[18.5, 20.0]. Secondly, only stations in events with inclination angles below 45° and stations
with (tot > 10 VEM are used. Lastly, we remove all low- and high-gain saturated stations
from the data set. All cuts are performed via MC parameters. Unlike [A:10], we limit
ourselves to simulated data because we want to have full control and perfect information for
this study.

The cuts are extensive and reduce the data set significantly (see Table 6.2). Over 70% of the
data is lost. In Fig. 6.8, we illustrate the impact on the distributions of the two linearly most
important input parameters (see Fig. 6.1). For both parameter combinations, the complexity
of the distribution is reduced. In the case of the muon fraction plots, it almost transforms to
a peaked distribution centering around 0.5. In Fig. 6.9, the projection of the 2D distributions
on the y-Axis is shown. We find a peaked distribution for all of the different primaries.

Before feeding the inputs and output in the models for the training process, we standard-
ized them (see Sec. 5.3.1). An advantage of this is that the transformation takes care of the
units of the inputs.

Similar to [P:107], we get the training and validation set by the following procedure: For
each primary in the data, we draw random values in such a way that, in the end, they
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Figure 6.8: Impact of the cuts defined in Sec. 6.2.1 on the two-dimensional distributions of (μ
and (tot in logarithmic scale (top) and 5μ and A in linear scale (bottom). The plots on the left side
show the full QGSJ data set (see Table 6.2). The other exhibit the distributions after the cutting
process. In both cases the cuts reduce the complexity. The spread of (μ is greatly reduced. Since
(tot is the most person-correlated input parameter (see Fig. 6.1), we assume that this increases
the predictive powers of models. Moreover, the cuts break the degeneracy for low values of 5μ.
Only a localized distribution around 5μ ≈ 0.5 remains. Instead of the muon fraction defined
in Eq. (6.1) 5μ is here computed via counting of the photoelectrons in the PMTs. We use this
quantity because we believe that it is actually the right way to define the fraction. However, both
quantities differ only marginally. We do not expect any loss in generality by choosing either.
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Figure 6.9: Distribution of 5μ for the different primaries of the used data set before (left) and after
(right) applying the cuts. The y-axis shows some arbitrary density. The black line in the left
plot is from a Gaussian fit to the sum of all component distributions. The Gaussian is centered
around 0.472 and has a spread of 0.129.

Table 6.3: Number of samples in the different splits of the old NapLib data set divided into the
primaries used. The primaries are not equally distributed. This is due to the energy sampling
algorithm (see Sec. 6.2.1) and should not cause any loss in generality. The asymmetry in total
number of primaries is due to their different masses.

hadronic model primary fit validation test total

QGSJ p 18075 11925 32922 62922
QGSJ He 18102 11898 34911 64911
QGSJ O 17856 12144 37744 67744
QGSJ Fe 17967 12033 38705 68705

72000 48000 144282 264282

have a flat energy distribution{7} in the logarithmic energy interval [18.5, 20.0] (see Fig. 6.7).
Therefore, we undertrain our models slightly near to 18.5. Fortunately, this gives us the
advantage of being able to estimate errors due to irregularities in the training distributions.

We set the size of the TrDs #tr to 120 000. The TeDs consist of the remaining{8} data
samples #te. Like in [P:107], we use 72 000 data points for the training itself, leaving us with
48 000 data points for the VaDs corresponding to a validation fraction of 40%. To ensure that
this is sufficient for the models defined in Sec. 6.1, we train with different #tr and compare
the global results (see Fig. 6.2). We find that at a size of about 20 000 training samples,
this stability requirement is met and the result saturates. Therefore, we use in this section
a reduced training set size for further studies to reduce computational time. Later from
Sec. 6.2.3 on, we use the real training size of 120 000. In Table 6.3, the splits of the data set
are shown.

{7}We split the interval into different energy bins and just fill them (randomly).
{8}There are no intersections between test and trainings set.
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Figure 6.10: Development of the loss value during the training process for the training and
the two validation sets. We moved the validation datapoints of the validation sets one epoch,
because they are computed at the end of an epoch. For completeness, we added two pie charts
displaying the relative amount of data in each of our data sets. The red, green, and blue slice
correspond to the TrDs, VaDs, and TeDs, respectively. The number in the slices is the percentage
of the total data set. Since, we train on the QGSJ data set we do not have training data for the
EPOS data set. As mentioned in Sec. 6.2.2 the value of <2 is computed from the standardized
inputs. Therefore, there is a large difference to the values in Table 6.1. Since there are no extreme
changes or outliers, we expect that the training procedure is valid and the network has not been
overfitted.

6.2.2 Training procedure

Since in [P:107] there are no mentions of a special training procedures. Therefore, we keep
the process as simple as possible. The network is trained batch-wise (batch size #1 = 32) for
a maximum number of 100 epochs. We use MSE as the target loss function. Again, we use
the standardized values of (μ. Therefore, the values of <2 are slightly different from that
in Sec. 6.1.3. To prevent overfitting, we stop the training if one of two conditions are met:
First, when the loss computed on the VaDs does not decrease after 3 epochs. In this case, we
would overfit, finetuning the weights � of the network to the TrDs. Secondly, when the loss
computed on the training set does not decrease after 3 epochs. We see this as a cross-check
if something unexpected happens. Almost all training stops are due to the first condition.
In addition to a regular VaDs, we use a second VaDs from the old EPOS data set. Doing this
consistently yields a stable training process (see Fig. 6.10) in which the NN does not seem to
do something unexpected.

6.2.3 Verification of network

Most probably, even if our training set has a very similar structure to that described in [P:107],
we are not able to reproduce exactly the same results of [P:107]. We expect a landscape of
minima in the solution space. It is unlikely that we would land in the same one with a
different data set. Another complication is that we cannot make a one-to-one comparison
because the weights are not published. Nevertheless, it is sufficient to show comparable
results of averaged binned values which achieve similar performance. Moreover, in this way,
we see if the architecture works on other data sets.
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6.2 Extraction of total muon signal and comparison to baseline models

For the verification, we use the same two types of binned bias and relative error plots
utilized in [P:107]. Like there, we show them for A, ℰMC, sec�, and (tot for both the QGSJ
and EPOS test data set. The distributions of those quantities are shown in Fig. 6.11. Only
for sec� and (tot the shapes of the fit and test set are similar. For the other parameters, we
encounter deviating distributions due to the energy dependence of the number of triggered
stations at a certain distance. We want to use a uniform binning in logarithmic energy to
ensure that stations corresponding to low energies are still represented in our training data.
Furthermore, a perfect predictor should not strongly depend on the used input distribution.

In Figs. 6.12 to 6.15, the bias for each of the primaries in the data set is shown. One
difference compared to the original work is that we use Oxygen instead of Nitrogen. In all
cases, we see that the bias and relative error in the different particle types diverges in some
bins. Therefore, we have a certain degree of dependence on the mass in the network. We
find that the network predictions for heavier components correlate to higher bias values and
relative errors. Moreover, comparing Figs. 6.12 to 6.15 with Fig. 6.11 we see that in regions
with little training data the output of the NN becomes much worse. Especially, the (tot plot
in Fig. 6.15 displays this behavior well. Both QGSJ and EPOS do not show large deviations.
Although the network performs slightly worse on EPOS, we conclude that the NN approach
for local information is almost hadronic model independent. This is - most likely - due to
the heavy reliance on (directly){9} shower-independent quantities like (tot, which could also
be obtained from pure tank simulations.

Apart from some minor differences, we consistently obtain similar results to that described
in [P:107]. This verifies the used approach.

6.2.4 Comparison of reference models and neural network

We split the comparison study between the reference models defined in Sec. 6.1 and the
NN from Sec. 6.2.2 into two/three parts. First, we do a back-to-back comparison of binned
biases and relative errors like in Sec. 6.2.3. This gives us an overall feeling, if there are direct
differences. Secondly, we compare other important quantities like the resolution and the
spread in the bins. Finally, we investigate how the network probably works.

A Bias and relative error

In Sec. 6.2.3, we have seen that the predictions of the NN do only marginally depend on the
primary particle mass. Therefore, we do not split up our QGSJ and EPOS test sets for the
following analysis. As mentioned in Sec. 6.1, we compare the NN only to the expansion in
terms of (tot, the linear model, and the quadratic model. It is reasonable to use the same
approach as in Sec. 6.2.3. However, this time we check only the results of A, ℰmc, and (tot

(see Figs. 6.16 to 6.18). We moved the result of � into the appendix because it shows almost
no interesting behavior (see Fig. D.6). Moreover, we added a (μ plot in the appendix (see
Fig. D.7).

All bias and relative error plots show that in most cases, the (tot expansion and the linear
model give worse predictions than the quadratic model and the NN, which is expected. The
linear and quadratic models exhibit better performance in the bias plots. This is most likely
due to the fitting procedure and the additional information gained by the other parameters.
We see this in Fig. 6.18, where the missing “regularization” makes the prediction of (μ too
small This is not true for the NN. The predictions perform not as well because we project to the
solution space via an update of its weights. Again all models show similar performance on
QGSJ and EPOS. We find only in Fig. 6.17, a noticeable difference between the NN approach

{9}Indirectly, the distributions of these quantities depend on that of the showers.
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Figure 6.11: Distributions of fit and both test data sets for A, ℰmc, sec�, and (tot. Except in the
case of A at least one of the test sets’ distributions is similar to that of the fit distribution. The
reason for this is visible in the ℰmc distribution. We have an excess at higher energies which
correlates with more triggered stations farther away from the shower core.
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Figure 6.12: Bias (first, third) and relative error (second, fourth) of NN as a function of A. The upper
two panels and the lower two panels are the results for the hadronic interaction models QGSJ and
EPOS, respectively. With the exception of minor differences, such as the use of Oxygen instead
of Nitrogen, this is an attempt to replicate the plots shown in [P:107]. The network performs
similar. It shows almost no bias or relative error in the interval [1200 m, 2000 m]. Although, its
predictions appear slightly worse on EPOS, we see no great outliers or deviations. Comparing
the results of both hadronic models they even have a similar shape.
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Figure 6.13: Bias (first, third) and relative error (second, fourth) of NN as a function of ℰmc. The
upper two panels and the lower two panels are the results for the hadronic interaction models
QGSJ and EPOS, respectively. Again, the network performs similar to that in [P:107]. For both
hadronic models the bias is small over the entire energy range. The bad performance in the low
energy part of the relative error is most likely due to the slightly smaller amount of training
samples (see Fig. 6.11). Moreover, it could be a consequence of the increase of stations with
energy.
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Figure 6.14: Bias (first, third) and relative error (second, fourth) of NN as a function of sec�. The
upper two panels and the lower two panels are the results for the hadronic interaction models
QGSJ and EPOS, respectively. Again, the network performs similar to that in [P:107]. Overall
there are only small positive biases and centralized relative errors. Therefore, the predictions of
the neural network are, on average, almost independent of the chosen zenith angle. Some of the
larger deviations of the relative errors are potentially due to the � sampling (see Fig. 6.11).
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Figure 6.15: Bias (first, third) and relative error (second, fourth) of NN as a function of (tot. The
upper two panels and the lower two panels are the results for the hadronic interaction models
QGSJ and EPOS, respectively. Again, the network performs similar to that in [P:107]. To get a
better picture over the entire range of total signals we have plotted a slightly larger interval. At
very high signals ((tot > 150 VEM) the predictions become increasingly bad. This is most likely
due to the missing training samples in this region (see Fig. 6.11).
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and the reference models. There the relative error of the NN prediction is much better. This
is an indicator that the NN predicts small values of (μ better. The performance of the NN
for small values of (tot (see Fig. 6.18) substantiates this.

In conclusion, we find that there are no huge performance gaps between the models.
Nevertheless, it is hard to draw a valid conclusion only on basis of bias and relative error.
Even in bad models, both could have consistently small values if the output distribution is
chosen correctly.

To get a better feeling of the biases the model exhibit, we compare the average bias for the
both best performing models in bins of ℰmc and A (see Figs. 6.19 to 6.20). In both cases the
fringe regions exhibit almost random biases Δ(μ which are more prevalent at low distances.
Regularly, there the color scale is saturated. Near this region both models tend to under-
predict the muon signals. The bias of the NN prediction is overall positive which coincides
with Figs. 6.16 to 6.18.

B Variance and resolution

Alongside determining the accuracy of the prediction, it is also crucial to evaluate the
precision of the employed models. We analyze the precision in two ways. First, we compare
the standard deviation computed from the predictions of the different models in the same
manner as in Sec. 6.2.4.A. Even if the (μ distribution is very un-gaussian this gives us at least
a rough idea of the quality of the predictions. Secondly, we use Eq. (4.42). The basic idea is
to account for the strong variations in (μ inside the bins.

Like in Sec. 6.2.4.A, we only check A, ℰMC, and (tot. In Figs. 6.21 to 6.23, the square root of
the variance is shown for the NN and the reference models. This time we are able to sort them
in order of their overall performance. As expected, the (tot expansion and the linear model
are almost everywhere worse than the quadratic model and NN. It makes sense that the
number of model coefficients is somehow correlated to the model variance. Surprisingly, the
quadratic model is almost on top of the values given by the NN. The latter is only marginally
better overall.

Most of the statements are also applicable to Figs. 6.24 to 6.26. For the quadratic model
and the NN, the defined resolution lies roughly between 10% and 20%. It is noticeable that
- again - both approaches show a similar performance. As a consequence, we believe that
for very small and very high signals, the models have not only bad precision but also bad
accuracy. The increase in performance for the quadratic model and NN are mainly due to
better predictions in the intermediate range.

C Correlation of true values and prediction

In Secs. 6.2.4.A to 6.2.4.B, we have shown that in terms of bias, relative error, and resolution
the quadratic model and NN outperform the other two reference models. Therefore, from
this point on, these two models are not discussed anymore.

In Figs. 6.27 to 6.28, we show the correlation of the muon signal vs. its prediction in two
different styles (quadratic model, NN){10}. The left plots are regular, logarithmic histograms
showing us the general form of the distribution. In both cases, they follow the identity.
Thereby, the prediction of the NN appears coarser around the edges. This is most likely due
to the training procedure. On the right plots, we show a row-wise normalized version of the
distribution. For this, we divide each row by its maximum value. This shows us bias of the
predictions much better. In this way, we are able to substantiate the claims of Sec. 6.2.4.A
and Sec. 6.2.4.B. The predictions of the NN show problems in the low and high muon signal

{10}For completeness, we show the result of the linear model in Fig. D.8.
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Figure 6.16: Bias (first, third) and relative error (second, fourth) of NN as a function of A. The
upper two panels and the lower two panels are the results for the hadronic interaction models
QGSJ and EPOS, respectively. The performance of each model depends on the metric applied
which is nicely visible in the (tot expansion. Having a large bias compared to the linear model
it achieves better values for the relative errors. Both the NN and the quadratic model perform
well for both metrics.
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Figure 6.17: Bias (first, third) and relative error (second, fourth) of NN as a function of ℰmc. The
upper two panels and the lower two panels are the results for the hadronic interaction models
QGSJ and EPOS, respectively. In the bias plots only the (tot expansion shows a divergence from
zero for higher values of ℰmc. Here, the NN achieves a much better result than the linear and
quadratic model for the relative error. Again there are almost no differences between QGSJ and
EPOS.
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Figure 6.18: Bias (first, third) and relative error (second, fourth) of NN as a function of (tot. The
upper two panels and the lower two panels are the results for the hadronic interaction models
QGSJ and EPOS, respectively. Here, the (tot expansion fails for higher values of (tot. This is
because of the missing regularization. Its coefficients must be relatively small to prevent the
predictor from exploding for higher values of (tot.
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Figure 6.19: Average bias Δ(μ of quadratic model in bins of ℰmc and A. A yellow colored bin
indicates the absence of data in that particular bin. The central region of the distribution is - on
average - unbiased. Blue and red regions keep approximately in check. Only at the fringes (to
the non-data regions) we find distinct outliers, mostly towards smaller distances. The reason for
this is most likely that higher signals are expected there.
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Figure 6.20: Like Fig. 6.19 only for the NN. This time he central region exhibits a slight bias.
Therefore, the network tends to predict too small values of (μ.
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Figure 6.21: Precision of the predictions of reference models and the NN as a function of A for
the QGSJ (top) and EPOS (bottom) test sets. There are no distinct outliers except that for higher
distances the linear model seems to break down. Again, the quadratic model lies almost on
top of the data points of the NN. However, the latter one shows a smaller spread for higher
distances.
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Figure 6.22: Precision of the predictions of reference models and the NN as a function of ℰmc for
the QGSJ (top) and EPOS (bottom) test sets. In each energy bin the distribution of (μ is similar.
Raising the energy increases the probability to encounter a larger amount of higher (μ values.
Therefore, we assume that the (tot expansion and the linear model both are problematic when
trying to predict higher (μ values.
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Figure 6.23: Precision of the predictions of reference models and the NN as a function of (tot for
the QGSJ (top) and EPOS (bottom) test sets. The instabilities in the high-signal region are most
likely due to the scarcity of training samples. This is also the reason why all models behave
more or less the same. In general, the standard deviation increases with energy. This behavior
is almost linear for the quadratic model and the NN.
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Figure 6.24: Resolution (Eq. (4.42)) of reference models and NN in different bins of A for the
QGSJ (top) and EPOS (bottom) test sets. Since we weight each bin with the inverse mean signal
we find that both the (tot expansion and linear model both diverge for higher distances. Again,
this indicates that for small values these models just predict almost random values. Even in this
metric the resolution of the quadratic model almost coincides with that of the NN.
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Figure 6.25: Resolution (Eq. (4.42)) of reference models and NN in different bins of ℰmc for the
QGSJ (top) and EPOS (bottom) test sets. We believe that same points as written in Fig. 6.22 hold.
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Figure 6.26: Resolution (Eq. (4.42)) of reference models and NN in different bins of (tot for the
QGSJ (top) and EPOS (bottom) test sets. All the models seem to converge at this point.
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Figure 6.27: Histograms of (μ value vs. the prediction of the quadratic model in logarithmic
representation (left) and normalized to the maximum value of the row (right). In the density
plot it is visible that the predictions follow the identity axis except for very small values of (μ.
There the model breaks down. This is substantiated by the normalized plot. We see that most
low value predictions are wrong.

region. In the former, it is admittedly better than in the quadratic model. However, for higher
muon signals the prediction of NN seems to break down. The network cannot predict too
high values.

6.2.5 Estimating the muon fraction

The muon fraction 5μ and the muon signal are closely related quantities. Since 5μ lies on the
unit interval, it is reasonable to check how the predictions of (μ match with the real values
of 5μ. In 5μ space, we are able to see deviations from its localized behavior (see Fig. 6.9).

First of all, we compare the distribution of 5μ on the EPOS based data set if compared to
the transformed output of the quadratic model and the NN (see Fig. 6.29). Unfortunately, the
distributions do not match. The outputs of the models are more similar to each other than
to the underlying data. Their predictions pile up at the region around its peak. Also, the
asymmetry between values above 0.6 and below 0.4 increases noticeably. There are almost
no predictions below 0.3 anymore. Since the distributions change in favor of a more peaked
one, we believe that the models have an ‘average-towards-the-mean’ problem. They try to
compensate by predicting values near the mean value. This is enhanced by the not-matching
training and test distributions. To test this, we combine Fig. 6.20 and Fig. 6.29 in Fig. 6.30.
For different cuts in 5μ we see that the overall averaged bias gets worse. That is, the higher
we cut, the higher the bias becomes. We conclude that this statement is also true for the
quadratic model because both behave very similarly through all of the tests.
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Figure 6.28: Histograms of (μ value vs. the prediction of the NN in logarithmic representation
(left) and normalized to the maximum value of the row (right). In contrast to Fig. 6.27, we find
artifacts around the border region of the region around the identity axis. Comparing the right
plot to the right plot of Fig. 6.27 we find that the NN has slightly better prediction for very low
muonic signals. However, the NN seems to have a soft maximum for the muon signal prediction.
and appears to be unstable in the central region.
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Figure 6.29: Distribution of muon signal fractions in the test data set based simulated from the
hadronic interaction model EPOS (see Eq. (6.1)), the predictions of the quadratic model, and the
NN predictions. The distributions do not match. For both models the predictions accumulate
around the peak of the test data set. Despite much better than a mean prediction (see Table 6.1)
this indicates that the models at least orientate themselves towards this mean prediction. Values
at the edges of the distribution are not likely to be predicted. In this picture, they are in a state
of averaging towards the mean.
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Figure 6.30: Effect of cuts in 5μ distribution on the average bias Δ(μ of the NN in ℰmc − A bins.
The higher the 5μ cut is the more reddish the plots become overall. Moreover, the left border
region starts noticeably to saturate. This indicates that the NN predicts too low values for higher
muon contents supporting the claim made in Fig. 6.29. Seemingly, the NN is biased towards the
mean value. We believe that this is also true for the quadratic model.
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6.3 Extraction of muon time signal

In the previous section, we used only scalar inputs of the WCDs. It remains a valid question
whether we can improve the prediction of the muonic signal (μ by introducing trimmed
traces to our problem or additional parameters derived from them. The time structure of the
traces contains information that has not been captured by our choice of parameters. Some
of this information could be highly correlated to (μ. We use NNs to check this hypothesis.

Moreover, we also check the effect of adding SSD trace information to the mix of input
parameters. Therefore, we switch from the old NapLib data set to the new UUB one defined
in Sec. 5.1.1. We also use new cuts that are in line with that in [A:23] and in [P:101]. To
simplify the analysis and the comparison to additional SSD signals, we only take a subset of
the whole data set into account. We restrict ourselves to proton primaries in the logarithmic
energy range of [19.0, 19.5] and take only stations into account for which both{11} the WCD
and SSD have triggered. In addition, we do not do any resampling of our distributions. We
have summarized this data set in Row 5.4.c.

For trace-based predictions, the target is slightly different. Since we use trimmed traces, a
part of the time signal might not be inside our Region Of Interest (ROI). Hence, we define

(tr
μ = 2

1s+!t∑
1=1s

(μ(1)/0p , (6.4)

where !t is the size of the trimmed trace, 0p is the area over peak, and 2 is a conversion factor.

We set the !t for this analysis to 200 UB bins and use the 0p value directly from Offline. The
conversion factor accounts for the difference in baseline fluctuations and the reduced trace
length. We fix it by demanding

〈(tr
μ 〉

!
= 〈 5μ(tot〉, (6.5)

where (tot is the total signal taken from Offline and 5μ is the muon fraction computed from
the photo-electrons (see Eq. (5.18)).

We further simplify this analysis by converting our UUB traces to UB equivalent ones
by averaging over three consecutive bins. This procedure is not entirely correct due to a
timing miss-match (25 ns to 8.3 ns) and the negligence of the new response of the electronics.
However, we show in Sec. 7.4 that the UB-equivalent traces behave in an event-based analysis
very similar to regular traces taken from UB simulations. By downsampling the traces, we
ensure that any effect or change is due to the addition of the SSD information and, at the
same time, that the method is comparable to the preceding analysis.

6.3.1 Using only WCD signals

This part is mainly a crosscheck of the results in [A:12], [A:23], and (by extension) in [P:101].
In [P:101], the test and validation sets have been drawn randomly from the ground data set in
such a way that the events follow a uniform distribution in lg(�/eV) and sec�. This yielded
slightly different results due to the difference between the underlying data sets if this is not
done (see Fig. 6.31). Nevertheless, the training data set has approximately the same form
as the raw distributions. Therefore, it is sufficient to test our results on a non-sampled data
set since the training process is untouched. We expect similar results to [A:12, A:23] and
show that re-weighting in sec� yields similar results to [P:101]. As base architecture, we use
the one found in [A:12] and in [P:101]. We believe that the more complicated architecture

{11}Since the SSD triggers only if the WCD has triggered, it is sufficient to check only the SSD signal.
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Figure 6.31: Distribution of logarithmic energy lg(�/eV) and the zenith angle � in terms of sec
for the data set defined in Row 5.4.c. Since the shower events in the underlying data set are
distributed uniformly in lg(�/eV) and sin2 �, we obtain non-uniform distributions for the station-
level events. In contrast to [P:101], our data set is slightly leaning towards higher logarithmic
energies and lower zenith values.

of [A:23] did not show better results since it has been reverted to the previous{12} architecture
in [P:101].

Comparing the results to those presented in [P:101, A:12, A:23], we find reasonable agree-
ment (see Fig. 6.32), taking �Δ(μ as a comparison metric. The deviation in the energy range
is equivalent to that shown in [A:23] for the chosen bin in shower plane distance A and sec�.
Moreover, the performance of the predictions of the NN is very similar to that in [P:101]
(see Fig. 6.32). Comparing both plots, the predictions of the NNs show better results for
lower energies and higher values of sec�. This explains the difference of the here-presented
results to the results in [P:101]. It arises from differently weighted parts in the phase space
(see Fig. 6.31).

In Eq. (6.4), we see that (t
μ does not necessarily correspond to the actual muonic signal

(r
μ. Since we sum over 200 UB-equivalent bins (see Sec. 6.3) of the ideal muon trace (μ(C)

provided by Offline, we do not account for differences in baseline fluctuations or larger
effective trace lengths. There is no easy way to fix the simulation result of the muon traces
for our data set. Therefore, we recheck the performance of the NN on the muon signal
obtained via the muon fraction 5μ (see Eq. (5.18)). The 5μ from the PMT photoelectrons is, in
this case, a more robust estimate for 5 r

μ .
Again, we compare the results of the NN to that of a simple alternative model. Due to

the restrictive nature of our data set, we use only the best performing inputs identified in
Sec. 6.1.4. Therefore, we end up with the total signal (tot, the zenith �, the shower plane
distance A, the risetime C1/2 and the falltime Cf. This time the only special input preparation
lies in using the sec�. Due to the increase in complexity of the NN compared to that in
Sec. 6.2, we use a slightly more complex reference model. Instead of going to the second
degree, we use the third when generating the polynomial features. We end up with 35
features{13} and call this the Third-polynomnial upscaled reference model (P3). The model
is fitted using (μ as a target. Due to its simplicity, there can be negative predictions of (μ.
We zero these negative muon signals before further comparisons.

In Fig. 6.33, we show the direct comparison between both models and the effect of using
(t
μ and (μ as targets. As expected, using (Cμ yields a superior result for the NN. However,

{12}It has been first shown in [A:12].
{13}If we have a degree of = and < inputs, the number of unique features is:

(=+<−1
=

)
.
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6.3 Extraction of muon time signal
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Figure 6.32: Precision �Δ(μ of the predictions of the network based on the architecture in [P:101]
binned in logarithmic energy lg(�/eV) (left) and the zenith angle � in terms of sec (right). For the
left panel, we have used the same bins as in [A:23] to allow for a better comparison. We added
small numbers to the plot to show the number of station-level events in each energy bin. The
vertical dashed line in the right panel marks the zenith angle below the SD is fully efficient. The
horizontal dashed lines mark the precisions of 1.4 VEM and 2.4 VEM. The network predictions
become slightly worse for higher energies and better for lower values of sec�.

this advantage vanishes when we go over to the better estimator (μ. As expected, the
network does not lose much of its predictive power if (μ is used as a comparison value (see
Sec. 5.4.3.A). This is most likely because the network performs better for low values of (μ and
(t
μ is slightly larger than (μ (see Fig. 6.33). We find in both cases comparable results. On (μ,

the advantage of the network is only barely visible. Due to its – most likely – more precise
estimation of the real muonic signal (r

μ, we use (μ in the following as the target.
Still, using different metrics (see Fig. 6.34), we find that there are definitive differences

between both models. As expected, the NN focuses on regions of the phase space that
exhibit smaller signals. Below 18 VEM and at higher distances, the network performs much
better than P3. The distributions at the bottom of the graphs are also the regions in which
most of our events lie. We believe that by choosing a more sophisticated training procedure
and more data at higher muon signals (μ, we could surpass P3 in all regions. Still, it is not a
huge leap from P3 to the results in NN if we take only larger muon signals into account.

6.3.2 Adding SSD information

The easiest way to extend the NN model is to provide the network with SSD information by
adding it as a second channel to the RNN input of the base network (see Fig. 4.5). We use
the same extraction and preparation procedure for the SSD traces as for the WCD traces: we
trim to 600 bins (from the start bin) and take the mean of three consecutive bins.

In Fig. 6.35, the comparison of the WCD-based NN and the NN where we added SSD
information is depicted. To ensure that we work in a suitable phase space for the SSD,
we use only events that come from events below a zenith angle of 45°. Unfortunately, this
straightforward way of introducing the SSD into the setup does not achieve any meaningful
benefits. This result could have many reasons: First and foremost, the simple setup lets the
network itself deal with the difference between VEM and MIP. This could yield a scaling
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Figure 6.33: Left: Precision �Δ(μ of the predictions of the NN (pluses) and P3 (crosses) using
the muonic signal computed from the trimmed traces (t

μ (black, see Eq. (6.4)) and muon signal
computed from photo electrons (μ (red, see Sec. 5.4.3.A) as targets. For the sake of visibility, we
shifted the binned values by 0.015 and 0.015 from the bin center for the different targets. Since
we fit P3 on (μ its predictions are less precise on (tr

μ . For (μ, which we believe to be the superior
measure for the real muon signal, both models show very similar results. Right: Comparison
between (tr

μ and (μ. The dashed line is the identity line. The result is comparable to Fig. 5.13.
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Figure 6.34: Resolution of the predictions of NN (black) and P3 (red) evaluated on �Δ(μ/
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a function of the shower plane distance A (left) and the muonic signal (μ (right). The bars at the
bottom of both plots indicate the distribution of data. Their height is normalized to the highest
bin and scaled to the 10% mark. The NN clearly outperforms P3 for high shower plane distances
and low muon signals. This is also the region in which most of our data resides.
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6.4 Extracting number of muons from UMD traces
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Figure 6.35: Resolution of the predictions of WCD- and WCD+SSD-based NN as a function of
the shower plane distance A (left) and the muonic signal (μ (right). We compute the bars like in
Fig. 6.34. We use only events below 45° to test in the phase space in which the SSD works better.
The performance of both networks is essentially the same. There is virtually no improvement of
the NN using additionally the SSD over the NN from Sec. 6.3.1.

problem. Furthermore, the architecture might be unsuitable for such kind of analysis. In
the worst-case scenario the SSD trace carries no essential information in most of our chosen
phase space and acts as additional noise in the training process.

To exclude the last hypothesis, we retrain a network and add an SSD parameter to the
additional parameters. If the flux that goes through both detectors is homogeneous enough,
we expect that their signals are (in some way) connected (see Sec. 3.2.4). We also expect that
the response of both detector systems to the flux should be different. Consequentially, it
makes sense to construct a feature that relates the total signal in both detectors. Since the
SSD triggers only if the WCD triggers, it seems to be a good idea to use the signal fraction

5( =
(SSD

tot

(WCD
tot

(6.6)

as an additional feature [A:24]. In Universality, this already yielded a more unbiased result
in the event-level analysis [A:25]. Indeed, adding this new feature to the mix improves the
NN prediction considerably (see Fig. 6.36). Nearly all bins show a superior result. This
indicates that SSD information potentially improves the predictions of such networks.

To conclude this section, we want to compare this new network with another simple model.
As a baseline model, we use that of the last section and add the integrated signal of the SSD
to the inputs giving us 56 unique features. In Fig. 6.37, we find a similar result to that in
Fig. 6.34. The network clearly outperforms the alternative model for low (μ. However, for
higher values of (μ, the network falls off.

6.4 Extracting number of muons from UMD traces

One of the only direct ways{14} to measure the local muon content of a hadronic shower lies
in evaluating the UMD detector responses. Since they are positioned underground, only

{14}Highly inclined shower contain due to the attenuation mainly muons.
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Figure 6.36: Resolution of the predictions of WCD- and WCD+SSD- (together with the 5( from
Eq. (6.6)) based NN as a function of the shower plane distance A (left) and the muonic signal
(μ (right). We compute the bars like in Fig. 6.34. We use only events below 45° to test in the
phase space in which the SSD works better. This time the performance of both network using
the additional SSD information is slightly better.
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Figure 6.37: Resolution of the predictions of P3 and NN-based model as a function of the shower
plane distance A (left) and the muonic signal (μ (right) with added SSD features. We compute
the bars like in Fig. 6.34. We use only events below 45° to test in the phase space in which the
SSD works better. Again, we find that the NN clearly outperforms P3 for low (μ. The result is
very similar to that in Fig. 6.34.
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6.4 Extracting number of muons from UMD traces

muons above an energy threshold of about 1 GeV can reach the detector. Like in the WCD,
single muons leave behind sharp peaks in the Silicon photomultipliers (SiPMs) of the UMD.
This behavior can be used to count the number of muons traversing the detector during a
shower event. Using a threshold, the regular Field Programmable Gate Array (FPGA) traces
are converted into binary traces. These can be combed by a counting algorithm that searches
for specific patterns which a muon would leave behind. Hence, this algorithm is called the
muon counter{15} [A:27].

The UMD stations are scintillator detectors with 64 scintillator bars that can trigger in-
dependently of each other. The detector is rectangular, covering an area of 10 m2. These
bars are arranged in two sets of 32 bars of 4 m in length aligned to the long side that lie
on opposite sites of the detector [A:27]. For inclined showers that are not parallel to the
bars, muons may traverse multiple neighboring bars, resulting in overcounting. We call this
process corner clipping. To obtain an unbiased estimate of the number of traversed muons,
we have to correct for corner clipping in the counting strategy which is called the corner
clipping correction. A common approach is here to compare the timing of the signals of
neighboring bars. If two of them have been triggered at the same time, there is a chance that
this was done by one muon.

The base muon counter relies on pattern matching that only accounts for one bar. With the
help of NN, we can check if (directly) correlating neighboring bar information is beneficial
for this counting process. For this, we have to use a different network design to that of the
networks used for analyzing WCD and SSD traces in the previous sections (see Fig. 6.38).
We have to extend the network to correlate information of time bins of neighboring bars. It
can be split into two sub-networks; one solely to extract information and a second one to use
the newly gained information for inference. We use a setup based on convolutional layers
for the first part. In the second part, we introduce important information to the NN, such as
the zenith angle. Since, we have two groups of 32 bars we can use the same sub-network to
extract information from both bars and then average over their outputs.

The data used in this section has been kindly provided by Joaquín De Jesús [A:28]. In the
data set, a majority of the events do not contain muons. We use only detector responses
that correspond to non-zero muons. Including them would overweight the non-muon case
too much, making it much harder to get a valid training process. In Fig. 6.39, we show the
distribution in our training data set. The highest weight lies in single muon signals.

The precision �Δ#μ/#μ
of the relative muon content outperforms that of the corrected muon

counter for a wide range of muon numbers (see Fig. 6.40). Unfortunately, the network does
not handle small numbers of muons very well. Even though the precision is still better, we
obtain a strong bias for the first bin. In Fig. 6.41, the same behavior is also seen in the bins
over the distance to the shower axes. In Fig. 6.39, we find that the negative bias is most likely
due to the low-muon cases in these regions.

Hence, the relative bias in both examples is consistent with a small negative value. The
NN slightly over-predicts the number of muons (see Fig. 6.41). We find that an NN-based
approach for counting the number of muons is at least equivalent to the regular correction for
a larger number of muons. Consequentially, the network must have picked up on the corner
clipping. This could yield insights into advanced algorithms for this kind of correction. Still,
the performance of the network at low muon numbers is sub-par. However, this could most
likely be fixed using a more appropriate loss and a better network design. Right now, it is
more of a brute force approach designed to check the feasibility. Nevertheless, to ensure that
all this is a valid statement we require much more simulations in a wider phase space!

{15}There is also a method based on integration of the ADC signal [A:26]. However, we do not focus on it.
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Figure 6.38: Illustration of NN architecture used for the feasibility study in Sec. 6.4. For readibility
we have omitted the activation functions. Left: Sub-network architecture for the extraction of
features from binary signals of the two groups G1 and G2 of bars in the UMD detector. The
dimension and number of filters of each of the 2D convolution layers is indicated after the
colon. The first two number represent the spatial and time dimension, respectively, and the
last is the number of filters. In each convolution filter we use strides which are given in the
parentheses. The numbers in the pooling layers signify the pooling sizes. The same weights are
used for both groups. After the last layer both outputs are summed up giving us the extracted
features �. Right: Subnetwork architecture used to predict the number of muons #� from the
features extracted from the binary traces and the additional parameters defined in Sec. 6.4. The
number of nodes in each dense layer is indicated by the number in the boxes. The ⊕ denotes a
concatenation of the flattened � and the output of the dense layer.
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0 500 1000 1500

r/m

0

100

200

300

400
#

0 2 4 6

ln Nµ

0

500

1000

1500

2000

2500

3000

3500

#

Nµ � 1

all

Figure 6.39: Distribution of the data set used in Sec. 6.4 in bins of the shower-plane distance A
(left) and logarithmic muon number ln#μ (right). The red filled areas corresponds to the single
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Figure 6.40: Precision of relative error (top) and mean relative error (bottom) in bins of ln#μ. We
cut the test data set to include only values below a shower distance of 1500 m. Overall the NN
based approach performs slightly better in terms of precision than the regular muon counter
and lies on par with the corrected version. Only in the first bin dominated by single muon
events we find a strong negative bias.
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Figure 6.41: Precision of relative error (top) and mean relative error (bottom) in bins of A. As in
Fig. 6.40 the network seems to produce very precise results. The far worse bias is an effect of the
over-estimation of low muon numbers.
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7 Extraction of Global Shower Properties from
Simulated Shower Footprints

If we knew what it was we were doing, it would
not be called research, would it?

(Albert Einstein)

A van [G]ogh painting of an astroparticle physicist
working on his computer to unravel the mysteries of
the [U]niverse.

DALL·E 2 prompt:

Shower footprints measured by the SD grid provide a rich set of complex data in the form of
time signal traces. These time traces might contain hidden correlations which have not yet
been discovered and exploited by regular analytic approaches. In this chapter, we perform
a data-driven analysis of the shower footprints of air shower events using NNs.

Our main objective is to reconstruct various high-level observables that are related to the
primary particle mass, such as the depth of the shower maximum -max, directly from the
shower footprint using only the time traces from triggered stations of the SD and shower
observables reconstructed by the standard algorithms of the Offline framework. MC input
values are only used for cross-checks. The architecture of the NNs used in the analysis is
based on AixNet and optimized during an exhaustive study of its hyperparameters to fit the
shower footprint standardization approach discussed in Sec. 5.3.3.

We investigate the capability of NN-based approaches to reconstruct the zenith angle�, the
energy of the primary particle �, the depth of the shower maximum -max, the relative muon
content 'μ, and the logarithmic mass number ln�. In all cases, similar base architectures
are used. The study of the reconstruction of the zenith angle and primary particle energy is
seen as cross-checks. To reconstruct the other observables, the NN based on the architecture
need to be able to extract information about both observables since they are directly related
to the signal distribution in the shower footprint.

We start the analysis in Sec. 7.1 by an exploration of the hyperparameter space of a NN
architecture based on the architecture of AixNet. From this study, we obtain optimized
versions of the base architecture and an improved training procedure which is used in the
subsequent sections. We continue in Sec. 7.2 by confirming that the changes in the NN-setup
have improved the quality of predictions on the targets defined above. In the course of this,
we select the NNs best suited to be used on measurements. Afterward, in Sec. 7.3, we develop
uncertainty estimates for the predictions of NNs based on the employed architecture and
define systematic errors due to the unknown hadronic interactions at the highest energies
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7 Global Shower Properties from Simulation Data

and the unknown composition of CRs. In Sec. 7.4, we complete the simulation study on the
SSD detector with an event-level analysis. Adding it to the NN setup as an additional input,
we study the improvement compared to NNs trained without the additional information. As
in Sec. 6.4, we conclude this chapter with another feasibility study. In Sec. 7.5, we analyze in
which way we are able to separate hadron-induced air showers from purely electromagnetic
air showers, which have been induced by high-energy photons using the networks defined
in the preceding sections.

7.1 Effect of the variation of hyperparameters on neural network predictions

There is no straightforward recipe or algorithm to find a suitable NN architecture for a
given problem. We need to train multiple NNs and evaluate their predictions to evaluate an
architecture. Since the training process for each NN takes a long time, it complicates grid
searches or minimization procedures, making standard approaches unfeasible. Therefore,
we use the following procedure to search for an architecture and training setup that produce
‘well-performing’ NNs. After defining a base architecture, we investigate how the change
of a single hyperparameter Υ9

{1} impacts the predictions of a NN trained with the changed
hyperparameter. For each value chosen for the hyperparameter Υ9 , we study ensembles
of #ens NN models and compare their predictions to ensembles of models trained with
a different value of the hyperparameter. To evaluate the goodness of the predictions, we
estimate the precision and accuracy of the predictions of each NN in the sets, using the
standard deviation (see Eq. (4.38)) and the proton-iron bias (see Eq. (4.39)) of the differences
between the target value and the prediction. In the end, we take the best-performing set of
Υ, assuming that all of the network tests “factorize”.

To reduce the training and inference time, we use, if not otherwise stated, the data set
defined in Row 5.5.a for training and subsequent tests. Therefore, we evaluate each NN
on the same validation and test set. The shorter training time enables us to train a large
number of networks. All NNs in the subsequent tests are trained to predict the depth of the
shower maximum -max which is the only mass-separating observable of an air shower that
is directly measurable. Hence, the predictions can be cross-tested using the measurements
of the FD detector. We do not perform all of these tests on the other targets. We assume that
all the dependencies we find in this section are also valid for other targets. This assumption
holds for primary energy, [A:29].

7.1.1 Baseline architecture for event-level prediction

We encode the shower footprint data in a grid of size "B ×"B , as discussed in Sec. 5.3.2, and
use a trace length of !C bins. For the baseline architecture, we choose "B = 5 and !C = 120.
If not mentioned otherwise, we use ReLU activation functions (see Sec. 4.2.2.A).

The network architecture used in this work is heavily inspired by the AixNet architecture.
We split the baseline architecture into three sub-networks using the same naming convention
as in Sec. 4.3.2.A: a Trace Feature Extractor (TFE), a Spatial Correlation Analyzer (SCA), and
a Feed-Forward Predictor (FFP). We denote them as Aℛi, Aℛii, and Aℛii, respectively.

The primary task of Aℛi is to extract = 5 features from each of the traces in the encoded
shower footprint. To treat every trace the same, we use a weight-sharing technique. For
each trace, the same sub-network is used for the feature extraction. This procedure ensures
that the extracted features are consistent. We will analyze two fundamentally different Aℛi.
First, a CNN-based sub-network (see Fig. 7.1) and a RNN-based sub-network (see Fig. 7.2).
The CNN-based sub-network works only for traces of 120 bins due to the special choice of

{1}Note that we count data preparation of our inputs as one of hyperparameter.
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Figure 7.1: Illustration of the architecture of the CNN-based sub-network used for Aℛi. The
network uses the same weights and layers for each trace. In total there are three convolution
layers which gradually reduce the size of the time dimension to one. The = × < show the
convolution filter size = (in the time dimension) and number of used filters < used in each
layer. The number above the vertical arrow indicates the used stride and the small number
right of the up-down array denotes the current size of the time dimension. We use the values
in the channel dimension after the last convolution as new features and remove the remaining
singleton dimension of the time dimension.
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Figure 7.2: Illustration of the architecture of the RNN-based sub-network used for Aℛi. The
network uses the same weights and layers for each trace. In total there are two LSTM layers.
The number behind the colon indicates the number of units. The first LSTM is a bidirectional
LSTM (see Sec. 4.2.3.D) which is indicated by the arrows. It returns the entire sequence for both
directions. Hence, for any trace size !C we obtain an output of the form !C×60. The second LSTM
layer uses this as input. It returns only the last element of the sequence. Therefore, the output
has the size 1 × = 5 . After dropping the singleton dimension, we use the channel dimensions as
features.

hyperparameters that reduce the 120 bins in the time dimension in three steps to 1. On
the other hand, the RNN-based sub-network works for any trace length due to its recurrent
architecture. Note that a RNN-based Aℛi significantly increases the training and inference
time due to the inferior potential for parallelization. Due to historical reasons, we have chosen
two different values for the number of features = 5 extracted by both sub-network types. The
CNN-based and RNN-based sub-network extract 10 and 16 features, respectively. These
features are saved in the channel dimension of the two-dimensional footprint.

The output of Aℛi is concatenated along the channel dimension to the memory map of
the =0 station- and event-level observables (see Fig. 4.6). Station-level features are encoded
in the same manner as the time traces (see Sec. 5.3.2). In the baseline network, we use only
the encoded trigger times (see Sec. 5.3.1.A) and a boolean mask that evaluates only to one at
the position of triggered stations. Since event-level features, like the zenith angle, are scalar
values, we encode them by setting each value in the rectangular encoding space to the value
of the event-level feature. Before this mix of trace-based and additional features is used as
input for the second part of the network, we apply an element-wise mask to it. We zero
the value at all positions in the encoding that do not correspond to a triggered station. The
architecture Aℛii is based on dense convolutions (see Sec. 4.2.3.C). In each step, we use a
two-dimensional convolution with =B filters of a filter size 3 × 3. We stack =3 of these dense
convolutions increasing the channel dimension after each step by a factor of two. As final
layer of the sub-network, we use a final two-dimensional convolution with =G filters of the
filter size 3 × 3. The architecture of the spatial analyzer is depicted in Fig. 7.3.

We keep the architecture Aℛiii of the prediction unit as simple as possible. In each
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Figure 7.3: Illustration of the architecture of the SCA. The sub-network is comprised of multiple
two-dimensional convolution layers. In contrast to Fig. 7.1, the filters have a spatial extend.
They relate the different bins in the memory map (see Fig. 5.5). No strides are used in the
convolution layers. For each convolution the padding is set to same to prevent the memory size
from shrinking. The network uses a form of skipping connections. In each sub-layer the original
input is concatenated to the output of the convolutional layer that uses the same number of
filters as the time bins doubling them for each subsequent layer. This process is repeated until
the output size is =G . After another convolutional layer we end up with a output array of the
size "B ×"B × G (see Eq. (5.6)).

network, we predict only a single target value. Hence, we flatten the output of Aℛii, apply
a dropout layer with a dropout fraction of 3 5 , and use the output of the dropout layer as the
input for a final dense layer with one node.

We set up the basic training process as follows: We train on the advanced loss function
defined in Eq. (4.17). We use batches of #1 events in each training step and train for a
maximum of 100 epochs. After each epoch, the TF framework evaluates the loss on the
validation set. If the validation loss does not improve for 4 sequential epochs, the training
rate is automatically reduced by a factor of 0.8. Moreover, if it does not improve for 7
sequential epochs, the training process stops. This setup ensures that most NNs end the
training process well below the 100 maximum epochs. We use the optimizer Adam with an
initial learning rate  of 0.0022.

In Appendix A.6, we have summarized the base value of all hyperparameters that we vary
in this section. Only if mentioned otherwise do we deviate from these baseline values.

7.1.2 Shower footprint standardization

In this section, we show that the footprint standardization procedure discussed in Sec. 5.3.3
improves the predictions of NNs. We do this by training 50 NNs on a non-standardized
data set and 50 NNs on a standardized data set. For a direct comparison, we have selected
the two networks of both ensembles that exhibit a minimal standard deviation of Δ-max in
the logarithmic energy range [18.5, 20.2]. In Fig. 7.4, we compare the precision of the two
networks binned in logarithmic energy. In each energy bin, the precision of the NN trained
on standardized footprints exceeds the precision of the NN trained on non-standardized
footprints. The difference between both NNs is especially large for high energy values
reaching consistently an improvement of over 10%. The dotted line in Fig. 7.4 shows the
weighted average of the width of the underlying distribution of primaries. Since the values
of the precision of both NN are for energy values above 1018.5 eV well below this line the
networks perform much better than an average predictor on the data set.

The improvement between both sets of NNs becomes even clearer if we compare the
precision of all NNs in both sets (see Fig. 7.5). The distribution of precision in each energy
bin is due to the non-determinism of the training process. From every single training,
we obtain slightly different weights, even if we chose the same architecture, training set,
and start parameters (see Sec. 7.3.2). The distributions of the precision in each energy bin
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Figure 7.4: Precision of Δ-max for two networks trained on non-standardized (points) and
standardized shower footprints (crosses) in bins of the logarithmic energy. We have standardized
the footprint according to the procedure discussed in Sec. 5.3.3. Both NN models have been
selected from two sets of 50 models. We chose the NN with the best precision in the logarithmic
energy interval [18.5, 20.2]. To ensure that the predictions of both NNs are better than that of
an average predictor, we have added �QGSJ (dashed line) and the weighted � (dotted line) of the
underlying primaries (see Appendix A.5). The black numbers in the bottom of the plot show
the relative improvement of the value in the bin.

are shifted downwards, exhibiting on average better precision for the NNs trained on the
standardized shower footprints. Therefore, without the requirement of additional resources,
the predictions of the NN are likely to improve using the standardization procedure. We
gain an average shift of about 2 g/cm2 over the entire energy range.

Because of the improvement, we use the standardized footprints for the following tests.
Note that without training multiple NNs it is impossible to evaluate if a ‘well-performing’
network has been found.

7.1.3 Effect of varying the NN architecture

For the base architecture, we use very similar hyperparameter values than that of an earlier
version of AixNet (see Appendix A.6). Therefore, we vary the hyperparameter values related
to the architecture in this section to check if the novel standardization technique favors a
certain architectural design.

In addition, to the architecture tests presented in this section, we added more studies in
Appendix B.3. This are concerned with the values of the = 5 , =3, and =B parameter of Aℛi

and Aℛii.

A Influence of the architecture of the trace analyzer

The Aℛi part of the architecture described in Sec. 7.1.1 “extracts” relevant information from
the traces. There are two very common strategies analyzing time-correlated data: CNN (see
Sec. 4.2.3.B) and RNN (see Sec. 4.2.3.D). Hence, we directly compare both sub-networks to
each other using the same approach as shown in Sec. 7.1.2.

Since we already have 50 NNs from the study of the shower footprint standardization (see
Sec. 7.1.2), we train 50 additional NNs using the RNN-based sub-network defined in Fig. 7.2
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Figure 7.5: Distribution of precision of Δ-max for the two sets of NNs trained on non-
standardized (red) and standardized (blue) shower footprints (see Sec. 5.3.3). In both sets
are 50 unique NNs. The black line connects the average precision of both classes in each energy
bin, and its length is quantified by the number next to it.

as trace analyzer. Selecting the NN with the best precision the logarithmic energy interval
[18.5, 20.2] from the set of RNN-based NNs, we can directly compare the NN to that found
in Sec. 7.1.2. The predictions of the RNN-based NN outperform that of the CNN-based NN.
At energy values above 1019 eV the RNN-based NN exhibits an improvement of the precision
of over 5% (see Fig. 7.6). However, the gain from using an entirely different sub-network is
smaller than that from the standardization.

Similarly to Sec. 7.1.2, this improvement is also visible in the distributions of the precision
of both sets of NNs (see Fig. 7.7). The distributions is shifted towards higher precisions for
the RNN-based NNs compared to the CNN-based ones. We obtain an average improvement
of around 1 g/cm2 in each energy bin. However, even thought we have changed a major part
of the baseline architecture the improvement is comparable small. The distributions of the
precision overlap quite strongly which highlight the importance of the training of an ensem-
ble of NNs. Using only on NN for each architecture, we could easily miss the improvement
due to the change in architecture. Moreover, since the improvement is comparably small and
we have to compare multiple hyperparameter values, we switch to a relative comparison in
the following tests.

Even though, the RNN performs slightly better, there is one caveat we have to account for.
On average, one of the machines defined in Appendix C.1 spends (4024.6±158.1) s for one
network which uses a RNN-based TFE. This is more than 7 times longer than the average
training time of the CNN-based sub-network which takes about (541.4±17.7) s. Therefore, we
use CNN-based sub-networks if not mentioned otherwise, assuming that the improvements
found for one type of TFE hold for the other one. We denote the choice of Aℛi by adding
either CNN or RNN to the following plots.

B Using SmeLu activation function in spatial analyzer

In Sec. 4.2.2.A, we have presented an alternative activation function that is claimed to im-
prove the reproducibility of NN-based approaches. Here, we test if this holds for our NN
architecture. We replace the ReLU activation functions in Aℛii with SMELU activation func-
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Figure 7.6: Precision ofΔ-max for two networks trained with a TFE based on a CNN sub-network
(points) and an RNN sub-network (crosses) in bins of the logarithmic energy. Both NN models
have been selected from two sets of 50 models by choosing the NN with the best precision in the
logarithmic energy interval [18.5, 20.2]. The dashed and dotted lines are the same as discussed
in Fig. 7.4. The black numbers in the bottom of the plot show the relative improvement of the
value in the bin.
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Figure 7.8: Ensembles of the precision �Δ-max for NNs trained with different values of �SmeLu
normalized to the average precision of the ensemble using �SmeLu = 0 which is equivalent to
a regular ReLU activation function. We depict the precision in the two integral energy bins of
events with an energy above 1019.5 eV (blue) and 1019.0 eV (red).

tions investigating the effect of choosing different � parameters. Note that by construction
(see Appendix A.4), the SMELU transforms into a ReLU for � → 0.

If the SMELU improves the reproducibility, it should reduce the spread of the distribution
of the precision or the proton-iron biases of the predictions of the ensembles of NNs. We
cannot detect such a reduction (see Fig. 7.8 and Fig. 7.9). There is no noticeable difference
in the distributions. Moreover, there is also no benefit for predicting the proton-iron bias.
Therefore, we keep the simple ReLU in the final architecture.

C Variation of dropout fraction

In the baseline architecture, we have used a dropout fraction 3 5 of 0.2. Increasing it forces
the NN to use different combinations of connections in the final layer of Aℛiii to predict the
depth of the shower maximum. For the small data set we use in this study, increasing 3 5
also slightly improves the average precision of the networks (see Fig. 7.10). Moreover, there
is a minor effect on the proton-iron bias (see Fig. 7.11) shifting the distributions downwards.
Still, it is not clear if such an improvement translates to a much larger data set.

7.1.4 Hyperparameters related to the network training

Hyperparameters governing the training process, such as the batch size #1 , directly impact
the length, stability, and result of the training process. In this section, we investigate the
effect of varying hyperparameters related to the training process.

A Effect of variation of batch size

We vary the batch size #1 in multiples of two to take advantage of the memory size of the
used GPUs. For NNs using the CNN-based TFE, an increase in the batch size improves the
expected precision of the predictions (see Fig. 7.12). In the region of 512 up to 2048, there
is a minimum of the average value of the precision achieving an improvement of up to 10%
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Figure 7.9: Ensembles of the proton iron bias Δp-Fe for NNs trained with different values of
�SmeLu. We depict the precisions of two integral energy bins of events with an energy above
1019.5 eV (blue) and 1019.0 eV (red).
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Figure 7.10: Ensembles of the precision �Δ-max for NNs trained with different values of the
dropout fraction 3 5 normalized to the average precision of the ensemble using 3 5 = 0.2 for
events with an energy above 1019.5 eV (blue) and 1019.0 eV (red).
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Figure 7.11: Ensembles of the proton-iron bias Δp-Fe for NNs trained with different values of
the dropout fraction 3 5 for events with an energy above 1019.5 eV (blue) and 1019.0 eV (red).

if compared to the baseline batch size of #1 = 64. For the batch sizes 2048 and 4096, the
average precision starts increasing again.

To decide which batch size we use in the final architecture, we cross-check the result with
the proton-iron bias Δp-Fe as a function of the batch size. Indeed, increasing the batch sizes
reduces the average proton iron bias of the predictions (see Fig. 7.13). At a batch size of
#1 = 512, the proton-iron bias plateaus. Since for a batch size of #1 = 2048, the predictions
of NNs exhibit a high precision and low proton-iron biases, we chose #1 = 2048 for the final
architecture. In addition, we also use #1 = 512 as a cross-check.

To confirm that this behavior is similar for NNs based on the RNN sub-network, we
repeat the analysis for such networks (see Appendix B.3). In contrast to the CNN-based
TFE networks, the NNs based on the RNN sub-network show the opposite behavior. The
precision increases when the batch size is reduced (see Fig. B.6). Hence, we choose a batch
size of #1 = 32 for this network.

B Effect of amount of training data

To estimate the dependence of the predictions of NNs on the amount of training data, we
train multiple networks on different fractions 5� of the data set described in Row 5.5.c. As
expected, the average precision improves with the available amount of training data (see
Fig. 7.14). At around a fraction of 25%, the used data set is as large as the base data set
in Row 5.5.a. Hence, the average precision using the base data set is about ten percentage
points worse than when using 80% of the large data set. Given enough data, we expect that
the precision should be saturated due to the constraints posed by the architecture and the
noise in the underlying data set. However, such saturation is not visible in this analysis.

The proton-iron bias improves slightly until a fraction of 50% is reached (see Fig. 7.15).
The expected proton-iron bias for the fractions around 25% is noticeably worse than for a
batch size of #1 = 64 in Fig. 7.13. This increase in proton-iron bias is due to the increased
size of the test set, increasing the variability of the air showers.
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Figure 7.12: Ensembles of the precision �Δ-max for NNs trained with different values of the batch
size #1 normalized to the average precision of the ensemble using #1 = 64 for events with an
energy above 1019.5 eV (blue) and 1019.0 eV (red).
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Figure 7.13: Ensembles of the proton-iron bias Δp-Fe for NNs trained with different values of the
batch size #1 for events with an energy above 1019.5 eV (blue) and 1019.0 eV (red).
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Figure 7.14: Ensembles of the precision �Δ-max for NNs trained with different amounts of training
data determined by the fraction 5� . The precision is normalized to the average precision of the
ensemble using 5� = 0.5 for events with an energy above 1019.5 eV (blue) and 1019.0 eV (red).

0.2 0.4 0.6 0.8

fD

0

5

10

15

20

25

∆
p

-F
e
/(

g
cm

−
2
)

CNN

19.5 < lg(E/eV)

19.0 < lg(E/eV)

Figure 7.15: Ensembles of the proton-iron bias Δp-Fe for NNs trained with different amounts of
training data determined by the fraction 5� . We show Δp-Fe for two different integral bins using
only events with an energy above 1019.5 eV (blue) and 1019.0 eV (red).
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Figure 7.16: Ensembles of the precision �Δ-max for NNs trained using traces of different trace
lengths !C . The precision is normalized to the average precision of the ensemble using !C = 120
for events with an energy above 1019.5 eV (blue) and 1019.0 eV (red).

7.1.5 Hyperparameters related to the encoding of the event-level data

The input data of our base network is encoded in a 5× 5 grid using a trace length of 120 bins
corresponding to 3 µs of UB trace data. We chose the encoding size of "B = 5 to ensure a
fast training process and the trace length comparable to the preceding analysis in [P:104]. In
this section, we check how these values predict the predictions of ensembles of NNs. Since
we vary the trace length, we use the RNN-based TFE in this section.

A Variation of trace length

Since there is no straightforward way to estimate the amount of important information, we
need to know how much of a trace is required to achieve an optimal prediction. We probe
this by training ensembles of NNs using traces of different trace lengths !C . Due to the
constraint of the architecture of the CNN-based TFE, we would need different architectures
to reduce the time dimension over the convolutional layers (see Fig. 7.1). Consequentially,
we only train NNs using the RNN-based sub-network (see Sec. 7.1.3.A).

In Fig. 7.16, we compare the distributions of the precision of the predictions of 20 networks
trained with different trace lengths !C . Above a trace length of 180 bins, the training process
becomes partially unstable. For some NNs, the training prematurely stops yielding precision
in the integral energy bins above 35 g/cm2. We remove these networks from this analysis
since they would create bi-modal distributions which distort the violin plots. This instability
is a sign that the used architecture based on RNN is at its limit. Due to the increased trace
length, correlating important information becomes more challenging. Also, for trace lengths
below 100 bins, the ensembles become gradually worse. This decrease in precision is most
notable for the networks trained on trace lengths of 30 bins indicating that in this region,
there is too little information that the NNs could exploit. Between 120 and 150 bins is a sweet
spot. NNs trained with these trace lengths show no instability. The information content in
the trace is large enough to make accurate predictions. Since there is no apparent difference
between both trace lengths, we keep using 120 bins for the final architecture.

This choice is also driven by the trade-off between network training duration and perfor-
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Figure 7.17: Ensembles of the precision �Δ-max for NNs trained using different encoding sizes
"B . The precision is normalized to the average precision of the ensemble using "B = 5 for
events with an energy above 1019.5 eV (blue) and 1019.0 eV (red).

mance. Using 150 bins for our study pushes us over the 1 h mark in training time for the
reduced data set without showing considerable benefits.

B Variation of encoding size

For AixNetn an encoding size"B of 13 has been used [A:13]. The large encoding size ensures
that almost all triggered stations are encoded in the memory. However, the information
content of stations that are far from the impact point of the shower core is greatly diminished.
Hence, we favor smaller encoding sizes. To substantiate this reasoning, we have trained
ensembles of NNs using different encoding sizes.

In Fig. 7.17, we compare the performance of ensembles of NNs trained on encoding sizes
up to "B = 11. For each case 10 networks have been used. Surprisingly, even an encoding
size of"B = 5 is unfavorable, yielding a smaller precision than the smallest possible footprint
size encoding size of three. For encoding sizes greater than 5 the ensembles show similar
results.

The improvement of the precision is also not caused by a trade-off with the proton-iron
bias (see Fig. 7.18). This result is somewhat surprising. Adding more information of the
shower footprint should be beneficial for predicting observables, such as the depth of the
shower maximum. However, it also increases the difficulty of extracting relevant information.
Stations far away from the shower core exhibit a lower signal-to-noise ratio than stations near
the shower core. If a small amount of additional information is not required to make accurate
predictions, the network potentially ignores bins in the encoding that are far from the hottest
station. Still, the ignored bins impact the NNs in the TFE, adding noise to the overall
prediction.

To back up this idea, we exclude the possibility that this reduction in the precision of
the predictions is caused by an over-weighting of smaller shower footprints due to the low
energy part of our training data set. We repeat the study for the smallest three encoding
sizes for a specialized training set that contains only events with energies higher than 10 EeV.
Below 1019 eV, many events have less than 7 triggered candidate stations. Hence events tend
to not even fill up the first crown (see Fig. 5.1). Even for energies far above 1020 eV, the
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Figure 7.18: Ensembles of the proton-iron bias Δp-Fe for NNs trained using different encoding
sizes "B for events with an energy above 1019.5 eV (blue) and 1019.0 eV (red).

footprint for a 7× 7 is, on average, not completely filled out. Despite using only high-energy
events, we obtain a very similar result to that of Fig. 7.17 (see Fig. 7.19). The predictions of
NNs using the smallest encoding size have higher precision than the NNs using the larger
ones.

This result indicates that the most essential part of the shower footprint is right around the
impact point of the shower core. The signal in this region carries the information necessary
for a good prediction of -max. Potentially, we could build a network that focuses explicitly
on these non-core regions of the shower footprint. However, this fine-tuning is beyond the
scope of this thesis. We chose an encoding size of 3 and 5 for the shower footprints used for
the final We keep the footprint size of 5 to ensure that the small amount of training data does
not mainly drive this result.

7.1.6 Using additional observables as inputs

Until now, we solely varied hyperparameters related to the topology and training process. It
is not a priori unclear which station- and event-level shower observables benefit the inference
process. In this section, we study how additional inputs improve the overall performance of
the predictions of NNs.

A Adding new event-level information

We selected the energy � and zenith angle � as new potential event-level inputs. Both of
these observables are directly related to the footprint size and signal strength in the core
region. We transform the energy via lg and the zenith with sin2. These transformations
make the distribution of both shower observables uniform. The signal detected in the SD
stations depends on sec�. Therefore, to test the choice of sin2, we also test sec as a potential
transformation. To estimate how the reconstruction impacts these results, we use the MC
values and the reconstructed SD values as inputs.

Adding the energy to the network has no visible impact on the precision of the predictions
(see Fig. 7.20). The precision is equivalent to NNs using no additional information. Since
there is a direct relation between the energy to the average value of -max (see Sec. 5.4.2), the
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Figure 7.19: Ensembles of the precision �Δ-max for NNs trained using different encoding sizes
"B for a data set using only events with an energy above 1019 eV. The precision is normalized
to the average precision of the ensemble using "B = 5 for events with an energy above 1019.5 eV
(blue) and 1019.0 eV (red).

networks most likely interpolate this relation from the trace signals. The zenith angle, on the
other hand, improves the precision of the predictions of the NNs ensembles considerably.
Using the MC values or the reconstructed values yields a visible downward shift of the
distributions. The difference between using �MC and �SD is minimal. We conclude that the
accuracy of the standard reconstruction for �SD is large enough for this analysis.

Comparing the different transformations used for �SD, it appears that by using sec the
precision of the predictions of the NNs improves slightly. This improvement is most likely
a trade-off between the precision and proton-iron bias. In Fig. 7.23, the roles of the sin2

and sec transforms are reversed. The distribution of the proton-iron bias reaches slightly
lower values. We conclude that we should include �SD as an additional input. Most likely,
providing the reconstructed zenith angle gives the network a better handle on the geometry
of the shower. We select the sin2 transformation out of convenience.

B Adding new station-level information

Since there are many possible station-level observables, we have selected a subset based on
the experience of working with the data. We classified the used additional inputs as follows.
First, we have selected the high- and low-gain flags of each triggered station. We denote
them as HG and LG, respectively. If the former is set, the trace is determined by the low-gain
channel. If the latter is set, the trace is at least partially saturated. This saturation yields a
plateau in the signal trace. Both flags signify that the trace signal behaves slightly differently.
It could be beneficial to give this information to the network before the spatial information is
correlated. Secondly, we added the risetime C1/2 and total signal (tot to the set of investigated
station-level information. Both are features directly related to the integral over the trace. If
the information of these trace features is essential for the prediction of -max, adding them
would free a value of = 5 . Forcing the network to extract different features could yield a
slightly better result. Finally, we have added the shower plane distance A and the plane front
time Cpf (see Sec. 5.4.1). Both station-level observables encode geometric information of the
station positions. In Sec. 7.1.6.A, this improved the predictions of the NNs considerably.
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Figure 7.20: Ensembles of the precision �Δ-max for NNs trained with additional event-level inputs.
The ∅ refers to the ensemble of the baseline network. The precision is normalized to the average
precision of the ensemble using "B = 5 for events with an energy above 1019.5 eV (blue) and
1019.0 eV (red).
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Figure 7.21: Ensembles of the proton-iron bias Δp-Fe for NNs trained with additional event-level
inputs for events with an energy above 1019.5 eV (blue) and 1019.0 eV (red). The ∅ refers to the
ensemble of the baseline network.
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Figure 7.22: Ensembles of the precision �Δ-max for NNs trained with additional station-level
inputs. The ∅ refers to the ensemble of the baseline network. The precision is normalized to the
average precision of the ensemble using "B = 5 for events with an energy above 1019.5 eV (blue)
and 1019.0 eV (red).

To demonstrate the effect of normalization of our input values, we also consider A and Cpf

divided by a factor of 1000. Due to the results of the previous section, we do not perform the
tests with MC values.

Adding observables from the first two classes does not affect the distributions of the
precision or the distributions of the proton-iron bias (see Fig. 7.22 and Fig. 7.23). The
precision of the predictions of the networks in the corresponding ensembles is similar to
that of the ensemble of the baseline network. Only the ensembles of the networks trained
with the plane front time Cpf and the normalized shower plane distance A/1000 show an
increase in precision. This result shows us the great importance of correctly preparing our
input data. Using the normalized plane front time Cpf/1000 or the shower plane distance A
does not yield any visible improvement. In this case, this is most likely due to the smallness
and largeness of the former and the latter observable, respectively. For example, if an input
value is compared to the other inputs, overall substantial, it causes instabilities in the training
process and hinders it. To ensure a stable training process, the proper normalization for the
inputs has to be found and applied. This instability caused by the large values in A is most
likely the reason for the long upward tail of the distribution of the precision of NNs using A
directly as an additional input. In contrast to Fig. 7.21, the distributions of the proton-iron
bias Δℰ in Fig. 7.23 do not show significant differences if compared to each other. Only LG
and A/1000 seem to show a reduced proton-iron bias.

Therefore, we select Cpf, A/1000, and LG as additional station-level inputs.

7.2 Evaluation of neural network predictions on event-level targets

In the last section, we have demonstrated that by changing various hyperparmeters the
predictions of NNs become more precise and exhibit less proton-iron bias. Since we are
not able to train NNs for each unique combination of values of the hyperparameters, we
implement all changes that improved the predictions for two CNN- and one RNN-based
TFE. In addition, we train the modified architectures on the larger data set defined in
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Figure 7.23: Ensembles of the proton-iron bias Δp-Fe for NNs trained with additional station-
level inputs for events with an energy above 1019.5 eV (blue) and 1019.0 eV (red). The ∅ refers to
the ensemble of the baseline network.

Row 5.5.d.
In this section, we compare the NN predictions to the SD standard reconstructions, when

available, and the predictions of NNs based on the corresponding baseline architecture. For
each observable and architecture, at least 5 NNs have been trained. We summarized the
setups used to train the NNs used in this section in Table 7.1.

7.2.1 Selection process for NN models

Due to the non-determinism of the training on GPUs (see Sec. 7.3.2), NNs trained under
the same conditions yield slightly different predictions for the same events. A priori, it is
impossible to deduce the model performance from the early parts of the training process.
Consequently, for each analysis using an NN-based approach, multiple models need to be
trained. From this set of models, suitable ones can be selected by additional criteria.

In this work, we perform the selection process using a metric that appraises all predictions
of each model as a whole. For this thesis, the high-energy regions of the CR spectrum are of
particular interest. Hence, models need to be selected in this part of the phase space that is as
independent of the primaries as possible and exhibit a high-enough resolution. In addition,
the chosen models are used solely in regions of maximum trigger efficiency. Defining the
thresholds 1019 eV and 60°, the metric

3(ΔG) = �ΔG + �<Δp-Fe(ΔG), (7.1)

where �< is a scale parameter and 3 is only evaluated for events that fulfill the conditions
�MC > 1019 eV and �MC < 60°, coincides with these requirements. The choice of �< depends
on investigated problem. In this work we set �< = 1. Note that, for the metric, it is implicitly
assumed that the biases of events induced by helium and oxygen primaries lie between events
induced by proton and iron primaries. Despite being reasonable due to the dependence of
the signal distribution on the primary particle, it is not a priori clear that this assumption
remains valid for all targets.

We have not used Eq. (7.1) for training because of the restrictions on the phase space and
since it does not account for helium and oxygen primaries. Still, this metric is a purely
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Table 7.1: Overview of setups used to build and train the NNs in this section. We list only
deviations from the base setup defined in Appendix A.6.

Aℛi−iii Training Other
type = 5 3 5 #1 �� "B add. inputs data set

a CNN 10 0.2 64 1 5 - Row 5.5.a
b RNN 16 0.2 64 1 5 - Row 5.5.a

c CNN 10 0.2 64 0 5 - Row 5.5.a
d CNN 10 0.2 64 1 5 - Row 5.5.d

e CNN 10 0.2 512 1 5 �SD;LG,Cpf, A
1000 Row 5.5.d

f CNN 10 0.2 2048 1 5 �SD;LG,Cpf, A
1000 Row 5.5.d

g CNN 10 0.2 512 1 3 �SD;LG,Cpf, A
1000 Row 5.5.d

h CNN 10 0.2 2048 1 3 �SD;LG,Cpf, A
1000 Row 5.5.d

i RNN 16 0.2 32 1 5 �SD;LG,Cpf, A
1000 Row 5.5.d

j RNN 16 0.2 32 1 3 �SD;LG,Cpf, A
1000 Row 5.5.d

phenomenological choice that happened to work well for our approach. A better metric
could be uncovered by comparing different choices for the metric for numerous networks
trained on multiple different training data sets sharing the same test data set, which contains
a sufficient number of events. However, this wide-ranging study lies outside of the scope of
this thesis.

7.2.2 Prediction of the depth of the shower maximum

Since all of the prior studies on the architecture have been carried out for NNs trained on
the depth of the shower maximum -max, we ensure in this section that the changes we
have implemented improve the quality of the predictions of our networks. Hence, before
comparing the NNs based on the optimized architectures, we compare the predictions of
a baseline network (see Row 7.1.b) with the predictions of a network using an optimized
architecture (see Row 7.1.e). The set of NNs corresponding to Row 7.1.b has been chosen
over the set of NNs corresponding to Row 7.1.a since the predictions of the RNN-based
architecture showed better results than the CNN-based one. Both networks are selected
from a set of 99 baseline networks and 10 optimized networks using Eq. (7.1) with �< = 1.
The predictions of the optimized network excel the predictions of the baseline network (see
Fig. 7.24). In each energy bin, the predictions of the modified network show a better precision
for events induced by proton and iron primaries. The proton-iron bias is below the best-
performing base network reaching consistent values below 5 g/cm2 for all energy values
above 1019.3 eV. The overall improvement is mainly due to the increase in performance at
high zenith angles (see Fig. 7.25). The proton-iron bias reaches a minimum value at 44° for
both networks. At this zenith angle lies the median value of the zenith for our data set going
up to 65°.

Since the reconstructed azimuth )SD is used to standardize the shower footprints (see
Sec. 5.3.3), we have to check if there are any dependencies on the MC azimuth. By doing the
standardization, we have implicitly assumed that the shower footprints are rotational invari-
ant. Earth’s magnetic field and the orientation of the PMT in the WCD (see Sec. 2.3.2) breaks
this symmetry. Both networks are likely not sensitive enough to pick up any dependence
(see Fig. 7.26) over the investigated phase space. The resolution �Δ-max and the proton-iron
bias Δlg(�/eV) are mostly flat and have no apparent dependence on the azimuth angle.
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Figure 7.24: Comparison of the precision �Δ-max (top) and of the proton-iron bias Δp-Fe(Δ-max)
(bottom) in bins of the logarithmic MC energy lg(�MC/eV) between the predictions of the baseline
network (dots) and the network (crosses) using the modified architecture described in Sec. 7.2.
The dashed, blue line in the upper panel is the width of the -max distribution of air showers
induced by iron using the hadronic interaction model QGSJ. We use only events with a MC
zenith angle below 60°. The black lines in the bottom plot mark a proton-iron bias of 15 g/cm2

(dotted), 10 g/cm2 (dashed), and 5 g/cm2 (dotted).
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Figure 7.25: Comparison of the precision �Δ-max (top) and of the proton-iron bias Δp-Fe(Δ-max)
(bottom) in bins of sec�MC between the predictions of the baseline network (dots) and the
predictions of the network (crosses) using the modified architecture. We use only events with
a logarithmic MC energy of above 18.5. The vertical dashed line in the upper plot shows the
position of �MC = 60°. The black lines in the lower panel mark the proton-iron bias of 15 g/cm2

(dotted), 10 g/cm2 (dashed), and 5 g/cm2 (dotted). The vertical lines in the lower panel show
the position of �MC = 38° and �MC = 44°. These angles are the median zenith values for a
maximum zenith angle of 60° and 65°, respectively.
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Figure 7.26: Comparison of the precision �Δ-max (top) and of the proton-iron bias Δp-Fe(Δ-max)
(bottom) in bins of the MC azimuth angle )MC between the predictions of the baseline network
(dots) and the predictions of the network (crosses) using the modified architecture. We use only
events with a logarithmic MC energy of above 18.5 and a zenith angle of below 60°. The black
lines in the bottom plot mark a proton-iron bias of 15 g/cm2 (dotted), 10 g/cm2 (dashed), and
5 g/cm2 (dotted).

The effect of the asymmetry is more significant for higher zenith angles and higher signals.
Cutting our test data set accordingly, the bias Δ-max shows a slight azimuthal dependence
appearing to be periodic for the modified network (see Fig. 7.27). The network predictions
have a primarily negative bias up to 180° and a positive bias afterward. The absolute bias is
below 2.5 g/cm2 in both cases. Checking if this is not a statistical effect is outside of the scope
of this thesis. Henceforth, we assume that our assumption of rotational invariance does not
influence our predictions greatly.

Overall, these results indicate that the modifications used yield an improvement in the
predictions in comparison to the baseline network. Both the precision, in terms of resolutions,
and the accuracy, in terms of the proton-iron bias, of the predictions, are superior. This
improvement is not only valid for the selected networks in the case but also for the entire
sets of NNs (see Fig. D.11 and Fig. D.10).

During the training and selection of the modified setups tabulated in Rows 7.1.e to 7.1.j, a
couple of differences to the results in Sec. 7.1 have been revealed. Despite the fact that the
RNN-based architecture has shown promising results in Sec. 7.1.5.B for the smallest footprint
size of "B = 3, the NNs trained with the setup described in Row 7.1.j gave inferior results to
those of the similar setup in Row 7.1.i. This is not the case for CNN-based architectures. In
Sec. 7.1.4.A, increasing the batch size for the CNN-based architecture increased the overall
precision and reduced the proton-iron bias for both investigated energy bins. However, the
training of the setups described in Row 7.1.f and Row 7.1.h has been relatively unstable, also
yielding inferior results to those from the setups in Row 7.1.e and Row 7.1.g. Using Eq. (7.1)
with �< = 1, 6 NNs have been selected for each of the setups described in Rows 7.1.e to 7.1.j
(see Table 7.2). The values of the chosen metric for most setups differ only about 1 g/cm2

except for the NN in Row 7.2.f, which has a large value for the chosen metric. Comparing
the values of 3(Δ-max), only the predictions of the NNs in Row 7.2.c and Row 7.2.e have a
value of below 27 g/cm2. This reduction is mainly due to the low proton-iron bias of their
predictions lying below 3 g/cm2. However, they also exhibit a resolution above 24 g/cm2.
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Figure 7.27: BiasΔ-max in bins of the MC azimuth angle ) of predictions of the network (crosses).
We use only events with a logarithmic MC energy of above 20.0 and a zenith angle of above 40°.
The horizontal gray lines in the bottom plot mark a bias of 2.5 g/cm2 (dotted), 0 g/cm2 (dashed),
and 2.5 g/cm2 (dotted).

Table 7.2: Overview of the performance of the selected NN models on the metric defined in
Eq. (7.1) and its sub-components. The last column is the number of NNs trained in the setup of
the row.

setup 3(Δ-max)/(g/cm2) �Δ-max / (g/cm2) Δp-Fe / (g/cm2) #

a Row 7.1.e 27.24 23.72 3.52 10
b Row 7.1.f 28.84 23.50 5.35 5
c Row 7.1.g 26.77 24.33 2.44 9
d Row 7.1.h 28.41 23.67 4.74 4
e Row 7.1.i 26.71 24.06 2.66 10
f Row 7.1.j 29.09 23.62 5.47 10

g Row 7.1.d 27.43 25.18 2.26 20

Another candidate is the NN in Row 7.2.a, whose predictions have a resolution below the
24 g/cm2 threshold and a proton-iron bias that is only slightly worse than the other networks.
Since the standard error of the standard deviation is about 0.1 g/cm2 and the standard error
of the proton-iron bias is about 0.3 g/cm2, we select Row 7.2.a as the model of choice.
However, in Chapter 8, we perform additional cross-checks based on the NN in Row 7.2.c
and Row 7.2.e.

One of the most significant improvements in resolution has been seen in Sec. 7.1.4.B by
increasing the amount of training data. To disentangle the effects of adding more data
from the architectural changes, NNs have been trained under the setup in Row 7.1.d. As
expected, using a larger amount of training data, the predictions of NNs derived from the
baseline architecture may achieve similar results to the modified architecture (see Row 7.2.g).
However, comparing all NNs from Row 7.1.d the network described in Row 7.2.g is on the
far left of the distribution of all 3 (see Fig. 7.28). Moreover, resolutions of under 24 g/cm2 are
not achieved. Therefore, we conclude that the architecture changes and the changes in the
training procedure have increased the likelihood of obtaining a well-performing NN model.
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Figure 7.28: Distribution of 3(Δ-max) (left) defined in Eq. (7.1) and the precision �Δ-max computed
above the energy 1019 eV for the NNs trained using the setup in Row 7.1.d (black) and NNs trained
using the setup in Row 7.1.e (red).

7.2.3 Predictions of the zenith angle and the shower energy

To estimate mass-sensitive parameters from the signal distribution on the ground level, it
is expected that a method needs to account for the zenith angle � and the primary particle
energy � since both observables have a considerable impact on the shower footprint. Hence,
we check in this section if NNs using the architectures defined before yield sufficiently well
predictions if trained on �MC and �MC.

The zenith angle is an already well-reconstructed quantity since it is a geometrical shower
property that is almost independent of the primary and hadronic model. Improving its
precision does not yield a benefit for arrival direction studies due to the deflection during the
propagating CRs in magnetic fields{2}. However, accurate knowledge is still very significant
due to the attenuation dependence of the shower footprint. An improved prediction of the
zenith angle could, in turn, improve indirectly the established analytic methods. Because
�SD is used as an input for the optimized architectures and the SD reconstruction of the
zenith angle is almost independent of the primary which induced the shower, we only use
NNs based on the setup in Row 7.1.c. Because of the same reason, we selected the a NN
using Eq. (7.1) with �< = 0. In total, 20 NNs have been trained. In addition, 5 NNs have been
trained that use �SD as an additional input. In this way, it can be assessed if the architecture
provides the possibility of refining the result of the SD reconstruction improving the overall
predictions. The resolution of the predictions of the NN-based approaches is comparable
to the resolution of the standard reconstruction (see Fig. 7.29). The decrease of resolution
in the fourth energy bin is due to an ‘outlier’ in the SD reconstruction. The resolution
of predictions of the NN using �SD as additional input improves slightly. It also makes
the predictions subject to the reconstruction error of the standard reconstruction shown by
the decrease in resolution in the second and fourth bin. Even though the resolution of
the predictions from the NNs is slightly worse, the composition dependence of the NNs is
overall larger (see Fig. 7.30) than the standard reconstruction. It is likely that this is due to
the trade-off in the MSE used for the training process. Nevertheless, the predictions of the
NN and the SD reconstruction agree with each other. Therefore, the chosen architecture is
suitable for inferring the zenith angle of the shower, making it possible to use it for other
predictions internally. Since the result of the refiner is similar to the baseline network, we do
not compare the results to one of the advanced architectures.

Both the NN based on the Row 7.1.a as well as the NN based on Row 7.1.e show a

{2}The magnetic fields give us a limit at which resolution does not improve the anisotropy studies anymore.
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Figure 7.29: Precision of �Δ sin2 � of the predictions from two NNs models and from the standard
reconstruction algorithm found in Offline (points, gray) in bins of the logarithmic MC energy.
We have used two different kinds of networks based on the setup described in Row 7.1.c. The
second network (refiner) uses the reconstructed �sd as an additional input. The third bin is an
‘outlier’ in the SD reconstruction.
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Figure 7.30: Proton-iron bias Δp-Fe(Δ sin2 �) of the predictions from two NNs models and from

the standard reconstruction algorithm found in Offline (points, gray) in bins of logarithmic
MC energy. Two different kind of networks have been used based on the setup described in
Row 7.1.c. The second network (refiner) uses the reconstructed �sd as an additional input.
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Figure 7.31: Precision of �Δ ln(�/eV) of the predictions from two NNs models and from the
standard reconstruction algorithm found in Offline (points, gray) in bins of the logarithmic MC
energy. Two different kind of networks have been used based on the setup described in Row 7.1.b
(crosses) and Row 7.1.e (pluses), respectively.

superior resolution in all energy bins if compared to the SD reconstruction of the energy (see
Fig. 7.31). Moreover, in this case, there is no direct trade-off between bias and resolution. The
proton-iron bias in each energy bin is also significantly reduced for the NN-based networks
compared to the standard reconstruction (see Fig. 7.32). Hence, NNs based on the used
architectures also give an energy estimate for given shower footprints. An in-depth study of
the NN-based prediction of the primary particle energy is done in [A:29].

Note that, even though the SD energy estimator is calibrated on measurements and there-
fore biased on simulations (see Fig. D.9), the resolution � and proton-iron bias Δp-Fe are
independent of global shifts. Hence, it is not expected that the result of this study would dif-
fer significantly, when we would use a model optimized for simulations (see Appendix B.6).

7.2.4 Prediction of relative muon content

There is no standard reconstruction to obtain the relative muon content 'μ at ground level.
Moreover, since the definition used to compute 'μ is based on the muon number on ground
level taken from the CORSIKA air shower simulation files, it is not directly comparable to
the 'μ used in the latest Universality framework (see Sec. 3.3.2) in which is it based on the
ground signal as measured by the WCD stations. Therefore, the predictions of the NN-based
models are only compared with each other.

Like in Sec. 7.2.2, at least 5 NNs have been trained for the setups defined in Rows 7.1.e
to 7.1.j. Due to the unsatisfactory performance of the CNN-based setups using #1 = 2048
in Sec. 7.2.2, we removed the models using this batch size from the analysis (see Table 7.3).
Again, we select the NN using the setup in Row 7.1.e (see Row 7.3.a) for the comparison.
Again, the predictions of the selected NN are more precise and have a lower proton-iron
bias than a baseline network (see Fig. 7.33). Moreover, comparing the predicted distributions
of proton and iron events at high energies, the distributions are more separated, reaching
approximately 0.2 above an energy of 1019 eV. The improvement of the resolution stems
from events with low zenith angles (see Fig. D.12). However, for very inclined showers, the
NN using the modified setup exhibits a worse resolution. Still, the proton-iron bias of the
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Figure 7.32: Proton-iron biasΔp-Fe(Δ ln(�/eV))of the predictions from two NNs models and from

the standard reconstruction algorithm found in Offline (points, gray) in bins of the logarithmic
MC energy. Two different kind of networks have been trained using the setup described in
Row 7.1.b (crosses) and Row 7.1.e (pluses), respectively.

Table 7.3: Overview of the performance of the selected NN models trained to predict the relative
muon content 'μ on the metric defined in Eq. (7.1) and its sub-components. The last column is
the number of NNs trained in the setup of the row. Due to the instability of the networks using
a batch size of 2048 we have excluded them from this analysis.

setup 3(Δ'μ) �Δ'μ Δp-Fe(Δ'μ) Δp-Fe('μ) #

a Row 7.1.e 0.178 0.108 0.070 0.201 5
b Row 7.1.g 0.179 0.108 0.071 0.200 5
c Row 7.1.i 0.226 0.111 0.115 0.156 5
d Row 7.1.j 0.191 0.105 0.086 0.185 5

prediction of the modified setup in the same region is much better.
Analyzing the difference between the average predicted value for air shower events in-

duced by proton and iron primaries (see Fig. 7.34) reveals that both networks do not separate
the proton and iron events very well. The differences of the predictions of both NNs lie
consistently below the expected difference computed from air shower simulations using the
hadronic interaction model QGSJ.

The distribution of predictions of the NNs trained on the baseline setup (see Row 7.1.a)
exhibits a shift towards the average expected value of 'μ (see Fig. 7.35). This is an effect of
the low amount of training data and the intermediate 'μ values from the helium and oxygen
events. Using a data set with the same amount of events but only proton and iron primaries,
the 'μ distributions of proton and iron events shift noticeably towards the expected 'μ

values. We do not exploit this behavior in this work, preferring to employ a NN that is well-
performing for all primaries. Still, it is an intriguing idea that is worth to be investigated in
future works.

7.2.5 Direct predictions of the logarithmic mass number

Since there is no standard method of reconstructing ln�, all comparisons are made between
NNs of the baseline setup of Row 7.1.b and NNs of the setup Row 7.1.g. The setup Row 7.1.g
has been chosen because of the performance in Table 7.4. From both sets of NNs, again, the
two NN have been selected which have minimal 3(Δ ln�) (see Eq. (7.1)). The resolution of
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Figure 7.33: Precision �Δ'μ for proton (red) and iron (blue) events (top) and proton-iron bias
Δp-Fe(Δ'μ) (bottom) in bins of the logarithmic MC energy lg(�MC/eV). We compare the predic-
tions of the baseline network (dots) and the network (crosses) using the modified architecture
described in Sec. 7.2. We have included only events with a MC zenith angle below 60°.
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Figure 7.34: Difference of average prediction of proton and iron events Δp-Fe('μ) for the predic-
tions of the baseline network (dots) and the network (crosses) using the modified architecture in
bins of the logarithmic MC energy. The dashed line is the expected average difference between
the iron and proton 'μ for the hadronic interaction model QGSJ.
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Figure 7.35: Predictions of 'μ from a NN trained with the setup described in Row 7.1.a (left)
and a NN with the setup described in Row 7.1.d (right). Due to the training on all primaries
the NN predictions in the left panel shows a shift of both distributions towards the mean. In
contrast to this, the predictions of the NN trained only on proton and iron events has much less
overlap in the center regions.

Table 7.4: Overview of the performance of selected NN models trained to predict the logarithmic
mass number ln� on the metric defined in Eq. (7.1). We added the summands of Eq. (7.1) and
the average difference between the predictions between proton and iron events. The last column
is the number of NNs trained in the setup of the row. Due to instabilities, we have excluded
NNs based on the RNN TFE.

setup 3(Δ'μ) �Δ'μ Δp-Fe(Δ'μ) Δp-Fe('μ) #

a Row 7.1.e 2.288 1.149 1.139 2.886 5
b Row 7.1.f 2.236 1.128 1.108 2.917 5
c Row 7.1.g 2.218 1.141 1.076 2.949 5
d Row 7.1.h 2.284 1.129 1.155 2.870 5

the predictions Fig. 7.36 is for both of the NN comparable (see Fig. 7.36). For each energy
bin, the predictions of the NN using the optimized setup have a slightly worse precision for
proton events and better resolutions for iron events. However, the proton-iron bias of the
NN using the optimized setup is lower. The resolution and proton-iron bias in bins of the
zenith (see Fig. D.14) and the azimuth (see Fig. D.15) show similar behavior as in Sec. 7.2.4.

Even though the predictions of the NN trained on the modified setup show less proton-
iron bias, the predictions are still shifted towards the average ln� value of the underlying
distribution (see Fig. 7.37). The difference between the average predictions for proton and
iron events is below the 4. For energy values above 1019.5 eV, the NN using the modified
setup barely reaches a difference of 3. This behavior is most likely caused by regression
towards the mean since the helium and oxygen events have values close to ln� = 2.

Using a data set only comprised of proton and iron events improves the separation of the
predicted values of ln� for proton and iron events (see Fig. 7.38). Still, as in Sec. 7.2.4, since
no helium and oxygen events have been used in training, it is a priori not clear if the NNs
trained on the proton and iron subset extrapolate between proton and iron events correctly.

153



7 Global Shower Properties from Simulation Data

0.0

0.5

1.0

1.5

σ
∆

ln
A

θMC < 60°
p Fe

18.6 18.8 19.0 19.2 19.4 19.6 19.8 20.0 20.2

lg(EMC/eV)

0

1

2

∆
p

-F
e
(∆

ln
A
)

baseline modified

Figure 7.36: Precision �Δ ln� for proton (red) and iron (blue) events (top) and proton-iron bias
Δp-Fe(ln�) (bottom) in bins of the logarithmic MC energy lg(�MC/eV). We compare the predic-
tions of the baseline network (dots) and the network (crosses) using the modified architecture
described in Sec. 7.2. We have included only events with a MC zenith angle below 60°.
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Figure 7.37: Difference of average ln� predictions for proton and iron events in bins of the
logarithmic MC energy for the baseline NN (points) and the NN (crosses) trained on the modified
setup. The dashed, gray line marks an average difference of 3.
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Figure 7.38: Predictions of ln� from a NN trained with the setup described in Row 7.1.a (left)
and a NN with the setup described in Row 7.1.d (right). Due to the training on all primaries
the NN predictions in the left panel shows a shift of both distributions towards the mean. In
contrast to this, the predictions of the NN trained only on proton and iron events has much less
overlap in the center regions.

Again, we leave the study based on this matter for future analysis since a careful exploration
of the possibilities of modifying the distribution of input events is beyond the scope of this
work.

The maximum shower depth -max and relative muon content 'μ are phenomenologically
related to the primary particle mass (see Sec. 2.2.3.B). Hence, instead of a direct prediction
of ln�, it is also possible to use -max and 'μ directly estimate the most likely value of
ln�. Using Eq. (2.12) and Eq. (2.13) and assuming that -0 is independent from the primary
particle mass, the logarithmic mass number can be independently expressed as

ln�[-max] = ln 56
-max − 〈-max〉p

〈-max〉Fe − 〈-max〉p
(7.2)

and

ln�['μ] = ln 56
ln'μ − 〈ln'μ〉p

〈'μ〉Fe − 〈ln'μ〉p
. (7.3)

To find an optimal linear combination of the estimates in Eq. (7.2) and Eq. (7.3), we use a
linear fit and scale the fit result by a factor to ensure that the mean prediction for iron events
is ln 56. This procedure yields a robust predictor (see Fig. 7.39). Even when cutting in the
phase space, the distributions do not shift significantly.

Nevertheless, the scaling reduces the precision of the method (see Fig. 7.40), making it
much worse when compared to the results in Fig. 7.38. However, it also ensures that the
average prediction ln� on the data set is correctly estimated (see Fig. 7.41). The estimation
of ln� with 'μ and -max serves as a crosscheck for the direct prediction of ln�. In future
studies, this ansatz can be improved by using a parametrization that depends on other
shower observables. For example, in Fig. 7.39, there is a slight dependence on the zenith cut
shifting the distributions that could be accounted for in this way.

To conclude this section, we estimate the upper limit on the separation between proton
and iron events for the direct and indirect predictions of ln� as a function of logarithmic
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Figure 7.41: Average prediction of ln� for both indirect methods based on -max 'μ predictions
(crosses and plusses) and the direct method (points) using the NN model defined in Sec. 7.2.5.
The dashed, gray line is the expected ln� value of the underlying data set.

energy. In measurements we do not have access to a primary-independent energy estimator
like �MC. Hence, we use the SD energy estimate �SD in this estimation. We remove the global
shift between lg�MC and lg�SD (see Fig. D.9) by subtracting the average difference of both
energy values to �SD:

lg�SD∗ = lg�SD − 〈lg�SD − lg�MC〉. (7.4)

The separation between proton and iron events of the direct predictions is superior to that
of the indirect predictions (see Fig. 7.42). Over an energy of 1019.3 eV the direct estimation
reaches consistently merit factors above 2.

7.3 Estimating uncertainty of neural network predictions

In this section, we focus on developing methods to estimate the uncertainty of NN-based
predictions using the setup established in Sec. 7.1 and verified in Sec. 7.2. Again, we use the
depth of the shower maximum -max as the target all tests are performed due to the same
reasons highlighted in Sec. 7.1.

We have split this uncertainty estimation into three parts. In the first two parts, we
illustrate two useful approaches to find the uncertainty of a single network prediction. We
have summarized the idea of both approaches in Fig. 7.43. Essentially, we analyze the
predictions of one network predicting on multiple throws of the same CORSIKA shower and
the predictions of multiple networks trained under the same conditions on the same shower.
In the second part, we estimate the uncertainties arising from the high-energy hadronic
interactions and the unknown composition.

7.3.1 Study of predictions of NN on the same CORSIKA shower

The positioning of the SD grid relative to the impact point of the shower core affects the
signal distribution measured in the detector stations triggered by a shower. Since the event-
level NNs described in the previous sections use this encoded signal information of the
shower footprint, the prediction of the NNs depends on this relative positioning giving rise
to uncertainty. We interpret this uncertainty as the combination of using the detector stations
of the SD array and the NN-based method itself.

To capture this effect, we exploit the multiplicity of the Karlsruhe simulation library (see
Sec. 5.1.2) based on the hadronic interaction model QGSJ (see Row 5.6.a). Since each COR-
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Figure 7.42: Merit factor of direct (points) and indirect (crosses) ln� predictions of proton and
iron events binned in lg�SD* for events with a reconstructed zenith angle below 60°. The dashed,
gray line marks a merit factor of 2.

SIKA shower is reused in this simulation library up to 10 times, we obtain for each of these
showers up to 10 different measurements of the same shower footprint. Encoding these
footprints and using the NN to predict the -max grants us up to 10 different predictions.
Hence, since the Karlsruhe library is a fixed library, we gather for each combination of pri-
mary, shower angle, and shower energy 120 sets of predictions. Using Eq. (4.45), we compute
one value of � for each set (see Fig. 7.43). Since in each of the sets, the same shower is pre-
dicted, shower-to-shower fluctuations do not affect the value of �. We use the NN defined
in Row 7.2.a for this study.

The 120 unique showers use 12 different atmospheric conditions corresponding to the
conditions of the 12 months in a year. Since the atmospheric conditions also impact the
signal distribution at ground level, the � is not a pure estimate of the uncertainty from
the SD detector and method itself. We assume that the contribution due to the different
atmospheric conditions is small for � because shifts in the prediction due to increased and
decreased average signals do not affect its absolute value.

To obtain an estimate for the expected value of � for each combination of primary, energy,
and zenith angle, we use the variance-weighted mean. Due to the low statistic in each of the
120 sets, the single � values are driven by outliers. We use Eq. (A.5) to compute the variance
for each �. Excluding the zenith angle of � = 65°, the value of � depends slightly on the
used zenith angle (Fig. 7.44). The dependence is more prevalent in proton events than in
iron events. For different energy bins (see Figs. D.16 to D.18), the behavior is similar. The
deviation from the average values becomes smaller for smaller energy values.

To simplify the analysis and obtain a rough estimate of the uncertainty as a function of
the energy, we assume that most of the deviations from the average value in the bins below
60° are caused by the low statistics. This course of action is acceptable because around 38°,
the dependence is almost flat. Henceforth, we neglect the zenith dependence in favor of the
energy dependence.

Using only the zenith bins below 60°, we compute the expected value of � again via the
variance-weighted average (see Fig. 7.45). The � for proton and iron events decreases with
energy from 25 g/cm2 to 17 g/cm2 and 18 g/cm2 to 12 g/cm2, respectively.
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Figure 7.43: Illustration of the procedures followed in Sec. 7.3.1 (left) and Sec. 7.3.2 (right) to
estimate the uncertainty of predictions based on NNs. In Sec. 7.3.1, we investigate how the
prediction of one single NN changes when applied on the same CORSIKA shower at different
positions of the SD grid. We simulate the shower 9 up to = times, giving us = network inputs.
From these inputs G8 9 , we obtain = predictions ?8 9 . We use these G8 9 as input for the network,
obtaining a set of = predictions ? 98 for the target H 9 . For the set of predictions, we compute � 9
(see Eq. (4.45)). In Sec. 7.3.2, we analyze how the training process and the minima in the solution
space influence the predictions. We train = models under the same pre-defined conditions.
Afterward, we obtain = predictions ? 98 for each shower 9. Again, we compute a � 9 for each of
the showers.
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Figure 7.44: Variance-weighted average values of �(Δ-max) for proton (points, red) and iron
(points, blue) events for each zenith bin in the lg(�/eV) = 20 bin of the Karlsruhe library. The
horizontal dashed lines show the average value of � for the proton (red) and iron (blue) events
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boundary of the SD detector.
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Figure 7.45: Variance weighted average values of �(Δ-max) over all zenith bins for proton (points,
red) and iron (points, blue) events for all energy bins of the Karlsruhe library. The color-coded
dashed lines depict a quadratic and linear interpolation for the � values of proton and iron
events, respectively. The gray areas show the 95% confidence bands of the fit functions.
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7.3.2 Uncertainty due to the training process

In Secs. 7.1 to 7.2, we trained multiple NNs for each model to ensure that a proper comparison
between different models was possible. Due to the non-determinism of the NN training pro-
cess, NNs trained under the same conditions yield different predictions due to small changes
in the weight update process. This is caused by the parallelization of the computations. Since
the order of computations is not strictly defined in during training and calculations are not
exact, this introduces an irreducible noise during the training process. Nowadays, TF has an
explicit – but experimental – option to enable determinism [T:O]. However, this is primarily
for debugging purposes, slowing down the training.

Hence, training can be understood as a sampling process in which NN models are drawn
from an unknown distribution. We want to probe this distribution using the procedure
depicted in Fig. 7.43. Instead of taking one model to predict the same shower, we take the
opposite approach. We train # NNs under the same pre-defined conditions and, afterward,
predict with each of these NNs on the same test data set, gaining # different predictions for
each event. From these predictions, we compute � to determine the spread of the predictions
(see Fig. 7.43). In the entire study, we use the data set defined in Row 5.5.e.

For this analysis, we use a continuous simulation library (see Sec. 5.1.1). We also assume
that distribution of � follows approximately a log-normal distribution due to the random
processes involved in the NN training. We define it as

5lo-no (G;�, �) = 1

G�
√

2�
exp

[
− ln2 (G/�)

2�2

]
, (7.5)

where � and � are fit parameters. The mean value of a log-normal distribution is 〈�〉 =
� exp

(
�2/2

)
.

A Estimation of the effect of parallelization on NN predictions

We have trained a set of ten NNs under the following conditions

1. all models share the same architecture

2. all models give reasonable predictions without post-processing

3. all models share the same training data and predict on the same test data set

4. all models are trained with the same set of starting parameters and one GPU

5. all executing programs start from the same random seeds of all frameworks

The first condition is just for the sake of completeness. Condition two is a sanity condition.
Mixing non-converging NNs into the study would warp our analysis. All other conditions
have been chosen to have as little randomness as possible during the training. This leaves in
the ideal case only the parallelization on the GPU.

In Fig. 7.46, we show the distribution of the � for the models created using these conditions.
There is a considerable spread between the predictions of different models for the same value
of H8 . The assumption for a log-normal function (see Eq. (7.5)) is well met. Using the fit
parameters, we obtain an average deviation of about 10 g/cm2. Since we removed all pseudo-
random processes, this noise is irreducible.

Interestingly, even though the spread of predictions between models is relatively high, this
has almost no effect on the precision of the models. The deviation of the precisions is

�GPU = 0.27 g/cm2. (7.6)
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Figure 7.46: Distribution of � (see Eq. (4.45)) for models created according to the conditions
defined in Sec. 7.3.2.A. Even though we have reduced random effects in the training, there is
a noticeable spread between the predictions of each of the models. Therefore, the random
processes introduced due to the GPU training are significant.

Therefore, the spread of the predictions is not directly correlated to the “goodness” of the
result.

Since the network uses a dropout layer in Aℛiii to inhibit over-fitting, we have checked if
removing it would have a profound impact on �8 . This is not the case, as shown in Fig. D.19.

B Effect of adding pseudo-random number generation

We have trained a set of 40 NNs under the following conditions

1. all models share the same architecture

2. all models give reasonable predictions without post-processing

3. all models share the same training data and predict on the same test data set

4. all models are trained on one GPU

These are a relaxed version of the conditions in Sec. 7.3.2.A. The seeds for the random
number generators are not fixed. As a consequence also, the starting weights between
training runs are different. This has a direct effect on the spread of the predictions of the
NNs. The random effects shift the distribution (see Fig. 7.47) slightly towards higher values.
In addition, the processes involved also seem to make the distribution more complex. Even
though the log-normal function does not correctly follow the distribution of � it is still a good
approximation. Using the fit parameters, we obtain a average deviation of about 11.6 g/cm2.
This is only about 1 g/cm2 worse than the value we obtained in Sec. 7.3.2.A. Since we have
included in this step all pseudo-random effects, we conclude that most of this deviation
of the predictions is caused by the very complex solution space. Even small ‘amounts of
randomness’ are sufficient to end up in different minima.

The pseudo-random processes also increase the spread of the precision slightly

�pseudo-random = 0.37 g/cm2. (7.7)
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Figure 7.47: Distribution of � for models created according to the conditions defined in
Sec. 7.3.2.B. The pseudo-randomness we have introduced to the training process moves the
center of mass of the distribution to higher values. The log-normal function does not catch this
shift well indicating the increased complexity.

Unfortunately, it is unclear how to disentangle the effect caused by the GPU and by the
pseudo-random processes correctly. Since the number of parameters of our NN is about
1×106, small changes in the start values yield significant differences in the final result.

C Constructing an uncertainty estimate from the previous results

Checking the effect of varying the input data additionally (see Appendix B.5), we obtain
almost the same result as in Sec. 7.3.2.A and Sec. 7.3.2.B. Hence, we conclude that adding
any noise on top of the irreducible noise of the NN training due to the GPU only increases
the deviation of the predictions slightly.

Training only one network to estimate a physical quantity is, therefore, insufficient if NNs
are used for the inference in physics. Overall the predictions might perform well, but single
predictions are subject to this spread of prediction. Hence, we assume that the uncertainty
we obtain from this analysis is systematic one that can not be reduced by the currently used
setup. Since we performed all the studies with only small amounts of NNs, we approximate
this uncertainty roughly by a value between the variance-weighted average and average value
computed from the distribution of Sec. 7.3.2.B. We choose 10 g/cm2 for single predictions.

7.3.3 Other sources of uncertainties

We know that the current hadronic interaction models do not reproduce the number of
muons on ground-level correctly. In all of the models, slightly different strategies are utilized
to simulate high-energy hadronic interactions, which result in slightly different predictions.
Moreover, the exact energy dependence of the mass composition of UHECR is unknown. A
bias that depends on the primary yields a shift in our predictions if low- or high-mass CRs
dominate the spectrum. We have to account for both of these uncertainties.
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Figure 7.48: Precision �Δ-max (top) and bias Δ-max (bottom) for the NN predictions of the proton-
and iron-part of the data set based on simulations using the hadronic interaction model EPOS.
The NN has been trained on a data set using the hadronic interaction model QGSJ. The curve in
the top plot (blue, dashed) represents the width of the -max distribution of the iron primaries.
The precision of the predictions for the iron primaries is for most of the energy range above the
width of the underlying -max distribution of iron. The predictions of the NN have a global bias
of about 14 g/cm2. The horizontal line in the bottom plot (black, dashed) marks this global bias.

A Uncertainty due to hadronic interaction model

To estimate the dependence on the hadronic interaction model, we use the NN to predict on
the data set based on air shower simulations simulated with the hadronic interaction model
EPOS (see Row 5.5.f). However, the precision is in almost all energy bins larger than the
width of the -max distribution belonging to the iron primaries of the underlying data set.
We attribute this to the difference between the -max distributions for the different hardonic
interaction models. More noticeably, we find a global bias of the predicted -max values (see
Fig. 7.48). On average, the predictions are shifted by 13.93 g/cm2 (see Row D.1.a).

In Fig. 7.49, we compare the bin-wise precision of the predictions on the data sets simulated
with different hadronic interaction models. We denote �QGSJ and �EPOS as the precision in
the data sets defined in Row 5.5.d and Row 5.5.f. In each energy bin, the precision of the
predictions for the data set simulated with the hadronic interaction model EPOS is smaller.
Switching the interaction model reduces the precision by about 3 g/cm2 at a low energy of
1018.6 eV and 1.5 g/cm2 at energies above 1.5 g/cm2 (see Row D.1.b).

B Uncertainty due to unknown composition

We use for all of the studies in this section the SD energy �SD instead of the MC energy �MC

to account for the primary dependence of the energy estimator in measurements. Again,
to account for the difference between simulations and measurements we shift �SD like in
Eq. (7.4).

The predictions of the NN depend on the primary particle which induced the shower
(Fig. 7.50). We parameterize the difference between proton and iron events via two inde-
pendent fits to the predictions on both event types. We utilize, in both cases, an exponential
fit function (see Eq. (A.13)). The difference between both fits goes from 35 g/cm2 at low
energies to 1 g/cm2 at high energies (see Rows D.1.c to D.1.d).
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Figure 7.49: Difference of the precision of the NN-based predictions on the data sets defined in
Row 5.5.d and Row 5.5.f in bins of energy. The line (black, dashed) is a linear fit to the difference
(see Eq. (A.10)).
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Figure 7.50: The bias Δ-max for events belonging to proton (red) and iron (blue) primaries. The
dashed lines are exponential fits to both of the sub-sets.
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Figure 7.51: The difference of the width of the MC distribution and the width of the predictions
for different compositions. We have fitted an exponential to three highest values in each bin and
a constant to the minimum values.

To approximate the uncertainty on �-max of the -max distribution, we check the difference
Δ�-max of the MC width �-max and the width of the predictions for different compositions.
We select the pure composition for each of the primaries, the composition containing only
proton and iron primaries, and a composition of the underlying data set. In each bin, the
under- and over-prediction are different for the different compositions. We attribute this
variation to a systematic effect since the NN is not able to reproduce the distribution of -max

values correctly in the energy bins. We conservatively estimate the composition-dependent
uncertainty by fitting two fit functions to the maximum and minimum values in each bin.
For the maximum values, we use an exponential fit function (see Row D.1.e), and we choose
a constant fit for the minimum values (see Row D.1.f).

C Uncertainty for relative muon content and logarithmic mass number

The uncertainty due to the unknown high-energy physics and the uncertainty due to the
unknown composition for relative muon content 'μ and logarithmic mass number ln� are
calculated the same way as presented in Sec. 7.3.3.A and Sec. 7.3.3.B. Hence, only differences
between the approaches are highlighted. The results have been tabulated in Table D.1.

Relative muon content Instead of using exponential functions to parameterize the composi-
tion bias (see Fig. D.22) and the composition dependence of the resolution (see Fig. D.23),
linear functions have been fitted to the corresponding data. Because of missing CORSIKA
files, the dependence on the hadronic interaction model was fitted to a data set comprised of
only proton and iron events. The fits are presented in Figs. D.20 to D.23. The fit parameters
are recorded in Rows D.1.g to D.1.l.

Logarithmic mass number Like in the case for the 'μ parameterization, instead of exponential
functions, we have used linear functions to fit the behavior of the composition dependencies.
To estimate the resolution dependence, a quadratic model has been used. The fits are
presented in Figs. D.24 to D.27. The fit parameters are recorded in Rows D.1.m to D.1.r.
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7.4 Effect of using AugerPrime simulation data

7.4 Effect of using AugerPrime simulation data

To investigate the effect of the new UUB electronics and the additional SSD detector, we
perform a similar study to that in Sec. 7.2. However, instead of using a complex NN, we
fall back to the network architecture used in Sec. 7.1. In this way, we ensure that the only
improvement is from the additional information of the UUB and the SSD. In addition to this
restriction, we use the small data set defined in Row 5.5.g to speed up the training process
and allow us to train more independent networks.

7.4.1 Effect of the UUB

The better sampling of the UUB electronics allows for a better sampling and measurement of
the time signal direct after triggering. Since it is directly related to the muon sub-component
of the air shower, this potentially gives us essential information about the first interaction.

A Effect of increased sampling rate

For the initial test, we use the RNN-based sub-network for Aℛi. This choice allows us
to use the same network architecture for different trace lengths !C , making the tests more
comparable. To cross-test the results, we compare the results of the NNs to the RNN-based
baseline networks trained for the tests in Sec. 7.1.3.A. We have generated three ensembles of
NNs consisting of 5 NNs each using the trace lengths: 120, 240, and 360.

Since the trace lengths are lower than the UB trace lengths 40, 80, and 120, we ensure that
the performance of the UUB-based networks cannot come from extra bins. Despite having
a much lower statistic, the networks trained on UUB data outperform the networks trained
on UB data if more than 120 UUB bins are used (see Fig. 7.52). Moreover, the NN trained
on data with trace lengths of 240 UUB bins also has a slightly lower proton-iron bias (see
Fig. 7.53).

This improvement of the predictions substantiates the claim that the increased sampling
rate increases the amount of useful information in the traces. We gain a more precise and
accurate prediction compared to using less than 80 UB bins.

B Analysis of different downsampling strategies

Due to the increased sampling rate of the UUB electronics, UUB traces contain approximately
three times as many bins as their UB counterpart. Since the increased sampling rate improves
the precision and reduces the proton-iron bias, we have to transform the UUB traces into UB-
like traces. In this way, we ensure that any improvement of the predictions of the NNs is due
to the additional signal information, e.g., the signal of SSD detectors. In Offline, a procedure
is implemented that generates UB equivalent traces from UUB traces by convolving the UUB
traces with a predefined constant filter. We refer to this process as downsampling. In this
section, we analyze other downsampling strategies which are computationally inexpensive
when the on-the-fly data augmentation is used (see Sec. 5.3.4). In each analysis, an initial
trace length of 360 UUB bins is used. All discussed downsampling strategies ‘compress’
these 360 bins to 120 bins.

Since three UUB bins are equivalent to one UB bin and the traces in the input data
sets are trimmed to a trace length of !C trace bins starting from the start bin, we analyze
strategies that average over three consecutive bins. We start by comparing the arithmetic
mean over three consecutive bins if computed from the normalized, logarithmic trace signals
used as input of the NNs (see Sec. 5.3.1.C) and from the original traces. Since we have to
transform the traces back to compute the average of the latter, the former is computationally
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Figure 7.52: Effect of the input trace length !C on the precision �Δ-max of the predictions for
ensembles of NN-based predictions normalized to the average standard deviation of the network
using 120 UB bins. We compare the predictions of the RNN-based NNs trained for Sec. 7.1.3.A
to the ensembles of predictions of RNN-based NNs trained on data based on UUB simulations.
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Figure 7.53: Distributions of proton-iron bias Δp-Fe for predictions of ensembles of NNs trained
with different input trace lengths simulated with*� and**� electronics. The numbers on the
x-ticks denote the length of the input trace. The first number is the number of sampling bins
and the second, in the parenthesis, denotes the physical trace length in µs.
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Figure 7.54: Comparison of ensembles of the resolution �Δ-max of predictions of NNs trained
with downsampled traces using the arithmetic mean of the prepared traces (blue) and the
arithmetic mean of the original traces (red) relative to the average precision of the former
averaging procedure.

inexpensive. However, it is also the correct strategy. For high signals, the arithmetic mean
over the logarithmic trace signals corresponds approximately to the geometric mean over
three consecutive bins of the original trace. The predictions of ensembles of NNs trained on
traces subject to either of the downsampling strategies show equivalent results (see Fig. 7.54
and Fig. D.28). The improvement in sub-1 g/cm2 is due to fluctuations in the training and
the small sample size. Hence, we can safely use the average over the prepared trace as a
downsampling strategy.

The result in Fig. 7.54 raises the question of how the averaging over three consecutive bins
influences the result. Computing the arithmetic mean over sequential data functions like a
primitive noise filter that smooths the measurement. Since the noise is partially suppressed,
one might presume that this would impact the training process, improving the predictions
of the emerging NNs. This is not the case. To show this, we define three additional
downsampling strategies that do not possess the filtering property. We split the trace into
consecutive blocks of three bins. From these blocks, we can generate a trace with the desired
trace length by selecting the nth bin in each of the blocks. If we compare the precision of
20 networks for each of the four downsampling strategies, there is no clear indication that
averaging over multiple sequential bins yields a benefit (see Fig. 7.55).

In Sec. 7.4.1.A, we claimed that earlier parts of the traces contain more important infor-
mation than later parts. We test this assertion with an importance-based downsampling
strategy. Instead of considering groups of three sequential bins corresponding to a UB bin,
the mapping between the initial trace bins and the downsampled trace bins is chosen in
such a way as to increase the number of bins corresponding to earlier trace signals in the
downsampled trace. Since PMT signals induced by particles exhibit an exponential decay
(see Eq. (3.7)), a logarithmic map is a convenient way to achieve the desired importance sam-
pling. In Appendix C.2, the indices of the initial trace bins, which have been used to generate
the final trace, are documented. Even though the trace loses the temporal consistency, the
ensemble of NNs trained on the traces which have been downsampled with the logarithmic
map slightly outperforms the ensemble of NNs trained on the traces downsampled with
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Figure 7.55: Comparison of ensembles of the resolution �Δ-max of predictions computed for
energies above 1019.5 eV (blue) and 1019 eV (red) of CNN-based NNs trained on four differently
downsampled traces. All downsampling strategies shown act on blocks of three consecutive
bins transforming a UUB trace of 360 bins to a length of 120. For the first strategy, the arithmetic
average of each block is computed (see Fig. 7.54). The other strategies take the nth bin of each
block. The precisions are normalized to the average precision of the NNs trained with the
downsampled traces generated by using the arithmetic mean.

the arithmetic mean procedure (see Fig. 7.56). This implies that the earlier bins are more
important for the overall prediction of the maximum shower depth. Nevertheless, using
the logarithmic downsampling also increases the spread of precision distributions in every
energy bin, indicating a more unstable training process. We conclude that even if it seems
that the logarithmic sampling improves the predictions of the NNs slightly, more studies
are needed to draw a final conclusion. Taking the networks with the best predictions, we
find only a marginal improvement in the mid-energy range (see Fig. D.29). However, we
cannot exclude that this is an artifact of our selection procedure to find the NN with the
best-performing predictions (see Sec. 7.2.1).

7.4.2 Effect of SSD information on NN predictions

To determine the effect of adding SSD detector traces to the input of the NNs, we downsample
traces from a UUB-trace length of 360 bins to a 120 UB-equivalent length by taking the
arithmetic mean over three consecutive bins (see Sec. 7.4.1.B). In this way, we ensure that a
direct comparison to the baseline networks in Sec. 7.2 is possible and any improvement is
due to the inclusion of the SSD itself and not an effect of the sampling rate of the UUB (see
Sec. 7.4.1.A). Hence, for each target, we have two sets of NNs. We denote the set of NNs
using WCD and SSD trace inputs as WCD+SSD and the set of NNs using only WCD trace
inputs as WCD. We exclude the phase space in which the effective size of the SSD detector is
small. Only events in the test data sets are used that have a zenith angle of below 50°.

A Comparison of the predictions of directly accessible targets

We start by comparing the predictions of NNs of the zenith angle � and the energy � in terms
of sin2 and ln, respectively. For both targets, the precision of the predictions of the ensembles
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Figure 7.56: Comparison of ensembles of the precision �Δ-max of predictions of NNs trained with
downsampled traces using the arithmetic mean of the prepared traces (blue) and the logarithmic
importance sampling (red) relative to the average precision of the former averaging procedure.

of the NNs trained with the SSD trace data shows no clear improvements compared to that
without the SSD trace data (see Fig. 7.57 and Fig. 7.58). The large distance between the
centers of distributions in the second bin in Fig. 7.57 and the fourth and seventh bins in
Fig. 7.58 are caused by outliers{3} in the corresponding energy bins. There is no striking
trend in the ensembles of resolutions of the NNs using the SSD traces and NNs using only
the WCD traces. The zenith predictions of both ensembles of networks show a proton-iron
bias consistent with zero (see Fig. D.35). Therefore, they are both similarly unbiased for
different primaries.

Fig. 7.59 shows the proton-iron bias of the energy predictions of the two corresponding
sets of NNs. The decrease of bias at lower energies is due to the proximity to the edge of
our data set in a region of low resolution. At high energies, the ensemble of NN predictions
using additional SSD data shows an overall smaller proton-iron bias. Since the resolutions
of both sets are the same in the same energy interval, we attribute this to the additional SSD
data. The additional decrease in bias in the seventh bin is due to the outlier in the data set
containing WCD and SSD traces (see Fig. 7.58).

The predictions of the depth of the shower maximum-max of both sets NNs appear to have
no apparent trends in the precision (see Fig. 7.60) and proton-iron (see Fig. 7.61) ensembles.
The increase of precision at energies below 1018.6 eV is in a region in which the SD detector
is not 100% efficient. In the interval

[
1018.6 eV, 1019.1 eV

]
, the shifts in the distribution of

resolutions coincide with the shifts in the distributions of the proton-energy bias. However,
since this improvement of the predictions is only observed for two bins in the full efficiency
range and vanishes afterward, we cannot exclude that this is due to an artifact{4} of the test
data set used to evaluate the NNs using only the WCD.

We depicted the precision of the predictions of the ‘best-performing’ NNs for each of the
targets and sets in Figs. D.30 to D.32.

{3}We did not do any cuts on the test data except of the zenith cut mentioned in the beginning of the chapter
since we want to show the overall behavior.

{4}We tried to remove extremely high-valued outliers from the data set used to evaluate the NNs using only
WCD trace data. However, this procedure did not remove the shifts.

171



7 Global Shower Properties from Simulation Data

18.0 18.5 19.0 19.5 20.0

lg(EMC/eV)

0.000

0.005

0.010

0.015

0.020

0.025

0.030

σ
∆

si
n

2
θ

θMC < 50°

WCD+SSD

WCD

Figure 7.57: Ensembles of the precision of sin2 � predictions from NNs trained on WCD and
SSD traces (blue) and only on WCD traces. Only events in the test data set with a zenith angle
below 50° are considered.
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Figure 7.58: Ensembles of the precision of ln� predictions from NNs trained on WCD and SSD
traces (blue) and only on WCD traces. Only events in the test data set with a zenith angle below
50° are considered.
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Figure 7.59: Ensembles of the proton-iron bias of ln� predictions from NNs trained on WCD
and SSD traces (blue) and only on WCD traces. Only events in the test data set with a zenith
angle below 50° are considered.
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Figure 7.60: Ensembles of the precision of -max predictions from NNs trained on WCD and
SSD traces (blue) and only on WCD traces. Only events in the test data set with a zenith angle
below 50° are considered.
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Figure 7.61: Ensembles of the proton-iron bias of -max predictions from NNs trained on WCD
and SSD traces (blue) and only on WCD traces. Only events in the test data set with a zenith
angle below 50° are considered.

B Effect on the prediction of targets without standard methods

The relative muon content 'μ and the logarithmic mass number ln� are inaccessible by
regular air shower reconstructions. A direct way of predicting any of both air shower
properties provides essential knowledge for composition studies. Hence, any improvement
of reliable methods is beneficial for any of the goals of instruments such as the Auger
observatory.

We start by comparing the ensembles of 'μ predictions from NNs using SSD information
and from NNs using only WCD information. Except at the edges of the investigated phase
space, the precision of the predictions of the former NNs is, on average, higher than the
precision of the latter NNs (see Fig. 7.62). Since the relative muon content 'μ is almost
constant for the entire energy range, the increased resolution corresponds to a better sep-
aration of proton and iron events. One way of substantiating this claim is to compute the
average difference between the mean predictions of iron events and the mean predictions
of proton events (see Fig. 7.63). In every energy bin, the separation of proton and iron pre-
dictions is more significant for the NNs using SSD information is larger than that of NNs
using only WCD information. The error bars in Fig. 7.63 are the standard deviations of the
underlying distributions. Hence, the distributions of the differences in each energy bin are
significantly separated. The diminished resolution in the high-energy bins is likely an effect
of the decrease in the average 'μ value for iron (see Sec. 5.4.3.B). Adding the ratio of the
integral over the SSD and WCD traces as an additional input, like in Sec. 6.3.2, does not affect
the precision and has only a minor effect on the proton-iron separation (see Fig. D.33 and
Fig. D.34). Since the ensemble of NNs using this additional information does not improve
noticeably, we conclude that the ratio is already extracted from the raw traces, if it would be
beneficial for the predictions. As already implied by the results in Sec. 7.4.2.A, this result
on 'μ demonstrates that by adding the SSD information, an NN-based approach achieves a
reduced proton-iron bias.

We corroborate this statement further by a comparison of the ln� predictions of NNs for
both input types. Both Fig. 7.64 and Fig. 7.65 show a similar result to the equivalent figures
of 'μ. The predictions of NNs using SSD inputs exhibit a higher resolution and show a better
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Figure 7.62: Ensembles of the precision of 'μ predictions from NNs trained on WCD and SSD
traces (blue) and only on WCD traces. The distributions are normalized to the average precision
of the former set of NNs. The red dashed lines indicate the average value of the precision of the
same colored distribution of resolutions in the same energy bin. Only events in the test data set
with a zenith angle below 50° are considered.
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Figure 7.63: Average difference between 'μ predictions of iron events and proton events for
predictions NNs trained on WCD and SSD traces (blue) and only on WCD traces. Only events
in the test data set exhibiting a zenith angle below 50° are considered. Note that for the error
bars the standard deviations of the underlying distributions have been used.
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Figure 7.64: Ensembles of the precision of ln� predictions from NNs trained on WCD and SSD
traces (blue) and only on WCD traces normalized to the average resolution of former set of NNs.
The red dashed lines indicate the average value of the precision of the same colored distribution
of resolutions in the same energy bin. Only events in the test data set with a zenith angle below
50° are considered.

separation of proton and iron values. Note that the average difference at high energy values
of about 2.8 is still far below the ideal value of 4. Still, if we compare Fig. 7.65 to Fig. 7.37, we
find a similar improvement over the result of the baseline network. Therefore, adding the
SSD information is roughly similar to using an optimized architecture and training setup
with over four times more training events. This improvement demonstrates the potential of
the SSD detector.

We repeat the study of the merit factor done in Sec. 7.2.5 to corroborate this result. Using
SSD information, shows an increase in the merit factor in most of the energy bins (see
Fig. 7.66) compared to a NN using only WCD information. In almost all remaining bins,
the merit factor of the former NN is inside the 1.2� interval of the merit factor of the latter.
Hence, we presume that most of these ‘outliers’ are due to statistical fluctuations and the
small size of the used training data set. The predictions of the NN using SSD information,
especially in the logarithmic energy range of [19.6, 20.0], are comparable to those found in
Sec. 7.2.5.

7.5 Classification of Photon Events

In Sec. 7.2.5, we have already seen that our here-employed architecture has been able to
predict the logarithmic mass number ln�. Moreover, for this specific task, the additional
SSD input seemed to have a beneficial impact on the prediction quality (see Sec. 7.4.2.B). It
is reasonable to test how far we can broaden this approach.

At least for lower energy ranges, a fraction of CRs are photons. Their shower cascade is
solely electromagnetic (see Sec. 2.2.3.A). This should make it more or less distinct if compared
to a hadronic shower. Consequentially, we can try to train a NN to differentiate between
photonic and hadronic showers using our base architecture. Until now, we mainly used NNs
in regression tasks. In this case, it makes sense to switch to a classification approach (see
Sec. 4.2.4).
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Figure 7.65: Average difference between ln� predictions of iron events and proton events for
predictions NNs trained on WCD and SSD traces (blue) and only on WCD traces. Only events
in the test data set with a zenith angle below 50° are considered.
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Figure 7.66: Merit factor of ln� predictions of proton and iron events binned in lg�SD∗ for events
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Figure 7.67: Histograms of the accuracy A of the predictions of 20 NNs trained on WCD
and WCD+SSD data for the setup described in Sec. 7.5. We leave out all models that exhibit
an accuracy of under 80% on our test set. If we solely compare the average result of all of the
models, we obtain only a small improvement by adding the SSD traces to our network. However,
the distribution of the models using the SSD is shifted visibly to higher values of the accuracy.

We give photon showers the label 0 and hadron showers the label 1. We draw only showers
from an energy range of ℰ ∈ [19.0, 20.0]. We use a 2:1:1 fraction of photon, proton, and iron
showers. Our training set consists of about 100 000 showers (see Rows 5.5.h to 5.5.i). The
footprint size is 7 × 7 and the trace length is 120 bins. In the case of UUB data, we average
over three consecutive bins (see Sec. 7.4.1.B) to get the same number of bins as in the UB case.

We generate 20 models for WCD and WCD+SSD. We use a single (scalar) network output.
We do not squash this output into an interval of [0, 1]. Hence, it is only a real number that
gives us a “tendency” to which class the underlying event belongs to. A high number relative
to the average value implies that the event is hadronic and a low number indicates that it is
photonic. We define the average value of the predictions as the decision boundary between
photonic and hadronic events. Doing this gives us Fig. 7.67. Even though we have added the
additional SSD information, the difference between WCD and SSD is (on average) not very
large. However, there seems to be a shift in the distribution for the SSD case. We attribute this
to the different response and sensitivity of the SSD to the electromagnetic sub-component of
the shower. It is more likely to obtain a better working network if SSD information is added
to the mix.

In Fig. 7.68, we show the predictions of the best-performing models (in terms of accuracy)
for the WCD and WCD+SSD setup. We plot the output distribution of the corresponding
NN for the different classes of primaries. As expected, the separation gets better for heavier
primaries. This could be very beneficial for real data since the events appear to be heavier due
to the muon excess. The confusion matrices (see Eq. (4.30)) are only marginally different for
both. Still, we correctly classify additionally 150 events more in the second case. Moreover,
the distributions for all primaries appear more peak-like.

In Fig. 7.69 and Fig. 7.70 we show the accuracy A and merit factor binned in logarithmic
energy lg(�/eV) and sin2(�) for both NNs which exhibit the most accurate predictions. The
accuracy saturates with increasing energy to over 95%. Excluding the last bin, there is
no overly large zenith dependency. In almost all bins the network using SSD information
outperforms the network without. We believe that the WCD+SSD network works worse for
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Figure 7.68: Distribution of NN output for the best performing models using the WCD and
WCD+SSD setup split up into the primaries found in the test data set. To make the outputs
comparable we have aligned them via the photon peak. In the center of the plot we added
the confusion matrices (see Eq. (4.30)) for both setups. Even though they are only marginally
different we see for the best case scenario an increase of the correctly classified events in the
second setup.

high zenith angles because of the strongly diminished effective area of the SSD detector in
this area. If during training, the network learns to rely on its signal to make predictions it
could explain the worse performance at those zenith angles. Consequentially, we believe
that SSD information is actually used to make the predictions and that this is not solely a
statistical fluctuation of using too small networks. Still, we find also the non-SSD network
very feasible. It remains to be investigated if these results could be extended to lower energies
or in which phase space the networks perform best.

Moreover, comparing Fig. 7.69 and Fig. 7.70 we find that the merit factor is a quantity
whose value is hard to interpret (see Sec. 4.4.2). Consistent values in accuracy correspond to
large jumps in the merit factor for both types of networks. We could misinterpret the results
in Fig. 7.70 thinking that our model performs much better. Therefore, we think it would
be beneficial to never use the merit factor in the context of separation for future analyses in
Auger again.
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Figure 7.69: Accuracy A for bins in logarithmic energy lg(�/eV) (left) and sin2(�) (right) for
the best models in both setups. We used the bootstrap method to compute the 95% confidence
intervals. Only for high zenith angles, the network using the SSD information does not outper-
form the other network. This is especially true for low energy events. We attribute the loss in
accuracy for the last bin in the sin2(�) binning as due to the low effective area of the SSD at this
angles.
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Figure 7.70: Merit factor for bins in logarithmic energy lg(�/eV) (left) and sin2(�) (right) for the
best models in both setups. Compared to Fig. 7.69 we find that the values suggest an extreme
improvement using the SSD based model. This is especially dubious because of the last bin in
the energy plot of Fig. 7.69. There the result of both models agree well while for the merit factor
there is an increase. Comparing it to the previous bins the roles of both models switch only in
this bin.
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8 Extraction of Global Shower Properties from
the SD and Golden Hybrid Data Set

Numero pondere et mensura Deus omnia con-
didit.

(Isaac Newton)

A alien physicist on a treadmill that shoots out cosmic
rays in the direction of Earth to fool all the scientists
on Earth in the style of the mona lisa[.]

DALL·E 2 prompt:

In Chapter 7, we have demonstrated that the NN-based approaches are suitable for predicting
various event-level shower observables solely from the shower footprint. However, all of the
preceding studies have been performed only on simulated air showers.

In this chapter, we present the application of selected NN models on air shower measure-
ments taken at the Pierre Auger Observatory. Since we are especially interested in the mass
composition of CRs, we concentrate on the NNs trained to predict the depth of the shower
maximum -max, the relative muon content 'μ, and the logarithmic mass number ln�.

Due to the differences between air shower simulations and air shower measurements, it is
necessary to correct the predictions of the NNs. To do this, we parametrize unphysical biases
in Sec. 8.1 for each of our targets and remove them by subtraction. Afterward, in Sec. 8.2, we
define high-quality subsets of our data sets and use the bias-corrected predictions in these
subsets to find the first and second moment of -max, 'μ, and ln�.

8.1 Transition from predictions trained on simulations to measurements

There are fundamental differences between the air shower simulations of all hadronic models
and measurements by Auger (see Sec. 2.4). Hence, a direct application of the NN-based
models from Chapter 7 on measurements gives us only a raw, preliminary result. We
have to correct for the most notable differences (see Sec. 5.2.3) and define cuts that remove
measurements that cannot be adequately reconstructed by a method trained on simulation
data, for example, measurements taken at extremely cold or hot temperatures. For this study,
we use the NNs found in Sec. 7.2.

We base the corrections on unphysical dependence of the predictions from the NNs on
other parameters. For example, the logarithmic mass number ln� does not depend on the
time when the corresponding event has been detected. By parametrizing this dependence,
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8 Global Shower Properties from SD and Golden Hybrid Data
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Figure 8.1: DifferenceΔ-max of raw NN predictions and-max measurements by FD as a function
of the reconstructed energy �SD. The dashed gray line marks the average value of the differences.
The black crosses mark the differences for the predictions on the entire Golden Hybrid data set
and the red crosses the difference for all events measured before 31.08.2018.

we are able to correct each target individually by subtracting it from the original prediction.
We divide our corrections loosely into three different categories: assumption, aging, and
atmosphere.

In addition, we correct for the most striking difference between our air-shower simulations
and the measurements. To generate the trace inputs for our networks, we have used the signal
(off(C) from the SdRecStation:VEMTrace vector in Offline. Consequentially, the trace is given
in units of VEMPeak. In simulations, the VEM signal and (off(C) differ only by a constant
factor. That, however, is not the case for measurements due to the aging of the detector and
the electronics. We correct for this by individually transforming the traces ((C) from the
measurements of all PMTs by

((C) → 3.2
0p
((C), (8.1)

where 3.2 is the fixed value of 0p in simulations.

8.1.1 Direct application of NN on measurements

Before the correction process, we ensure that the network predicts reasonable values for
-max. We compare the prediction with the -max measurements of FD on our Golden Hybrid
data set (see Sec. 5.2.2). We find an almost constant shift over the entire investigated energy
range (see Fig. 8.1), which is very similar to that described in [P:104]. Since the analysis
in [P:104] has been conducted for Golden Hybrid events measured before , we added the
differences for this period to check if our results are stable. We find only minimal changes at
the evaluated energies, which are reasonably explained by statistical fluctuations. Averaging
over all differences, we obtain a value of 28.37 g/cm2 as the global shift between the raw
network predictions and the FD measurements. Using the global shift, we calibrate the -max

predictions of our NN and compare them directly to that of FD.
In Fig. 8.2, the average reconstructed values of -max as well as the standard deviation

�-max is depicted as a function of the reconstructed energy �SD. The average values of the
network predictions for both data sets{1} agree with the measurements of the FD. However,
the predictions for the standard deviations differ. For energies below 1018.5 eV, the standard
deviation of the network predictions is much lower than the FD measurements. We attribute

{1}A priori, it is not clear if the shift also works for the different phase space of the SD data set.

182



8.1 Transition from predictions trained on simulations to measurements
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Figure 8.2: Average value of -max (top) and standard deviation �-max (bottom) as a function of
the reconstructed energy �SD for the FD measurement (black), the prediction of the NN on the
Golden Hybrid data set (red), and the prediction of the NN on the SD data set (blue). The solid
and dashed lines show the expected behavior (see Sec. 5.4.2) for air showers induced by protons
(red) and irons (blue) using the hadronic interaction models EPOS and QGSJ, respectively. The
predictions of the NN on both data sets are very similar. Below a primary energy of 1018.5 eV,
the standard deviation of the NN predictions lies below the values of the FD measurement. This
under-prediction is an indicator that in this region the NN is predicting more likely the mean
value.

this to regression towards the mean. In this region, the information in the shower footprint
is not sufficient for the network to make accurate predictions falling back on predicting an
average value. Hence, We discard the predictions for SD energies below a primary energy
of 1018.5 eV. For higher energies, the standard deviation is notably higher than that of the
FD measurements which is most likely due to missing corrections and missing quality cuts.
Henceforth, we proceed with the shifted values of -max to deduce further corrections.

8.1.2 Derivation of corrections

To correct for the difference between the air shower simulation libraries and measurements,
we use the following procedure: For each investigated target ), we compute

) = 〈)〉 − ). (8.2)

We denote) as the deviation from the average behavior. We test for any unphysical behaviour
by analyzing the dependence of ) on one observable that is independent of the value of ),
e.g., the depth of the shower maximum -max needs to be independent of the average 0p in
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8 Global Shower Properties from SD and Golden Hybrid Data
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Figure 8.3: Deviation from average behavior 〈-max〉 (see Eq. (8.2)) in bins of the reconstructed
azimuth angle )SD. To test for a periodic dependence, we have fitted to a sine function (red,
dashed). Since the amplitude is well below 1 g/cm2.

an event. To visualize this process, we compute the average value of ) as a function of �:

〈)〉(�) = 〈〈)〉 − )〉 (�). (8.3)

The quantity 〈)〉(�) is the deviation from the global average at �. In the following, we drop
the argument � for better legibility. In each test, we use the SD data set. We use only events
with a reconstructed energy above 1018.5 eV and reconstructed zenith angle below 60°. Each
fit is performed on the entire data set and not on the binned values.

If possible, we compare the result on the SD data set to the result on the Golden Hybrid
data set. In this case, we do not compute Eq. (8.3) for the Golden Hybrid events, we use

) = Δ) = )FD − )NN. (8.4)

A Corrections for the SD geometry

Until now, we have assumed that we work with a planar, ideal detector and that there are no
effects that would break the symmetries used for the shower footprint standardization (see
Sec. 5.3.3). In this section, we test the validity of this assumption.

The magnetic field breaks the rotational symmetry of the triangular grid of the SD. There-
fore, we have to check for the dependence of any observable on the azimuth angle )SD in
our predictions (see Fig. 8.3). We test for periodic behavior using a sine fit function (see
Eq. (A.11)). The amplitude of the sine-function is below 1 g/cm2 (see Table D.2). Therefore,
we do not correct for this behaviour.

In Sec. 7.1.5.B, we showed that the most essential part of the shower footprint lies in the
region of the hottest station, denoted as �0, and the first crown �1. In simulations, all PMTs
of the WCD stations work. This is not the case in real data (see Fig. D.37). There are no
events in which all PMTs in �0 and �1 in all stations operate at the same time. In Fig. 8.4,
we demonstrate that not working PMTs have an impact on our predictions. Fewer working
PMTs correlate with larger predictions of -max. However, for more than 80% of working
PMTs, which is the case for most events, the deviation is relatively small (see Fig. D.37).
Therefore, in the region of interest, we find no strong dependence of the -max prediction on
the number of working PMTs of �0 and �1.

In the simulation study, we did not account for the individual height of the SD detectors
above sea level. The real SD array, however, has a slight tilt. Due to attenuation, however,
the signal distribution depends on the height of our detectors. Since the network also uses
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8.1 Transition from predictions trained on simulations to measurements
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Figure 8.4: Deviation from average behavior 〈-max〉 (see Eq. (8.2)) in bins of the fraction of
working PMTs in the hottest station and the first crown, denoted as �0 and �1 respectively. The
horizontal gray lines mark 5 g/cm2 (dotted), 0 g/cm2 (dashed), and 5 g/cm2 (dotted). In the
region of the main bulk of data, above 80%, we do not find noticeable deviations (see Fig. D.37).
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Figure 8.5: Deviation from average behavior 〈-max〉 (see Eq. (8.2)) in bins of the average detector
height 〈Idet〉 . The horizontal gray lines mark 5 g/cm2 (dashed) and 5 g/cm2 (dashed). We find
a step-like transition between high and low 〈Idet〉 . This behavior is well approximated by a
tanh-fit function (red, dotted).

the signal distribution to predict the targets, we test for this effect by computing the average
height of all participating detectors of an event 〈Idet〉 . In Fig. 8.5, we depict 〈-max〉 as a
function of 〈Idet〉 . We find a step-like dependence on the average detector height. For
detectors at higher altitudes, -max is under-predicted. For lower 〈Idet〉 , on the other hand,
-max is slightly over-predicted. We correct for this step-like deviation using a tanh-like
function in Eq. (A.12).

The lower average predictions for -max could arise from the fact, that the shower is more
attenuated at stations at lower height above sea level, and thus the distance in slant depth of
the detector the shower maximum is increased. However, the effect could also arise from the
tilted geometry of the SD array. Only few events of the whole data set suffer from this effect.
Hence, although, we could correct by using another step function, we refrain from doing it.

B Corrections due to detector aging

The signal shape of the WCD stations changes over time due to aging effects (see Sec. 5.2).
The most simple shape parameter, which measures this change, is the so called area over
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Figure 8.6: Deviation from average behavior 〈-max〉 (see Eq. (8.2)) in bins of the average area
over peak 0p for events in the SD (black) and Golden Hybrid (blue) data set. The vertical line
(gray, dashed) marks the 0p used in our simulation library. In the region containing the most
data, we find a linear relationship between the deviation and the average area over peak. We
have fitted a linear function (red dashed) to correct for it.

peak 0p. Since each PMTs in an event has a unique value, we calculate the average value
of all area over peak values 〈0p〉 and test for dependencies (see Fig. 8.6). We find a linear
relationship between 〈0p〉 and 〈-max〉 in the region containing over 95% of the data (see
Fig. D.39) for the SD and the Golden Hybrid data set. To correct this behavior, we fit a linear
function to -max〉 as a function of 0p (see Eq. (A.10)). The values outside of the 0p interval
[2.7, 3.5] show substantial deviations from this linear relationship. Compared to Fig. D.39,
this deviation is mainly caused by the low statistics. Since the SD and Golden Hybrid results
agree, we disregard the regions in 0p without obvious linear behavior.

In the following, we show that the 0p correction removes the dependence on aging suffi-
ciently. We compute the time an event has been detected by converting the Global Positioning
System (GPS) time stamps taken from Offline to Universal Time Coordinated (UTC) time.
Ignoring the difference in leap seconds{2}, we use

UTC = UTC(1980, 1, 6) + GPS (8.5)

to perform the conversion. We find that the 0p correction removes the non-linear dependence
on the time of detection almost completely (see Fig. 8.7).

C Corrections due to atmospheric conditions

All of the CORSIKA-based air shower simulation libraries used for the training of the NNs are
simulated under the same atmospheric conditions. However, the temperature ), pressure %,
and the air density � at the observatory are not constant. They depend on the local weather
conditions and the climate in the Pampa Amarilla.

The atmospheric parameters depend on the day-night cycle (see Fig. 8.8) and the time of
the year (see Fig. 8.9). In both cases, there is a periodic dependence of 〈-max〉 on the time of
the day and the day of the year, respectively. The effect of the day-night cycle is smaller than
that of the seasonal variations. By fitting a sine function (see Eq. (A.11)) to the day-night
cycle, we find an amplitude of 1 g/cm2. If we do the same to the seasonal variations, we
obtain an amplitude of about 2 g/cm2. To generate the plots, we used the UTC time of each
event (see Eq. (8.5)), ignoring the time zone. For the day-night cycle, we removed the date.

{2}Until 2020 there is only a difference of a couple of seconds.
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Figure 8.7: Deviation from average behavior 〈-max〉 (see Eq. (8.2)) in bins of the time of detection
for the raw events (black) and events that have been corrected using the area over peak correction
from Fig. 8.6 (red). The horizontal gray lines mark 5 g/cm2 (dotted), 0 g/cm2 (dashed), and
5 g/cm2 (dotted). After correcting for the area over peak dependence, the SD data set shows no
dependence on the time of detection anymore.
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Figure 8.8: Deviation from average behavior 〈-max〉 (see Eq. (8.2)) as a function of the time of a
day. We fitted a sine function (dotted, red) to the underlying data. We obtain an amplitude of
1 g/cm2. Note that during calculation of the ‘time of day’ we ignored the time zone.

For the seasonal variations, we removed the year of the UTC time. Hence, in both cases, we
have averaged over many different effects such as the changing lengths of the days and the
aging of the detectors. Therefore, we account for these corrections by adding them to the
systematic uncertainties instead of subtracting the parametrization.

Instead of analyzing the overall change of all atmospheric parameters, we also investigate
the dependence on each one of the atmospheric parameters. We find no obvious functional
dependence for any of the observables on the temperature ) (see Fig. D.40) and the air
density � (see Fig. D.41). In both cases, we obtain a result that is in agreement with zero in
the regions containing a majority of the data (see Fig. 5.4). Only for extreme values of the
pressure or the temperature, we experience slight deviations from the mean.

For the atmospheric pressure, 〈-max〉 shows non-linear dependence (see Fig. 8.10). At low
atmospheric pressure, the NN predicts larger than average values of -max. To ensure that
this is not a natural effect due to the change in overall air density, we added Δ-max from the
Golden Hybrid data set to the analysis. Both data sets show similar behavior. This indicates
that this is an effect we have to correct for. We use a quadratic function (see Eq. (A.10)) to
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Figure 8.9: Deviation from average behavior 〈-max〉 (see Eq. (8.2)) as a function of the day of a
year. We fitted a sine function (dotted, red) to the underlying data. We obtain an amplitude of
2 g/cm2.
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Figure 8.10: Deviation from average behavior 〈-max〉 (see Eq. (8.2)) as a function of the pressure
% (black, pluses). We added Δ-max from the Golden Hybrid data set (blue, pluses) to show that
this is an effect we have to correct for. We have fitted a quadratic function to the underlying data
(red, dotted). It reproduced the average behavior very well.

interpolate the dependence.
The higher the zenith angle of a shower, the higher the attenuation of the electromagnetic

sub-component. In the air shower libraries, a model has been used to account for this shower
inclination. However, this model does not portray the atmosphere in Malargüe correctly.
In Fig. 8.11, we see a substantial deviation at high zenith angles. Again, the predictions
on Golden Hybrid events show similar behavior. We model this effect using an exponential
function (see Eq. (A.13)) and correct by usual means.

D Application of corrections

In total, we correct for the dependencies in 〈Idet〉 , 〈0p〉, %, and sin2 �. After applying all
corrections, we analyze the bias of our predictions on Golden Hybrid data. We find a bias of
about 30.5 g/cm2, which is only marginally larger than that found previously in Sec. 8.1.1.
In addition, we have to account for the difference between the phase space of our SD and
Golden Hybrid data set. We compare the average value of the predictions on both data sets.
We obtain a difference of 2.22 g/cm2.

We again shift the corrected predictions using the calibration shift and the shift from
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Figure 8.11: Deviation from average behavior 〈-max〉 (see Eq. (8.2)) as a function of the zenith
angle � in terms of sin2. We added Δ-max from the Golden Hybrid data set (blue, pluses) to
show that this is an effect we have to correct for. We have fitted an exponential function to the
underlying data (red, dotted).

18.6 18.8 19.0 19.2 19.4 19.6 19.8

lg(ESD/eV)

20

30

40

∆
X

m
ax
/(

g
cm

−
2
)

30.50 g/cm2

Golden Hybrid: all

Golden Hybrid: until 31.08.2018

Figure 8.12: Difference Δ-max of corrected NN prediction and -max measurement by FD as a
function of the reconstructed primary energy �SD. The dashed gray line marks the average over
all differences. The black crosses mark the differences for our entire Golden Hybrid data set and
the red crosses the difference for all data taken before 31.08.2018.
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Figure 8.13: Average values of -max (top) and standard deviation �-max (bottom) as a function
of the reconstructed primary energy �SD for the FD measurement (black) and the corrected
predictions of the NN on the SD data set (blue). The solid and dashed line show the expected
behavior (see Sec. 5.4.2) for air showers induced by protons (red) and irons (blue) using the
hadronic interaction models QGSJ and EPOS, respectively.

the phase-space-mismatch (see Fig. 8.13). The first moment, 〈-max〉 agrees well with the
prediction of the NN on the SD data set. The second moment, as predicted by the NN, still
lies above that predictions of the FD.

8.1.3 Correction for relative muon content and logarithmic mass number

We follow the same procedure as discussed in Sec. 8.1.2 to find the corrections for the relative
muon content 'μ and logarithmic mass number ln� prediction of the NNs. Since there is
no direct measurement of any of the observables, we solely rely on Eq. (8.3) used on SD
predictions and cannot cross-check any of the results with the Golden Hybrid data set. To
shorten this section, we only discuss notable differences in the corrections of -max.

Relative muon content We find a similar behavior for the relative muon content'μ as observed
for -max. We have attached the figures for all corrections that show no difference from the
-max counterpart in Figs. D.42 to D.51. The y-axes are flipped due to the missing global
pre-calibration shift in Sec. 8.1.1.

To correct 'μ, we use an additional correction (see Fig. 8.14). The deviation 〈'μ〉 shows a
dependence on the number of active PMTs in �0 and �1. We model the correction with an
exponential fit function (see Eq. (A.13)).
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Figure 8.14: Deviation from average behavior 〈'μ〉 (see Eq. (8.2)) as a function of the fraction
of working PMTs in the HS and the first crown, denoted as �0 and �1 respectively. This plot
is equivalent to that in Fig. 8.4. For lower fractions the relative muon number 'μ is on average
over-predicted. We model the correction with an exponential fit function (dotted, red).
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Figure 8.15: Dependence of the average predicted values of ln� on the zenith angle, � (cf.
Fig. 8.11). The red, dashed line is a best fit of a third-order polynomial fitted to the underlying
data.

Logarithmic mass number Except for the zenith correction shown in Fig. 8.15, all corrections
exhibit similar behavior to that found in Figs. D.52 to D.61. For the reconstructed values of
ln�, the zenith dependence is parameterized by a cubic polynomial (see Eq. (A.10)).

8.2 Estimation of mass composition of UHECRs

In this section, we use the corrected predictions derived in Sec. 8.1 to estimate the mass
composition of UHECRs on a high-quality subset of the SD data set.

8.2.1 Quality selection for the SD data set

We base most of the quality cuts on regions of the phase space that lie outside of normalcy. If
the Auger observatory works under extreme conditions, e.g., at too low or high temperatures
or for average area-over-peak values outside of the core region, it is not clear how the signal
distribution on the ground level is influenced. Most of the time, these regions coincide
with regions of low statistics, which makes it impossible to account for the effects. We have
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Table 8.1: Overview of the quality cuts on the SD data set. The first column is an identifier and
the second column the name of the cut. In the third column is the number of remaining events
in the data set. The fourth column shows the percentage of remaining events after the cut and
the final column the percentage of remaining events if compared to a reference column. We
reset the total loss percentage after the second row due to the severity of the energy cut. The
quality cuts after the energy cut amount to a loss of 15% of the SD data set.

size of data set last cut/% remaining events/%

a SD data set 1935850 100 100
b energy 169960 8.78 8.78

c area over peak 164337 96.69 96.69
d fraction pmts in �0 and �1 159177 96.72 96.07
e height of detectors 157174 98.74 92.48
f pressure 149567 95.16 88.00
g density 145712 97.42 85.73
h temperature 144528 99.19 85.04

tabulated the effect of all cuts in the order of appearance in Table 8.1.
We remove the events with an average area over peak value not inside the interval

[2.75, 3.45] (see Row 8.1.c). We motivate this with the result in Fig. 8.6. Outside the chosen in-
terval, the linear relationship does not hold. The interval coincides with that found in [P:104].
We only keep events where at least 80% of the PMTs inside the first crown are working (see
Row 8.1.d). By doing this, we assume to obtain an accurate estimate of the signal traces. We
remove events that exhibit very large or very low average detector heights (see Row 8.1.e).
All events below 150 m or above 100 m are cut away. To ensure stable working conditions, we
also cut the tails of the distribution of the atmospheric parameters (see Rows 8.1.f to 8.1.h).
We cut away all events outside of the 2� regions of the original distributions of pressure %, air
density �, and temperature ) (see Fig. 5.4). Since the atmospheric parameters are correlated,
the effectiveness of the cut is reduced with each additional cut. In addition, we remove 16
events, which showed unusual behaviour in earlier work [P:98].

In contrast to [P:104], we do not perform a fiducial cut in the energy-zenith plane. This
choice leaves us twice as many events after the cuts as in the preceding analysis.

8.2.2 NN prediction of mass sensitive targets

Applying the corrections derived in Sec. 8.1.2 on the predictions of the NNs and the quality
cuts on the SD data, we obtain results for the depth of the shower maximum -max, the
relative muon content 'μ, and the logarithmic mass number ln�. In this section, we review
the systematic uncertainties for each observable independently and, afterward, discuss the
predictions. The average value of one of the three observables is referred to as the first
moment and the standard deviation of a target is referred to as the second moment.

A Prediction of the depth of the shower maximum

At first, the contributions of systematic uncertainties to the first moment of the -max distri-
bution are analyzed. Since we have calibrated the predictions of the NN against the Golden
Hybrid data set, there is no need to account for all of the systematic uncertainties derived
in Sec. 7.3.3. Instead, the uncertainties from the -max measurement of FD are used. These
sum up to approximately 10 g/cm2, varying only slightly with the energy (see [P:53]). For
simplicity, we use a constant value of 10 g/cm2 for the entire energy range. This value is
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much smaller than the systematic uncertainty we would have obtained from Sec. 7.3.3. In
addition to the uncertainty of the -max measurement, the uncertainties due to the calibration
procedure have to be taken into account. The first calibration constant used to adjust the
predictions using the Golden Hybrid data set has an uncertainty of about 0.6 g/cm2. The
second calibration constant that accounts for the different phase spaces of Golden Hybrid
and SD has an uncertainty of about 0.8 g/cm2. These are combined to a conservative esti-
mate of 2 g/cm2. Moreover, the amplitudes from the daily (see Fig. 8.8) and seasonal (see
Fig. 8.9) variations are considered as another source of systematic uncertainty in our predic-
tions. They add up to about 3 g/cm2. Summing over the absolute values, we obtain a total
systematic uncertainty of 15 g/cm2 over the entire energy range.

For the second moment �-max , there is no way to directly calibrate against the FD mea-
surements. Therefore, we use the results of Sec. 7.3.3. To account for the uncertainty due
to the high-energy hadronic interaction, we use the parameterized loss of precision shown
in Fig. 7.49. The uncertainty ranges from 3.2 g/cm2 at 1018.5 eV to 1.6 g/cm2 at 1020.0 eV.
Similarly, the parameterizations in the simulation study shown in Fig. 7.51 are used as
asymmetric uncertainties due to the unknown composition. We obtain a constant lower
uncertainty of 2.1 eV and an energy-dependent upper uncertainty going from 12.3 g/cm2 at
1018.5 eV to 0.4 g/cm2 at 1020.0 eV. We obtain the total lower and upper uncertainty of the
second moment by summing up the absolute values treating the symmetric uncertainty from
the high-energy hadronic interaction as an equally valued lower and upper uncertainty.

Using the estimates for the systematic uncertainty, we can compare the first and second
moments of the corrected predictions for the quality-selected events to the FD reconstruction
(see Fig. 8.16). The energy bins are updated to exhibit the behavior of the first and second
moments of the NN predictions at the highest energies. To ensure enough statistics, each
bin contains at least 40 events. The distributions of the NN predictions as a function of the
primary energy are depicted in Fig. D.62. The first moment of the NN predictions agrees
well with the first moment of the FD measurement at the available energy bins. At higher
primary energies, the first moment of the NN predictions implies an increasingly heavier
composition. This behavior is in agreement with previous studies [P:100, P:104].

The second moment of the NN predictions also agrees with that of the FD measurements
within uncertainties. However, in most of the energy bins, the second moment of the
predictions of the NN is slightly higher. This difference is especially noticeable in the last
two FD energy bins, where the expected values of both second moments lie over 5 g/cm2

apart. At the highest energies, in the last four energy bins of the NN predictions, the width
of the second moment seems even to increase again. This result is not in agreement with the
study conducted in [P:104] (see Fig. D.63). All of the second moments computed from the
predictions of the NN selected in this work are larger than that from the NN used in [P:104].
To exclude that this is an effect of the fiducial event selection, a similar selection process is
discussed in Appendix A.7, using a slightly stricter condition to find a high-quality subset in
the investigated phase space. However, applying this criteria to our data set does not resolve
the tension between both results (see Fig. 8.17). From the last four bins, only the highest
energy bin is noticeable affected.

There are many differences between the analysis chain used in this work and that used
in [P:104], which makes it hard to point out an apparent cause for this issue. Especially
since the predictions of both of the NNs have shown a similar precision and primary-
dependent bias in simulation studies. The difference could be caused by training on a data
set simulated with the hadronic interaction model QGSJ. Compared to EPOS, which is used
in [P:104], QGSJ produces larger values of fluctuations for -max. This could impact the
training process. Another explanation could be due to the different choices of -max. For
air shower simulations, Offline saves two different reference values for -max. One of these

193



8 Global Shower Properties from SD and Golden Hybrid Data

700

750

800

850

〈X
m

ax
〉
/
(g

cm
−

2
)

after corrections, after cuts

systematics

statistics

18.50 18.75 19.00 19.25 19.50 19.75 20.00 20.25

lg(ESD/eV)

0

10

20

30

40

50

60

70

80

σ
X

m
ax
/(

g
cm

−
2
)

51489 19632 9638 4577 1877 697 187 46
31488 13696 6702 2865 1116 413 92

FD

NN, SD

Figure 8.16: The first (top) and second moment (bottom) of-max as a function of the reconstructed
energy �SD for the FD measurement (black) and the corrected predictions of the NN (cyan) on
the quality-selected SD data set (see Table 8.1). The dashed and solid lines show the expected
behavior (see Sec. 5.4.2) for air showers induced by protons (red) and irons (blue) using the
hadronic interaction models QGSJ and EPOS, respectively. The numbers in the bottom panel
indicate the amount of events in each of the energy bins. The small cyan points in the top panel
depict single events in the highest energy bin.
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Figure 8.17: First (top) and second moment (bottom) of -max as a function of the reconstructed
energy �SD for the NN of the study in [P:104] (black) and the corrected predictions of the NN
(cyan) on the quality-selected SD data set (see Table 8.1) for events passing the fiducial event
selection defined in Appendix A.7. The dashed and solid lines show the expected behavior (see
Sec. 5.4.2) for air showers induced by proton (red) and iron (blue) primaries using the hadronic
interaction models QGSJ and EPOS, respectively. The numbers in the bottom panel indicate the
amount of events in each of the energy bins.
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-max values is accessible via GenShower.XmaxGaisserHillas, denoted -g
max, which is taken

directly from the CORSIKA files. The other one, GenShower.XmaxInterpolated, denoted
- i

max, is computed in Offline. In this work, the former depth of the shower maximum was
used as true value in the simulations. However, in [P:104], a mix of both-max values has been
used. Switching from -

g
max to - i

max to evaluate the NN predictions reduces the bias of all
primaries without changing the precision noticeably (see Fig. D.64 and Fig. D.66). Moreover,
the discrepancy could be caused by the transition from simulation to measurements. In
Fig. D.65 and Fig. D.67, the precision and bias for a NN trained on the setup described in
Row 7.1.i are discussed. The network was disregarded in favor of other networks due to its
sizeable proton-iron bias at the highest energies (see Sec. 7.2). Even though the predictions
of the disregarded NN are worse than the predictions of the – for this study – selected NN
on simulations, the second moment of the disregarded NN aligns much better with the
second moment of the NN used in the preceding study for energy values above 1018.8 eV (see
Fig. 8.18). To resolve the discrepancy in the second moment, more studies are required.

Even though there is a tension in the second moment, the first moments of both NN-based
studies agree well, with and without the fiducial event selection (see Figs. 8.17 and D.63).
Therefore, the NN-based approach discussed in this thesis can be considered equivalent to
the previous approach. Since both NN approaches are fundamentally different, this allows
for further cross-checks of the predictions of both methods. Furthermore, the much faster
training time of the NNs setups in this thesis could also benefit the slower setup in [P:104],
making hyperparameter searches more viable.

B Prediction of the relative muon content

In this section, the systematic uncertainties for the 'μ predictions are estimated. Then,
results on reconstructed values for 'μ from the NN are discussed.
'μ prediction of the NN cannot be calibrated, since there is no direct measurement over the

entire energy range. Therefore, the results of the simulation study described in Sec. 7.3.3 are
used to account for biases in the NN-based approach. We obtain a systematic uncertainty of
0.03 over the entire energy range (see Row D.1.g) due to the high-energy hadronic interaction
(see Fig. D.20). Similarly, we treat the bias of proton and iron events in Fig. D.22 as the lower
and upper uncertainties due to the unknown composition, respectively. Both are energy-
dependent. The lower uncertainty ranges from 0.07 at 1018.5 eV to 0.01 at 1020.0 eV. The upper
uncertainty ranges from 0.08 at 1018.5 eV to 0.03 at 1020.0 eV. In addition, we conservatively
estimate the uncertainty due to daily and seasonal variation as 0.01. The same procedure as
in Sec. 8.2.2.A is applied to estimate the systematic uncertainties of the second moment of the
'μ predictions. We obtain a symmetric, energy-dependent uncertainty for the high-energy
interaction models, which goes from 0.016 at 1018.5 eV to 0.003 at 1020.0 eV, and an asymmetric
uncertainty for the unknown composition. The lower uncertainty has a constant value of 0.02
over the entire energy range. The upper uncertainty ranges from 0.056 at 1018.5 eV to 0.019
at 1020.0 eV. In both cases, the total systematic uncertainties are computed in accordance to
Sec. 8.2.2.A .

We present the first and second moments of corrected predictions of the quality selected
data set (see Table 8.1) in Fig. 8.19. The distributions of 'μ for the individual events in the
corresponding energy bins are depicted in Fig. D.69. The first moment of the predictions is
in conflict with previous studies, e.g., the muon deficit observed in very inclined air showers
(see Fig. 2.7). Even though the 'μ used for training is not entirely comparable to the '�

in studies like [P:50], commonly, the relative muon contents are far above the predictions
for iron of the hadronic interaction models. Hence, it is possible that due to the deficit of
muons in simulations, the first moment of the predictions could be higher than the pure iron
reference, represented by the dashed blue line. However, this is only the case for energies
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Figure 8.18: The first (top) and second moment (bottom) of-max as a function of the reconstructed
energy �SD for the NN of the study in [P:104] (black) and the corrected predictions of a different
NN (cyan) on the quality-selected SD data set (see Table 8.1) for events passing the fiducial event
selection defined in Appendix A.7. The dashed and solid lines show the expected behavior
(see Sec. 5.4.2) for air showers induced by protons (red) and irons (blue) using the hadronic
interaction models QGSJ and EPOS, respectively. The numbers in the bottom panel indicate the
amount of events in each of the energy bins.
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above 1019.5 eV. Primarily, this is attributed to the ‘averaging-towards-the-mean’ behavior of
the NN shown in Sec. 7.2.5. A potential cause of this lies in the data set used for training.
High 'μ values are only found in few of the simulated air shower events. Only a fraction of
about 30% of the iron events exhibits 'μ values above 1.3. The NN resists to predict values
of 'μ outside of its known phase space to optimize the loss in the training process. This
reasoning is supported by the behaviour depicted in Fig. D.68. Even at the highest energies,
the network underestimates the relative muon content. Another reason for this behaviour
could be the choice of reference for 'μ. By using a value directly taken from the CORSIKA
files, it might be harder to relate the information of a simulated shower footprint to the muon
content. In preceding investigations, 'μ has been determined by simulated detector signals.
For subsequent studies, we propose the same approach to cross-check this result.

Even though the absolute value of the first moment seems to be too small, the overall trend
of the first moment is in agreement with the result found in Sec. 8.2.2.A. The first moment
of 'μ implies a trend towards a heavier composition with increasing energy. The second
moment shows a sudden change above 1019.5 eV, increasing again, which could indicate a
transition from a pure composition to a mixed composition at the highest energies. This,
however, is speculative. More studies are needed to draw a final conclusion.

The results of this section imply that a new approach might be necessary to find NNs
that can predict the muon content on measurements. A good starting point for a feasibility
study is the new generation of physics informed NN [P:108] which follow not solely a naive
data-driven approach but also encode physics information in the training setup.

C Direct prediction of logarithmic mass number

Similarly to the 'μ predictions in the previous section, there is no direct way to calibrate the
ln� predictions over the entire energy range. Therefore, we account for the systematic uncer-
tainties due to the high-energy interaction and unknown composition like in Sec. 8.2.2.B. This
time, we only list the contributions. For the first moment, we obtain a symmetric uncertainty
of 0.48 due to the hadronic interaction and an asymmetric, energy-dependent uncertainty
due to the unknown composition, which is 0.82 and 0.97 at 1018.5 eV and 0.73 and 0.20 at
1020.0 eV for the lower and upper uncertainty, respectively. We do not add any contribution
from the daily and seasonal variations due to their smallness. For the second moment of the
ln� prediction, we obtain a symmetric uncertainty due to the hadronic interaction, which
is 0.20 at 1018.5 eV and 0.02 at 1020.0 eV, and an asymmetric one to account for the unknown
composition. The lower uncertainty is 1.12 over the whole energy range, and the upper
uncertainty goes from 0.38 at 1018.5 eV to 0.09 at 1020.0 eV.

From the -max measurements of FD, we estimate the first moment of ln� using the
hadronic interaction model QGSJ. We use this estimate to cross-test the direct NN prediction
of ln�. Due to the muon deficit, we expect an overestimation of ln� in data. We test this
proposal by subtracting the value of the first moments in the energy interval of decadic log-
arithmic energies between [18.7, 18.8] of the ln� derived from the -max measurement from
the raw NN predictions. The resulting discrepancy amounts to Δ ln� = 2.27. To compare
the first moments of both methods, we subtract this difference from the raw predictions of
the NN (see Fig. 8.20)). In Fig. D.70, we have depicted the distributions corresponding to the
15 bins of the raw ln� predictions. The shifted estimates of the first moment agree with that
of FD within the uncertainties of both methods. Beyond the energy bins of the FD estimate,
the first moment indicates a further increase in the average primary particle masses of CRs,
supporting the findings presented in [P:100]. At the highest energies, we obtain an average
logarithmic mass number of about 2.0 for the shifted predictions of the NN on the hadronic
interaction model QGSJ. The systematic uncertainty of the second moment is very large, thus
making the interpretation uncertain. Still, if only the measured values are considered, we

198



8.2 Estimation of mass composition of UHECRs

0.9

1.0

1.1

1.2

1.3

1.4

1.5

1.6

〈R
µ
〉

systematics statistics

18.50 18.75 19.00 19.25 19.50 19.75 20.00 20.25

lg(ESD/eV)

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

σ
R
µ

51489 19632 9638 4577 1877 697 187 46
31488 13696 6702 2865 1116 413 92

NN, SD

Figure 8.19: First (top) and second moment (bottom) of 'μ as a function of the reconstructed
energy �SD for the corrected predictions of the NN on the quality-selected SD data set (cyan,
see Table 8.1). The dashed lines show the expected first and second moment (see Sec. 5.4.2)
for air showers induced by protons (red) and irons (blue) using the hadronic interaction model
QGSJ, respectively. The numbers in the bottom panel indicate the amount of events in each of
the energy bins.
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are able to check for trends. Until an energy of 1019.7 eV, the second moment is continuously
decreasing. If the first moment is taken into consideration, this trend supports a change
towards a more pure composition comprised of more massive particles. For energies above
1019.7 eV, however, there is a sudden increase that coincides with the plateau in the first mo-
ment. This flattening implies a constant composition at the highest energies and is similar
to the results in Sec. 8.2.2.B.

Using the reconstructed values of -max from Sec. 8.2.2.A and 'μ from Sec. 8.2.2.B, we can
compute additional estimates for ln� with the methods described in Sec. 7.2.5. We use 'μ,
assuming that the predictions are suffering from the muon deficit in the form of a global shift
by an unknown value. We obtain four different estimates for the logarithmic mass number
(see Fig. 8.21). The absolute values of the estimates do not agree with each other. To test if
the differences between the direct ln� predictions and the indirect estimations are due to a
constant shift, we compute the differences between the NN-based direct prediction and the
other methods. Excluding the last bin due to the insufficient statistic, we find that from all
indirect estimators, the method using both the -max- and '� predictions ln� seems to be the
most stable. Moreover, analyzing the second moment, there is a good agreement with the
second moment from the direct prediction (see Fig. 8.22). Since the second moment does not
change under global shifts, we can estimate the average increase in the 'μ prediction which
would reproduce the same absolute values of the first moment of ln� if we use the method
based on -max and 'μ. To do this, we use the calibrated values of -max. We obtain a positive
shift of 0.124 to reproduce the same average value as the direct ln� prediction. Hence, using
this shift makes predictions of all independent NNs self-consistent.
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Figure 8.20: The first (top) and second moment (bottom) of ln� predicted by the ## (cyan) and
from FD (black) using the hadronic interaction model QGSJ as a function of the reconstructed
energy �SD for the corrected predictions of the NN on the quality-selected SD data set (see
Table 8.1). The predictions of the NN are shifted in such a way that the third bin of the first
moment has the same value than the third bin of the FD estimate. The numbers in the bottom
panel indicate the amount of events in each of the energy bins.
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the raw predictions of the NN also used in Fig. 8.20. In this case, the values are not shifted.
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brackets. Right: Difference of the indirectly reconstructed average ln� values and the directly
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Figure 8.22: Second moment of ln� predicted by various NN-based methods in bins of the
reconstructed energy. The black markers are the predictions of the NN also used in Fig. 8.20.
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9 Conclusion

In order to understand the world, one has to turn
away from it on occasion.

(Albert Camus )

The ennui of writing conclusions for scientific papers
as an abstract sculptur[.]

DALL·E 2 prompt:

In this thesis, I performed an analysis of extensive air shower data based on neural networks.
I studied both station-level and event-level data focusing on the general development of
methods to optimally estimate the mass composition of UHECRs. A central part of the
analysis was performed on extensive simulations of the detector responses of the surface
detector of the Pierre Auger Observatory. I validated and contextualized preceding studies,
which focused on either station-level or event-level analysis of air-shower data. I supple-
mented previous work and investigated new applications for the NN-based approaches in
air shower physics. In addition, I validated the added value of the scintillator surface detec-
tors of AugerPrime for various NN-based reconstruction approaches. At last, I applied the
NNs-based event-level reconstruction mechanism I developed to Auger data to determine
the mass composition of UHECR based on three separate observables.

Station-level analysis The main objective of the station-level analysis was to extract the local
muon signal from the information provided by single SD stations alongside global shower
observables since the muon signal distribution at the ground contains valuable information
about the primary mass of the cosmic ray starting the air shower. Two different approaches
proved themselves adequate for this task.

First, I studied a set of scalar observables to estimate their relation and correlation to
the signal of the muonic shower component deposited in the SD stations of the Auger
Observatory. I revisited one network architecture in detail, which has been used in one
part of the preceding analysis. I showed that the performance of the NN is compatible
with previous results; in the process of validating this approach. In the course of this,
I demonstrated which of the possible input parameters are most sensitive to the desired
output. To estimate the added value of an NN-based approach compared to an analytical
model, I created multiple reference models to benchmark the NN performance. I showed
that the NN approach has a slightly increased performance with respect to a linear fit model
based on polynomial features generated up to the second order from the same inputs used
for the NN. The analytical model, however, requires much fewer parameters than an NN of
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comparable performance and is thus a valid and straightforward alternative as a model.
Secondly, I revisited and extended another LSTM-based NN architecture, which has been

utilized to infer the muon time signal in the WCDs in the past, to assess the effect of adding
SSD signal information on the reconstructed muon signal. To do this, I used a restricted data
set solely consisting of UUB detector station responses from air showers induced by protons
using the hadronic interaction model QGSJ. I confirmed that the NN-based approach works
using UUB data sub-sampled to a UB representation, as shown in the preceding analysis.
Again, I created a reference model to quantify the performance of the network on the
estimation of the total muon signal. I found that the NN-based approach outperforms the
reference model for low muon signals but has a comparable performance for larger signals.
Future analyses can exploit this to construct hybrid models working in different intervals of
the distance to the shower core.

Adding the SSD trace signal for the training and inference did not significantly change
the performance of the NNs. However, I discovered that by adding the fraction of the trace
integrals of the SSD and WCD signals, the NN predictions outperform the NN using only
WCD information. Therefore, I identified this fraction as a potential candidate for further
investigation.

In addition, I did a feasibility study on using NNs to count the muons passing through
the UMD. I developed a new NN architecture based on CNN, which utilizes weight sharing
to account for the design of the UMD. By applying it to the binary traces of a small data
set, I obtained a result that is less biased and more precise than that of the standard muon
counter. For intermediate values of the actual number of muons, it also outperformed the
predictions of the corrected muon counter. The shortcomings of the NN-based method are
most likely due to the extremely low amount of available data. Therefore, more studies have
to be done to further probe the procedure.

Event-level analysis on simulations The primary goal of the event-level analysis was to provide
a reliable NN-based analysis tool for data taken by the SD array of the Pierre Auger Obser-
vatory to estimate mass-sensitive observables, such as the depth of the shower maximum
-max and the relative muon content '� of air showers. As the starting point for the analysis,
I utilized an earlier version of the NN architecture, called AixNet, from a more simple pre-
ceding event-level analysis. In contrast to later iterations, I did not encode the symmetries of
the SD array in the network architecture but developed a novel standardization procedure
for shower footprints. This procedure removes over 90% of the phase space of our input data
which streamlines the training procedure, enables the use of a simple network architecture,
and improves the quality of network predictions. I showed that by standardizing the shower
footprint before the training, I obtained superior network predictions without the additional
cost of a more complex architecture. I gained an overall improvement of about 2 g/cm2 over
the entire investigated energy range. All NNs for the event-level analysis have been trained
using data set simulated using the hadronic interaction model QGSJ to cross-test the results
of the preceding analysis that used EPOS.

The simpler network design allowed the training of large numbers of NNs in a short
amount of time which enabled the study of how different modifications of the NN archi-
tecture affect the precision and primary-dependent bias of the NN predictions. Based on
this architectural studies, I crafted a modified network architecture using additional inputs,
such as the plane-front shower time. Using these architecture, I trained multiple sets of NNs
on the standardized footprint data for the reconstruction of various high-level observables.
Namely, I analyzed the predictions of the zenith angle, the primary particle energy, the depth
of the shower maximum, the relative muon content, and the logarithmic mass number. The
NNs based on the modified architecture were able to reconstruct the zenith angle as well as
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the primary particle energy better than the SD standard reconstruction. Moreover, I showed
that NNs trained on the modified architecture outperform NNs trained on a baseline archi-
tecture for the other three targets if sets of NNs are compared to each other. To select one
NN from each set for the application on measurements, a metric was used that accounts
for the proton-iron bias and the precision of the predictions. The chosen NNs models all
use a CNN-based sub-network. To estimate the uncertainty of the predictions of the NNs,
I developed a method to estimate the uncertainty of a single network prediction due to the
detector setup and the non-determinism of the training process. In addition, I assessed the
systematic uncertainties arising from the high-energy hadronic interaction and the unknown
composition. Predicting on a data set simulated with the hadronic interaction model EPOS,
I found a shift of 14 g/cm2 for -max, 0.03 for 'μ, and 0.48 for ln�.

Afterward, I studied the effect of the UUB electronics and the addition of the SSD on the
predictions of NN-based approaches. Due to the finer sampling of the UUB compared to
the UB electronics, NNs using UUB information exhibit, on average, a slight improvement
in resolution and inter-primary bias of predictions of the depth of the shower maximum.
To estimate the effect of adding the SSD to the inputs of the baseline network architecture,
I showed that various downsampling strategies yield the same result. Comparing the per-
formance of NNs using additional, downsampled SSD traces to that of the previous results,
I demonstrated that the additional SSD improves the predictions of the primary particle
energy, the relative muon content, and the logarithmic mass number. In all of these cases,
the enhancement of the predictions came from the better separation of the used primaries.
This result shows the potential of the SSD for primary-independent studies of air-shower
events.

In the end, I applied the results of the simulation analysis in a feasibility study. Using a
small data set comprised of only events induced by proton, iron, and photon primaries and
a classifier based on the baseline architecture, I showed that adding the SSD improves the
separation of hadronic and photon events. Moreover, comparing two sets of NN trained with
and without additional SSD information revealed that using the SSD improved the expected
performance of NNs trained for this task. The average gain from analyzing the ensembles of
NNs was about three percentage points. Even though the first results are promising, future
studies are needed to determine if the approach can be applied to the search of photons in
data.

Event-level analysis on measurements Finally, I applied the selected NN models for the pre-
diction of the depth of the shower maximum -max, the relative muon content 'μ, and the
logarithmic mass number ln� from the simulated study on measurements taken by Auger.
Because of the difference between air-shower simulations and data, I corrected all predictions
for unphysical biases in all target observables separately. To make the final comparisons, I
selected a high-quality subset of the available SD data.

From all of the studied targets, the depth of the shower maximum is the only one that
can be directly measured. Using the expected value of high-quality FD data, the corrected
predictions of the NN showed a mostly constant offset of 30 g/cm2 over the entire energy
interval. After corrections, the first and second moments of the predictions from the neural
network were discussed as a function of the energy and compared to FD measurements.
Above 1019.6 eV, the values of the last four energy bins of the second moment are higher
than in the previous study on NNs. Applying an additional fiducial event selection did not
resolve the issue. I discussed potential reasons for these tensions that have to be investigated
in future studies.

Estimating the first and the second moment of 'μ as a function of energy, the average
value of 'μ consistently lies slightly below the expected relative muon number of air showers
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9 Conclusion

induced by iron primaries. This result is surprising, because it shows a smaller muon deficit
than expected from preceding analyses. I attributed this behavior to averaging-toward-the-
mean. The selected NN can not predict extreme values of 'μ due to the lack of training data
without muon deficit.

This study is the first time a NN has been used to predict the atomic mass of UHECRs
in terms of ln� directly from shower footprints. Comparing the first of the corrected ln�
predictions of the NN to that derived from the QGSJ transformed -max values measured by
FD yields an excellent agreement. At the highest energies, the larger number of analyzed
events allows us to resolve a plateau showing an almost constant value of 1.9 between 1019.6 eV
and 1019.9 eV. Moreover, using the results of the -max and 'μ analysis to obtain additional
predictions for ln�, I could determine that using the calibrated value of -max and shifting
'μ up by 0.12, the combined prediction of -max and 'μ show a similar result to the direct
ln� prediction.

Summarizing, all of the studies performed in this work imply that the composition of
UHECR becomes increasingly heavy with increased primary energy, which is in agreement
with previous analyses. However, the result of this work is also compatible with the inter-
pretation that at the highest energies the composition of CR becomes more mixed again.
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A Definitions and Derivations
My name is immaterial,’ she said. That’s a pretty
name,’ said Rincewind.

(The Colour of Magic, Terry Pratchett)

A.1 Notes on additional statistical quantities

We have copied the following definitions from [T:J]: Let {G1 , . . . , G# } be a set of independent
values drawn from an arbitrary distribution and G a random variable corresponding to this
distribution. Then, the =th raw moment is

E= = 〈G=〉 , (A.1)

and the =th central moment is
�= = 〈(G − E1)=〉 , (A.2)

where 〈·〉 returns the expected value (see Eq. (4.34)). Moreover, we define the =th raw
moment as

$= =
1

#

∑
G=8 . (A.3)

and the =th corrected moment as

<= =
1

#

∑
(G8 − $1)= . (A.4)

For all possible distributions the variance VAR of the variance is then

VAR(<2) = VAR
(
$2 − $2

1

)
=

(# − 1)2
#3

(
�4 −

# − 3

# − 1
�2

2

)
. (A.5)

From this, we obtain for all possible distributions

SE
( =

= − 1
($2 − $2

1)
)
=

1√
#

√
�4 −

= − 3

= − 1
�2

2
(A.6)

as standard error for the sample variance. In first-order approximation, the standard error
of the standard deviation is then

SE(
√
�2(G)) ≈ 1

2
√
�2(G)

SE(�2(G)). (A.7)

Using uncertainty propagation, we obtain the variance of the standard deviation via

VAR(
√
�2(G)) ≈ 1

4�2(G)VAR(�2(G)). (A.8)

If we estimate multiple standard deviations from independent subsamples with low sample
sizes, we estimate the expected value of the standard deviation via the variance-weighted
mean to ensure that we do not over-predict and obtain a biased value. We define the variance
weighted average as

〈�〉V =
1∑ 1

VAR(�8)

∑ �8
VAR(�8)

. (A.9)

We also use the variance-weighted average to combine our measurements in the case when
multiple FD telescopes measure the same shower (see Sec. 5.2.2.A).
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A Definitions and Derivations

A.2 Definition of commonly used fit functions

In this thesis, we use a hand full of simple fit functions for modeling the behavior found in
data. Here, we want to introduce the most important of these fit functions and define the
naming of the fit parameters.

We define polynomial fit functions as

%# (G; ?0 , . . . , ?# ) =
#∑
==0

?=G
= , (A.10)

where = is the order of the polynomial %# . We use

((G; ?0 , . . . , ?3) = ?0 + ?1 sin(?2G + ?3) (A.11)

to fit periodic behaviors, such as dependencies on the azimuth angle. If we encounter
step-like behavior, we use a tanh function

)(G; ?0 , . . . , ?3) = ?0 + ?1 tanh(?2G + ?3). (A.12)

We use an exponential function of the form

�(G; ?0 , ?1 , ?2) = ?0 + ?1 exp(?2G), (A.13)

if the underlying data decreases or increases ‘very suddenly’.

A.3 Standardization for an arbitrary choice of unit vectors

The standardization procedure discussed in Sec. 5.3.3, depends on the arbitrarily chosen unit
vectors (see Eq. (5.6)). Here, we provide a way to use this method for any possible set of unit
vectors {u , v} and transformation matrices. Using the regular, Cartesian rotation matrix we
find

X60 = Z−1Xc
60Z ≡ Z−1

(
cos 60° sin 60°

− sin 60° cos 60°

) (
u v

)
, (A.14)

where Z is the transformation matrix which connects G, H (see Eq. (5.6)) with the Cartesian
coordinate system and the superscript “c” marks a Cartesian rotation matrix (clockwise,
60◦). A way to obtain S 9 (9 ∈ {0, 30, 60, 90, 120, 150}) is by transforming the Cartesian
(x-axis) reflection matrix S c

0 :

S 9 = Z−1S c
9 Z = Z−1Xc

9S
c
0X

c
−9Z = Z−1Xc

9

(
−1 0

0 1

)
Xc

−9Z . (A.15)

Alternatively, the correct transformation matrices can be found by selecting a base and
labeling the grid points up to the second crown with the corresponding integer coordinates.
By checking which coordinates the points should have after a certain transformation, we can
find four independent equations that can be used to determine the transformation matrix.

With Eq. (A.14) and Eq. (A.15), we are able to compute the transformed azimuth angle by
using a unit vector which points in the original azimuth direction. Assuming that L is the
final, combined transformation matrix we obtain the relation

cos )tr =

[ (
1
0

)
ZLZ−1

(
cos )
sin )

) ]
. (A.16)

The reflection matrices for the basis are

S0 = −S90 =

(
1 0
0 −1

)
, S30 = −S120 =

(
1 0
1 −1

)
, and S60 = −S150 =

(
0 1
1 0

)
. (A.17)
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A.4 Derivation of SmeLu

In the following, we derive the functional form of the SMELU activation function:

�SmeLu(G; �) ∝
∫
ℝ

dH ReLu(H)Box(2�, G − H)

=

∫ ∞

0

dH HΘ(� + (G − H))Θ(� − (G − H))

=

∫ max(0,�+G)

max(0,�−G)
dH H =

1

2

[
max

(
0, (� + G)2

)
− max

(
0, (� − G)2

) ]
.

A.5 Second moment of depth of shower maximum from simulation data

Using the results in Sec. 5.4.2, we compute the average value for different compositions
comprised of events originating from {p,He,O, Fe}. The mean value is then

〈G〉 =
∑
ℎ

Fℎ 〈G〉 ℎ , (A.18)

where Fℎ is the fraction of primary ℎ and 〈G〉 ℎ is the average value of that primary. For the
standard deviation we get

�2
G =

∑
ℎ

Fℎ�
2
G,ℎ +

∑
ℎ

Fℎ(〈G〉 ℎ − 〈G〉)2 , (A.19)

where �G,ℎ is the standard deviation of the primary ℎ.

A.6 Definition of the baseline architecture

The baseline architecture uses the following architecture:

• Aℛi: CNN, = 5 = 10; RNN, = 5 = 16

• Aℛii: =B = 16, =3 = 4

• Aℛiii: 3 5 = 0.2

• Training: #1 = 64,  = 0.0022, �� = 1

• Other: "B = 5, !C = 120

We listed the CNN- and RNN-based TFE since we use both at different points of Sec. 7.1.

A.7 Definition of zenith-energy cut

The NNs trained using the setups described in Sec. 7.2 show primary dependent biases for
low energies and low zenith angles in simulation data. The NNs cannot accurately predict
the chosen targets in these regions due to the reduced shower footprint sizes. We investigate
if these regions of worse performance influence the NN predictions on measurements by
defining cuts that allow us to remove these parts of the phase space.

We estimate the cuts from the training set of the simulation library defined in Row 5.5.f
following a similar procedure as discussed in [P:104]. We use a different hadronic model
to ensure that we have enough statistics. In contrast to [P:104], we derive the cuts using

221



A Definitions and Derivations

18.0 18.5 19.0 19.5 20.0

lg(ESD∗/eV)

−15

−10

−5

0

5

10

15
∆

X
m

ax
/
(g

cm
−

2
)

EPOSdirect

linear fit

corrected

Figure A.1: Bias of the NN predictions if applied on a data set simulated with the hadronic
interaction model EPOS as a function of the shifted reconstructed energy (see Eq. (7.4)). The
blue plusses show the direct prediction and black crosses the corrected predictions. For the
correction a linear function is fitted to direct predictions (dashed, red, line). The horizontal
dashed line marks a bias of zero. The vertical dashed line marks the energy of full efficiency.

Table A.1: Fit parameters obtained in Appendix A.7. Row A.1.a refers to the shift of the
predictions because the cuts have been estimated from a different hadronic interaction model
than that which have been used for the training.

name fit function ?0 ?1 ?2 shift

a shift Eq. (A.10) (14.41±0.07) g/cm2 (1.73±0.12) g/cm2 - 19.0
b upper cut Eq. (A.10) 2.20±0.58 0.15±0.03 - -
c lower cut Eq. (A.10) 112.04±32.71 11.45±3.38 0.29±0.09 -

the shifted reconstructed SD energy �SD∗ (see Eq. (7.4)) and zenith angle �SD to include
the effects of the composition bias and the reconstruction. Since we trained the NN on
simulations based on the hadronic interaction model QGSJ, we have to correct for the bias
found in Sec. 7.3.3.A. We model the bias with a linear function and subtract it from the
predictions (see Fig. A.1).

We evaluate the cuts in the lg� − sin2 � plane since the simulation data set is distributed
uniformly over [0, sin2 60°] × [18.0, 20.2]. Contrary to [P:104], we define the cut via the
proton-iron bias Δp-Fe (see Fig. A.2) instead of the maximum absolute bias of proton and
iron events. In this way, we account for the negative bias of the iron events. We have chosen
10 g/cm2 as the threshold value making the cut slightly more strict than in [P:104].

To estimate the region where the proton-iron bias is below the threshold, we use the
following procedure. We bin the data set in the lg� − sin2 � plane. For each energy bin, we
determine the first upper and lower sin2 � that fulfill the condition. Therefore, we obtain
an upper and lower cut. We fit a linear function to the upper bin values and a quadratic
function to the lower bin values (see Fig. A.3). Only events whose reconstructed energy and
zenith angle lie between both lines are inside the high-quality phase space. We discard all
other events from the analyzed data set. We tabulated all fit results in Table A.1.
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Figure A.2: Different bias estimates of the corrected predictions (see Fig. A.1) binned in the
lg�− sin2 � plane. The top panels show the absolute bias for proton (left) and iron (right) events.
The bottom left panel depicts the maximum value of the biases in each of the top panels. The
bottom right panel shows the proton-iron bias Δp-Fe for each bin. The white dashed lines mark
the full efficiency boundary of the SD in the phase space.
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Figure A.3: Upper (red) and lower (blue) bound determined from the bins in Fig. A.2 with
the method described in Appendix A.7. The color-coded dashed lines represent the fits to the
corresponding sin�SD bins.
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Some books are to be tasted, others to be swal-
lowed, and some few to be chewed and digested.

(Sir Francis Bacon)

B.1 Advanced non-standard layers

TF not only has a wide variety of building blocks to choose from, but also provides a big
framework to create specialized layers and sub-models. Often these self-build layers and
sub-models are special combinations of the basic layers in Sec. 4.2.3. This allows us to use the
highly optimized algorithms of the underlying TF library. Nevertheless, most of these exhibit
novel architectures that tackle different kind of problems in certain sub-fields of machine
learning.

A common theme in recent years is to accommodate the special properties of input data
via the general architecture of the NN. If the data follows some kind of symmetry, we want to
exploit this as much as possible. In this way, the network does not need to find this symmetry
during the training process stabilizing it and in the best case making the predictions more
robust. This idea – of course – is very much an ordinary course of action if tackling physics
problems.

A Hexagonal convolution layer

The SD of Auger is arranged in a triangular grid (see Sec. 2.3.2). Hence, each of the grid
stations has six neighbors. Directly encoding this setup in rectangular memory generates the
problem that each pixel suddenly has eight neighbors. The filters of regular 2D-convolution
layers (see Sec. 4.2.3.B) are rectangular. If we want to correlate spatial information of the
encoded grid data via a convolution layer, we would suddenly correlate the information of
non-neighboring stations.

Hexagonal convolution layers tackle this problem in a simple way. In general they are
regular convolution layers with quadratic filters that have an odd filter size. However, in
those filters, depending on the encoding, the parts that do not belong to a certain hexagonal
grid size are zeroed. Consequentially, the stations not directly inside of the hexagon do
not contribute to the calculation of Eq. (4.20). The number of masked pixels in the filter is
(2= + 1)2 − (1 + 6=), where = is the number of crowns in the hexagon.

B Group equivariant convolutions

As discussed in Chapter 4, we have to design the neural network architecture to account for
intrinsic symmetries and correlations of our physics data. Especially, exploiting symmetries
reduce the effective phase space a neural network has to account for (see Sec. 5.3.3). A way
of encoding symmetries into the neural network architecture are Group Equivariant Convo-
lution (GEC) layers. GEC layers are a generalization of regular convolution layers [C:26] (see
Sec. 4.2.3.B). If we know the transformation associated with a symmetry, we can construct a
specialized GEC layer that is invariant under this transformation.
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Figure B.1: Filter of a hexagonal convolution in terms of a regular convolution for direct encoding
using integer grid positions. The ∅ represent the positions that are masked by zeroing the filter
values. The letters represent the positions at which the convolution filter is used.

Let Λ� be an arbitrary transformation, we want to construct a layer with the following
property (see Eq. (4.21))

Λ�H = Λ�(G ∗� 5 ) =
(
[Λ�G] ∗� 5

)
, (B.1)

where ∗� is the GEC. We define

(G ∗� 5 )(6) =
∑
ℎ∈!

 ∑
:=1

G: (ℎ) 5:
(
6−1ℎ

)
, (B.2)

where
5:
(
6−1ℎ

)
= Λ� 5: (ℎ) (B.3)

is one of the filters and ! is the group of the output of the previous layer. If there are no
preceding GEC layers, ! is usually ℤ= corresponding to the =-dimensional integer indexes
of the outputs of the preceding layer. Otherwise ! is the group � itself. Since this concept is
rather abstract, we have provided an example for a mirror transformation in Appendix B.2.

By analyzing Eq. (B.3), we are able to relate regular convolutions with the GEC. Comparing
Eq. (B.2) to a regular convolution, we can store our  ; GEC filters in the multidimensional
array �; that satisfies

O��; =  ; × (; ×  ;−1 × (;−1 × = 5 , (B.4)

where = 5 is the total filter size,  ;−1 is the number of channels in the preceding layer ; − 1,
and (; and (;−1 are the group symmetry numbers of layer ; and ; − 1, respectively. The
group symmetry number is the number of unique transformations, e.g., four for all possible
rotations in a rectangular grid. Due to the cyclic nature of the transformations, e.g., if Λ"

is the mirror operator Λ"Λ" is the identity operator, some of the weights in Eq. (B.4) are
shared. To find the indices of these shared weights, we define the invertible map 6(B, D, . . .)
which relates the indices B̂ , û to the indices B′, B , u via

B̂ , û = 6−1
(
6 (B′, 0)−1 6 (B, u . . .)

)
. (B.5)

For example, in the one-dimensional case described in Appendix B.2, we could use the matrix
representations

6 (B, D) =
(
(−1)B D

0 1

)
→ 6 (B′, 0)−1 6 (B, D) =

(
(−1)B+B′ (−1)B′D

0 1

)
(B.6)

to compute the conversion above. Effectively, we can define a tensor �; of the size

O��; =  ; ×  ;−1 × (;−1 × = 5 , (B.7)
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that contains only unique filters and relate it with Eq. (B.4) via

�;
[
8 , B′, 9 , B , u

]
= �;

[
8 , 9 , B̂ , û

]
. (B.8)

Since there is a direct relation between the filters of a regular convolution and the filters of
a GEC convolution, we can use regular convolutions to construct the GEC. For the triangular
grid we can define a GEC that is invariant under rotations of 60°. We encode the triangular
grid by using axial coordinates (see Sec. 5.3.3.A) and use hexagonal filters as described in
?? B.1.0.A. We denote Denoting Λ' as the transformation operator and using Eq. (B.2) we
obtain

H = (G ∗� 5 8)(B′, u) =
 5∑
:=1

∑
ℎ∈ℤ2

G: (ℎ) 5 8:
(
6−1ℎ

)
(B.9)

=

 5∑
:=1

∑
v

G: (v)Λ)Λ'(B′) 5 8: (v), (B.10)

and for subsequent layers

I = (H ∗� @ 8)(B′, u) =
 @∑
:=1

∑
v

∑
B

H:(B, v)Λ)Λ'@
8
: (B, v) (B.11)

=

 @∑
:=1

∑
v

∑
B

H:(B, v)Λ)@
8
: (B + B

′,Λ'v) , (B.12)

where v and u are the integer coordinates, B is an integer coordinate associated with the
group element, and 5 8 and @ 8 are the 8th filters of both GEC layers. Both Eq. (B.10) and
Eq. (B.12) have the form of a regular convolution. Detailing how this index ordering and
transformation is performed, is outside of the scope of this thesis.

B.2 Example for group equivariant convolutions

For sake of simplicity we only use one feature map, a single filter, write ∗ instead of ∗�, and
remain in one dimension. Let G be a “feature array” of length three and 51 and 52 be two set
of filters of length two. Using the following representation

G = 51/ 52 = (B.13)

we want to find the two GEC layers that transform

G H I
51

GEC
52

GEC
. (B.14)

We assume that our input is invariant under mirroring. Therefore, we choose the trans-
formation Λ"G = −G as the starting point of the construction of the corresponding GEC
layer.

In the first step of Eq. (B.14) we have to transform from “real space” to the “group space”
(see Eq. (B.2)). Therefore, ! is equal to ℤ.

H
(
6
)
≡
[
G ∗ 51

]
(<, D) =

∑
E∈ℤ

G(E) 51
(
6−1E

)
=
∑
E∈ℤ

5 (E)
[
Λ)(D)Λ"(<)# (E)

]
, (B.15)
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where Λ) is the translation operator (see Eq. (4.21)). Note that Λ)Λ" = Λ�. Since we have
two states in our transformation we get two feature arrays: H+ and H−. The second part of
Eq. (B.14) can be written as

I(<, G) =
[
H ∗ 52

]
(<, D) =

∑
ℎ∈�

H (ℎ)
[
Λ� 52 (ℎ)

]
. (B.16)

Therefore, we need a separate filter for each group element

52 =
-

+ . (B.17)

Then, we can expand Eq. (B.16)

I(±, D) =
∑
E∈ℤ

(
H+ (E)

[
Λ)Λ"(±) 52 (+, E)

]
+ H− (E)

[
Λ)Λ"(±) 52 (−, E)

] )
(B.18)

Now, we have to computeΛ" 52. Since, we have two states we can do this

Λ"(±) 52 (±, E) = ) (= ± 1,Λ"(±)E) = )
(
= ± 1,±H

)
(B.19)

=

{
Λ"(±) 52 ((1 ± 1) mod 2,±E)
Λ"(±) 52 ((0 ± 1) mod 2,±E) (B.20)

= 52 (∓,±E) , (B.21)

where = is the number of inversions. We have only to pre-compute these filter maps for each
layer.

B.3 Additional studies on the variation of the baseline architecture

In this section, we extend the study on the variation of hyperparameters related to the
network architecture which has been done in Sec. 7.1.3.

Number of extracted features In Fig. B.2 and Fig. B.3, we show the precision and accuracy for
the predictions for CNN-based NNs using different = 5 values. Effectively, these tests if the
choice of = 5 is high enough. If not, we would see an improvement of precision or accuracy,
since in the traces are more features than could be represented in the = 5 channel dimensions.
This seems to be not the case.

Depth and filter size of SCA In Fig. B.4 and Fig. B.5, we show the precision and accuracy for
the predictions for CNN-based NNs using different =3 and =B values. Even though the result
of =3 = 4 and =B = 6 show a slightly better precision than that of the baseline value =3 = 4
and =B = 16, it is small enough to be a fluctuation. Moreover, since the amount of training
data for the optimized networks are in general larger, we do not directly want to reduce the
number of parameters of the network.

Variation of batch size for RNN-based sub-network In contrast to Sec. 7.1.4.A, the results for the
RNN-based TFE are reversed (see Fig. B.6). Reducing the trace size seems to improve the
precision of the predictions.
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Figure B.2: Ensembles of the precision �Δ-max for NNs trained with different values of = 5
normalized to the average precision of the ensemble using = 5 = 14 for events with an energy
above 1019.5 eV (blue) and 1019.0 eV (red).
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Figure B.3: Ensembles of the proton-iron bias Δp-Fe for NNs trained with different values of = 5
for events with an energy above 1019.5 eV (blue) and 1019.0 eV (red).
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Figure B.4: Ensembles of the precision �Δ-max for NNs trained with different values of =3 and
=B normalized to the average precision of the ensemble using =3 = 4 and =3 = 16 for events with
an energy above 1019.5 eV (blue) and 1019.0 eV (red).
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Figure B.5: Ensembles of the proton-iron bias Δp-Fe for NNs trained with different values of =3
and =B for events with an energy above 1019.5 eV (blue) and 1019.0 eV (red).
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energy above 1019.5 eV (blue) and 1019.0 eV (red). In contrast to Fig. 7.12, the NNs trained for this
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batch size #1 for events with an energy above 1019.5 eV (blue) and 1019.0 eV (red). In contrast to
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Figure B.8: Ensembles of the proton-iron bias Δp-Fe for NNs trained with different values of ��
for events with an energy above 1019.5 eV (blue) and 1019.0 eV (red).

Variation of the importance of the bias-penalizing term To ensure the correct implementation and
demonstrate the effect of the bias-penalizing term in the used loss function, we show the
effect of varying ��. This variation changes the relative importance of the bias during the
minimization of the loss (see Eq. (4.17)). Due to a typo in one of our scripts we did this
study for the RNN based architecture. As expected, increasing �� reduces the proton-iron
bias considerably (see Fig. B.8). This can be considered as a proof of concept. Unfortunately,
introducing this loss term also reduces the precision of the networks (see Fig. B.9). This effect
is more dominant for higher energies since the blue distributions shift more upwards than
the red ones.

B.4 Effect of model averaging

Due to the randomness involved in our network training (see Sec. 7.3.2), it is reasonable
to check if we can use multiple models to stabilize our predictions. We do this by taking
the average prediction of multiple models trained on the same data set. This averaging is
analogous to a poor-man{1} version of bagging [C:27].

In Fig. B.10, we show the � values for 50 draws of = models from our CNN models of
Sec. 7.1.3.A. For a higher number of models drawn from the underlying 50, we obtain a better
result. Moreover, also the width of the distributions shrinks. The more models we take for
the averaging process, the less is the improvement of the precision. Note that for larger draw
sizes, this is also an effect of the small underlying data set. However, we think that – at least
for smaller draw sizes – this averaging reduces the effect of outliers reducing the variance
and, in turn, the precision.

Even though this process improves the precision of the predictions of our composite
models, it has a negative impact on the inter-primary spread. In Fig. B.11, we show the same
approach for the distribution of Δ19.0 and Δ19.5 values. The averaging process centers the
bias between proton and iron primaries. Therefore, we have to carefully evaluate if and – if
yes – how many models we want to use for the model averaging.

{1}Instead of real bootstrapping we take the same data set over and over.
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Figure B.9: Ensembles of the precision �Δ-max for NNs trained with different values of ��
normalized to the average precision of the ensemble using �� = 1.0 for events with an energy
above 1019.5 eV (blue) and 1019.0 eV (red).

Figure B.10: Distribution of precision of 50 models trained on the setup discussed in Ap-
pendix B.4 compared to that of model averaging evaluated on the global standard deviation
(left) and the standard deviation at high energies (right). For each average predictions we draw
= unique models from the initial set of 50. The more models we take the better the average
prediction gets. However, the effect decreases with the number of models.

233



B Additional Content

Figure B.11: Distribution of proton-iron bias of 50 models trained on the setup discussed in
the beginning of the section compared to that of model averaging evaluated on events with an
energy above 1019 eV (left) and an energy above 1019.5 eV (right). The more models we take into
account the less is the possibility for models with a low Δ value.

B.5 Estimation of noise due to input data

We train eight models for six different data sets. The data is drawn from our global shower
library and follow more-or-less the same distribution and compositions as that defined in
Row 5.5.e. For this part we relaxed the conditions even more:

1. all models share the same architecture

2. all models give reasonable predictions without post-processing

3. all models are trained on one GPU

Since we have drawn the six data set from our base data set which is much larger, we would
have to find the intersection of all data sets to compare at the spread between all models.
However, the intersection between all test data sets has zero elements. Therefore, we take
the intersections of all possible pairs of data sets to approximate the distribution of � (see
Fig. B.12). We find the same deviations from the distribution of Sec. 7.3.2.A as in Sec. 7.3.2.B.
As expected the effects pile up. Even though we underestimate the importance of the choice
of input data it still yields a larger average spread. This is also seen in �. We obtain

�input-variation = 0.40 g/cm2 (B.22)

for these conditions. Therefore, there is not a large difference using similar training and test
distributions.

B.6 Direct energy estimator

The SD energy predictor is derived from measurements. Due to the differences between
measurements and simulation data, it shows a bias if applied on simulation data. To check
the energy prediction of our NN model, we could, therefore, create our own model based
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Figure B.12: Distribution of � for models created according to conditions defined in Ap-
pendix B.5.

Table B.1: Fit parameters for the DEC defined in Eq. (B.23) fitted on UB data. We find that both
UB-QGSJ and -EPOS exhibit similar energy calibration parameters but have slightly different
attenuations.

Model � � 0 1 2

QGSJ 17.3038(3) 1.0742(1) 1.6537(116) −1.5716(32) −1.0937(12)
EPOS 17.2621(3) 1.0767(1) 1.5358(117) −1.6927(32) −1.0499(12)

on the CIC procedure in Eq. (3.10). Since, our simulation data is evenly distributed in
logarithmic energy and sin2 � we perform a least square fit to

lg�DEC = � + � lg((1000/VEM) − lg 5CIC(cos2 � − cos2 �ref; 0, 1, 2), (B.23)

where �, �, 0, 1, and 2 are fit parameter. Therefore, we fit the CIC and the energy scale
directly. We call this the Direct Energy Calibration (DEC). We have summarized the fit
results in Table B.1.

In Fig. B.13, we compare the model obtained by a direct fit with the SD standard recon-
struction of the energy. We shift the predictions of the latter model by the average global
mean difference between mean logarithmic energies to align our distributions. Even though
the DEC is slighly asymmetric, it performs better on a global level. Nevertheless, since both
models behave approximately the same we think that the fit of DEC is reasonable. More-
over, such a model gives us the opportunity to find out how to perform the transition from
simulations to real data.
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C Specifications and Snippets

What is important is to spread confusion, not
eliminate it.

(Salvador Dalí)

C.1 GPU machine specifications

All networks in this thesis have been trained on two machines with the same configuration.
Both machines have an Intel(R) Xeon(R) Gold 5122 CPU with a clock rate of 3.60 GHz using
125 GB of random-access memory. Each machine has access to two NVIDIA Tesla V100-32GB
GPU and one NVIDIA Tesla V100S-32GB GPU. The machines are accessible via HTCondor.

C.2 Snippets

C.2.1 SD cuts

ADST cuts version: 1.0

# SD cuts

!lightning

minRecLevel 3 # see SdRecLevel.h

maxZenithSD 60. # maximum zenith angle [deg.]

T4Trigger 2

T5Trigger 2 # 1: 5T5 post, 2: 6T5 prior, 3: T5Has

minLgEnergySD 18

badPeriodsRejectionFromFile

C.2.2 Golden Hybrid cuts

adst cuts version: 1.0

#==== reject laser events

!isCLF

!isXLF

#==== keep either CO/HEAT or HECO

heatOrientationUp

eyeCut 001111

#==== hardware status

badFDPeriodRejection

minMeanPixelRMSMergedEyes { params: 17 6 110000 nMinusOne: 100 0 100 }

minMeanPixelRMSSimpleEyes { params: 17 011111 nMinusOne: 100 0 100 }

!badPixels 1

good10MHzCorrection
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#==== atmosphere

hasMieDatabase

maxVAOD 0.1

cloudCutXmaxPRD14 { params: 1 nMinusOne: 21 -10.5 10.5 }

#==== full hybrid geometry

hybridTankTrigger 2

maxCoreTankDist 1500

maxZenithFD 90

minLgEnergyFD 1e-20

skipSaturated

minPBrass 0.9

maxPBrassProtonIronDiff 0.05

#==== FOV cuts

FidFOVICRC13 40 20

#==== quality cuts

xMaxObsInExpectedFOV { params: 40 20 }

maxDepthHole 20.

profileChi2Sigma { params: 3 -1.1 nMinusOne: 400 -20 20 }

depthTrackLength 200

xMaxError 40.0

energyTotError 0.12

C.2.3 Bins used for importance sampling

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 14, 15, 16, 17, 19, 20,

21, 23, 24, 25, 27, 28, 30, 31, 33, 34, 36, 37, 39, 40, 42,

44, 45, 47, 49, 51, 52, 54, 56, 58, 60, 62, 64, 66, 68, 70,

72, 74, 77, 79, 81, 84, 86, 88, 91, 93, 96, 98, 101, 104, 106,

109, 112, 115, 118, 121, 124, 127, 130, 133, 136, 139, 143,

146, 149, 153, 156, 160, 164, 167, 171, 175, 179, 183, 187,

191, 195, 199, 204, 208, 213, 217, 222, 226, 231, 236, 241,

246, 251, 256, 262, 267, 272, 278, 284, 289, 295, 301, 307,

313, 319, 326, 332, 339, 345, 352, 359
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D Additional Material

Abandon All Hope, Ye Who Enter Here.

(Divine Comedy, Dante Alighieri)

D.1 Tabulated data

Table D.1: Summary of the parametrization parameters for the systematic uncertainties of
-max, 'μ, and ln� due to the high-energy hadronic interaction and unknown composition (see
Sec. 7.3.3). The last column is the shift that is applied on the independent variable which is in
this case the logarithmic energy. The pattern of the rows is as follows. The first two rows for
each of the observables list the fit parameters of the shift and the linear function corresponding
to parametrizations used for the biases of the high-energy hadronic interaction model (see
Sec. 7.3.3.A. The next two rows show the fit parameters of the proton and iron bias. The last two
two rows for each of the observables are the parameters corresponding to the upper and lower
uncertainty of the standard deviation due to the unknown composition (see Sec. 7.3.3.B.

name fit function ?0 ?1 ?2 shift

-max all coefficients in g/cm2

a Eq. (A.10) 13.929±0.097 - - -
b Eq. (A.10) 2.654±0.275 1.042±0.458 - 19.0
c Eq. (A.13) 0.999±0.448 4.891±0.668 2.575±0.296 19.0
d Eq. (A.13) 1.515±0.338 5.064±0.499 2.469±0.210 19.0
e Eq. (A.13) 0.154±0.288 3.177±0.439 2.685±0.304 19.0
f Eq. (A.10) 2.097±0.126 - - -

'μ

g Eq. (A.10) 0.030±0.001 - - -
h Eq. (A.10) 0.012±0.001 0.009±0.002 - 19.0
i Eq. (A.10) 0.039±0.004 0.051±0.002 - 19.0
j Eq. (A.10) 0.037±0.005 0.064±0.003 - 19.0
k Eq. (A.10) 0.025±0.003 0.044±0.002 - 19.0
l Eq. (A.10) 0.019±0.001 - - -

ln�

m Eq. (A.10) 0.484±0.004 - - -
n Eq. (A.10) 0.102±0.007 0.161±0.020 0.080±0.025 19.0
o Eq. (A.10) 0.790±0.048 0.062±0.080 - 19.0
p Eq. (A.10) 0.718±0.028 0.512±0.046 - 19.0
q Eq. (A.10) 0.286±0.025 0.197±0.046 - 19.0
r Eq. (A.10) 1.117±0.009 - - -
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Table D.2: Summary of the fit parameters for the corrections of the unphysical dependences described in Sec. 7.3.3. The penultimate column is the shift
that is applied on the independent variable. The last column indicates if we correct for the dependency.

name fit function ?0 ?1 ?2 ?3 shift used?

-max all coefficients in g/cm2, except of those with marked by ∗
a )SD Eq. (A.11) 0.001±0.122 0.264±0.173 1†∗ 1.906±0.656∗ - no
b 〈I<〉 Eq. (A.12) 2.972±0.208 0.460±0.089 5.089±0.226∗ 2.972±0.208∗ - yes
c 〈0p〉 Eq. (A.10) 10.793±0.192 54.628±0.761 - - 3.2 yes

d seasonal Eq. (A.11) 0.051±0.122 2.191±0.173 2�
365

†∗
0.488±0.079∗ - no

e daily Eq. (A.11) 0.005±0.122 1.060±0.173 2�
12

†∗
0.327±0.163∗ - no

f �SD Eq. (A.13) 10.777±0.262 0.564±0.059 5.931±0.144 - - yes
g % Eq. (A.10) 0.584±0.149 0.592±0.037 0.028±0.005 - 860 yes

'μ

h )SD Eq. (A.11) consistent with zero no
i 〈I<〉 Eq. (A.12) 0.005±0.000 0.009±0.000 0.326±0.133 0.176±0.040 - yes
j �0 , �1 Eq. (A.13) 0.024±0.005 0.000±0.001 0.043±0.011 - - yes
k 〈0p〉 Eq. (A.10) 0.034±0.000 0.170±0.001 - - 3.2 yes
l seasonal Eq. (A.11) below 3×103 no
m hour Eq. (A.11) below 2×103 no
n �SD Eq. (A.13) 0.098±0.002 0.040±0.002 2.134±0.053 - - yes
o % Eq. (A.10)‡ 0.694±0.293 0.869±0.072 0.049±0.010 - 860 yes

ln�

p )SD Eq. (A.11) below 5×103 no
q 〈I<〉 Eq. (A.12) 0.084±0.005 0.147±0.006 0.403±0.087 0.072±0.011 - yes
r 〈0p〉 Eq. (A.10) 0.444±0.005 2.248±0.021 - - 3.2 yes
s seasonal Eq. (A.11) below 5×102 no
t daily Eq. (A.11) below 3×102 no
u �SD Eq. (A.10) 0.137±0.013 0.233±0.150 3.394±0.464 8.142±0.406 - yes
v % Eq. (A.10)‡ 10.592±4.126 14.516±1.018 0.870±0.142 - 860 yes

† fixed to this value and not fitted, ‡ ?= × 103 due to the smallness of the coefficients
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D.2 Additional figures
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Figure D.1: Color-coded Wigner-Seitz cells of the triangular grid used in Offline detector sim-
ulations. Each hexagon represents one of the SD stations that are part of the 1500 m grid. The
ellipses show the position at ground-level at which the expected signal (see Eq. (3.8)) is 1 VEM
for differently inclinded, simulated showers induced by proton primaries. The colors of the
hexagons indicate the number of complete crowns around a given station.
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Figure D.2: Distribution of depth of the shower maximum-max for proton (top) and iron (bottom)
events in the logarithmic energy range [19.4, 19.6] simulated with the hadronic interaction model
QGSJ. The black dashed lines denote fits to the distributions using the skew normal distribution
(see Eq. (5.13)).
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Figure D.6: Bias (first, third) and relative error (second, fourth) of NN as a function of sec�. The
upper two panels and the lower two panels are the results for the hadronic interaction models
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sentation (left) and normalized to the maximum value of the row (right).
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Figure D.9: Distribution of the difference between the logarithmic MC energy lg�MC and the
logarithmic SD energy predictions lg�SD for the proton (red) and iron (blue) primaries. The
vertical line (black, dashed) marks the global shift of the SD predictions on the MC data set (see
Eq. (7.4)).
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Figure D.10: Distribution of precision of Δ-max for the predictions of the baseline network and
the NN trained on the optimized setup in bins of logarithmic MC energy.
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Figure D.16: Variance-weighted average values of �(Δ-max) for proton (points, red) and iron
(points, blue) events for each zenith bin in the lg(�/eV) = 18.5 bin of the Karlsruhe library. The
horizontal dashed lines show the average value of � for the proton (red) and iron (blue) events
without accounting for the last zenith bin. The vertical dashed line marks the 100% efficiency
boundary of the SD detector.
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Figure D.17: Variance-weighted average values of �(Δ-max) for proton (points, red) and iron
(points, blue) events for each zenith bin in the lg(�/eV) = 19.0 bin of the Karlsruhe library. The
horizontal dashed lines show the average value of � for the proton (red) and iron (blue) events
without accounting for the last zenith bin. The vertical dashed line marks the 100% efficiency
boundary of the SD detector.
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Figure D.18: Variance-weighted average values of �(Δ-max) for proton (points, red) and iron
(points, blue) events for each zenith bin in the lg(�/eV) = 19.5 bin of the Karlsruhe library. The
horizontal dashed lines show the average value of � for the proton (red) and iron (blue) events
without accounting for the last zenith bin. The vertical dashed line marks the 100% efficiency
boundary of the SD detector.
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Figure D.22: The bias Δ'μ for events belonging to proton (red) and iron (blue) primaries. The
dashed lines are linear fits to both of the subsets (see Rows D.1.i to D.1.j).
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Figure D.23: The difference between the width of the MC distribution and the width of the
predictions for different compositions. We have fitted an linear function to the three highest
values in each bin and a constant to the minimum values (see Rows D.1.k to D.1.l).
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Figure D.24: Precision �Δ ln� (top) and bias Δ ln� (bottom) for the NN predictions of the proton-
and iron-part of the data set based on simulations using the hadronic interaction model EPOS.
The NN has been trained on a data set using the hadronic interaction model QGSJ. The predic-
tions of the NN have a global bias of about 0.48. The horizontal line in the bottom plot (black,
dashed) marks this global bias (see Row D.1.m).
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Figure D.25: Difference of the precision of the NN-based prediction of ln� on the data sets
defined in Row 5.5.d and Row 5.5.f in bins of energy. The line (black, dashed) is a quadratic fit
to the difference (see Row D.1.n).
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Figure D.26: The bias Δ-max for events belonging to proton (red) and iron (blue) primaries. The
dashed lines are linear fits to both of the subsets (see Rows D.1.o to D.1.p).
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Figure D.27: The difference between the width of the MC distribution and the width of the
predictions for different compositions. We have fitted an linear function to the three maximum
values in each bin and a constant to the minimum values (see Rows D.1.q to D.1.r).
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Figure D.28: Comparison of the precision �Δ-max of predictions of two NNs using differently
downsampled UUB traces as a function of the logarithmic energy.
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Figure D.29: Comparison of the precision �Δ-max of the predictions of two NNs using differently
downsampled UUB traces as a function of the logarithmic energy.
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Figure D.30: Comparison of the precisions �Δ sin2 � of the predictions of two NNs as a function
of logarithmic energy. The first NN (crosses) was trained using SSD and WCD traces, and the
second NN was trained using only WCD traces.
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Figure D.31: Comparison of the precisions �ln(�/eV) of the predictions of two NNs as a function
of logarithmic energy. The first NN (crosses) was trained using SSD and WCD traces, and the
second NN was trained using only WCD traces.
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Figure D.32: Comparison of the precisions �-max of the predictions of two NNs as a function
of logarithmic energy. The first NN (crosses) was trained using SSD and WCD traces, and the
second NN was trained using only WCD traces.
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Figure D.33: Ensembles of the precision of 'μ predictions from NNs trained on WCD and
SSD traces normalized to the average precision of the set of NNs corresponding to the blue
distributions. The ensemble of NNs depicted in the blue distributions uses the ratio of the
integrated traces as an additional input. The red dashed lines indicate the average value of the
resolution of the same colored distribution of precisions in the same energy bin. Only events in
the test data set exhibiting a zenith angle below 50° are considered.
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Figure D.34: Average difference between 'μ predictions of iron events and proton events from
NNs trained using the ratio of the integrated traces as an addtional input (plusses, blue) and
NNs without this extra information. Both types of network use the WCD and SSD traces as
inputs. Only events in the test data set with a zenith angle below 50° are considered. Note that
for the error bars the standard deviations of the underlying distributions have been used.
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Figure D.35: Ensembles of the proton-iron bias Δp-Fe sin2 � of predictions from NNs trained on
WCD and SSD traces (blue) and only on WCD traces. Only events in the test data set exhibiting
a zenith angle below 50° are considered.
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Figure D.36: Comparison of precision �ln� of the predictions of NNs as the function of energy.
The first NN (crosses) was trained using SSD and WCD traces, and the second NN was trained
using only WCD traces.
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Figure D.37: Distribution of the fraction of working PMTs in the HS and the first crown for the
events in the SD data set.
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Figure D.38: Distribution of the average detector height 〈Idet〉 for the events in the SD data set.
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Figure D.39: Distribution of the average area over peak value for the events in the SD data set.
The vertical line marks the value used in simulations.
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Figure D.40: Deviation from average behavior 〈-max〉 (see Eq. (8.2)) as a function of the temper-
ature ).
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Figure D.41: Deviation from average behavior 〈-max〉 (see Eq. (8.2)) as a function of the air
density �.
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Figure D.42: Deviation from average behavior 〈'μ〉 as a function of )SD (cf. Fig. 8.3).
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Figure D.43: Deviation from average behavior 〈'μ〉 as a function of 〈Idet〉 (cf. Fig. 8.5).
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Figure D.44: Deviation from average behavior 〈'μ〉 as a function of 〈0p〉 (cf. Fig. 8.6).
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Figure D.45: Deviation from average behavior 〈'μ〉 as a function of the time of detection (cf.
Fig. 8.7).
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Figure D.46: Deviation from average behavior 〈'μ〉 as a function of the time of day (cf. Fig. 8.8).
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Figure D.47: Deviation from average behavior 〈'μ〉 as a function of the day of the year (cf.
Fig. 8.9).
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Figure D.48: Deviation from average behavior 〈'μ〉 as a function of the temperature ) (cf.
Fig. D.40).
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Figure D.49: Deviation from average behavior 〈'μ〉 as a function of the air density � (cf.
Fig. D.41).
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Figure D.50: Deviation from average behavior 〈'μ〉 as a function of the atmospheric pressure %
(cf. Fig. 8.10).
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Figure D.51: Deviation from average behavior 〈'μ〉 as a function of the reconstructed zenith
angle in terms of sin2 �SD (cf. Fig. 8.11).
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Figure D.52: Deviation from average behavior 〈ln�〉 as a function of )SD (cf. Fig. 8.3).
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Figure D.53: Deviation from average behavior 〈ln�〉 as a function of the fraction of operating
PMTs in the HS and the first crown (cf. Fig. 8.4).

265



D Additional Material

−150 −100 −50 0 50 100

〈zdet〉 /m

0.0

0.2

〈l
n

A
〉

SD

Figure D.54: Deviation from average behavior 〈ln�〉 as a function of 〈Idet〉 (cf. Fig. 8.5).
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Figure D.55: Deviation from average behavior 〈ln�〉 as a function of 〈0p〉 (cf. Fig. 8.6).
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Figure D.56: Deviation from average behavior 〈ln�〉 as a function of the time of detection (cf.
Fig. 8.7).
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Figure D.57: Deviation from average behavior 〈ln�〉 as a function of the time of day (cf. Fig. 8.8).
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Figure D.58: Deviation from average behavior 〈ln�〉 as a function of the day of the year (cf.
Fig. 8.9).
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Figure D.59: Deviation from average behavior 〈ln�〉 as a function of the temperature ) (cf.
Fig. D.40).
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Figure D.60: Deviation from average behavior 〈ln�〉 as a function of the air density � (cf.
Fig. D.41).
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Figure D.61: Deviation from average behavior 〈ln�〉 as a function of the atmospheric pressure
% (cf. Fig. 8.10).
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Figure D.62: Distribution of the -max predictions in the bins shown in Fig. 8.16.269
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Figure D.63: First (top) and second moment (bottom) of -max in bins of reconstructed energy
�SD for the NN of the study in [P:104] (black) and the corrected predictions of the NN on the
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Figure D.64: Precision �xmax (left) and bias Δ-max (right) for the predictions of the
NN selected for the analysis in Sec. 8.2.2.A as a function of the logarithmic energy if
GenShower:XmaxGaisserHillas is used as the true value for -max.
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Figure D.65: Precision �xmax (left) and bias Δ-max (right) for the predictions of an alter-
native NN that performs worse on simulations as a function of the logarithmic energy if
GenShower:XmaxGaisserHillas is used as the true value for -max.
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Figure D.66: Precision �xmax (left) and bias Δ-max (right) for the predictions of the
NN selected for the analysis in Sec. 8.2.2.A as a function of the logarithmic energy if
GenShower:XmaxInterpolated is used as the true value for -max.
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Figure D.67: Precision �xmax (left) and bias Δ-max (right) for the predictions of an alter-
native NN that performs worse on simulations as a function of the logarithmic energy if
GenShower:XmaxInterpolated is used as the true value for -max.
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Figure D.68: Distribution of 'μ MC values (dashed) and NN predictions (solid) split into proton
(red) and iron (blue) events.
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Figure D.69: Distribution of the 'μ predictions in the bins shown in Fig. 8.19.
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Figure D.70: Distribution of the raw ln� predictions in the bins shown in Fig. 8.20.275
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