131 research outputs found

    A case series on the value of tau and neurofilament protein levels to predict and detect delirium in cardiac surgery patients

    Get PDF
    BACKGROUND: Delirium following cardiac surgery is a relevant complication in the majority of elderly patients but its prediction is challenging. Cardiopulmonary bypass, essential for many interventions in cardiac surgery, is responsible for a severe inflammatory response leading to neuroinflammation and subsequent delirium. Neurofilament light protein (NfL) and tau protein (tau) are specific biomarkers to detect neuroaxonal injury as well as glial fibrillary acidic protein (GFAP), a marker of astrocytic activation. METHODS: We thought to examine the perioperative course of these markers in a case series of each three cardiac surgery patients under off-pump cardiac arterial bypass without evolving delirium (OPCAB-NDEL), patients with a procedure under cardio-pulmonary bypass (CPB) without delirium (CPB-NDEL) and delirium after a CPB procedure (CPB-DEL). Delirium was diagnosed by the Confusion Assessment Method for the ICU and chart reviews. RESULTS: We observed increased preoperative levels of tau in patients with later delirium, whereas values of NfL and GFAP did not differ. In the postoperative course, all biomarkers increased multi-fold. NfL levels sharply increased in patients with CPB reaching the highest levels in the CPB-DEL group. CONCLUSION: Tau and NfL might be of benefit to identify patients in cardiac surgery at risk for delirium and to detect patients with the postoperative emergence of delirium

    RNAseq Analyses Identify Tumor Necrosis Factor-Mediated Inflammation as a Major Abnormality in ALS Spinal Cord

    Get PDF
    ALS is a rapidly progressive, devastating neurodegenerative illness of adults that produces disabling weakness and spasticity arising from death of lower and upper motor neurons. No meaningful therapies exist to slow ALS progression, and molecular insights into pathogenesis and progression are sorely needed. In that context, we used high-depth, next generation RNA sequencing (RNAseq, Illumina) to define gene network abnormalities in RNA samples depleted of rRNA and isolated from cervical spinal cord sections of 7 ALS and 8 CTL samples. We aligned \u3e50 million 2X150 bp paired-end sequences/sample to the hg19 human genome and applied three different algorithms (Cuffdiff2, DEseq2, EdgeR) for identification of differentially expressed genes (DEG’s). Ingenuity Pathways Analysis (IPA) and Weighted Gene Co-expression Network Analysis (WGCNA) identified inflammatory processes as significantly elevated in our ALS samples, with tumor necrosis factor (TNF) found to be a major pathway regulator (IPA) and TNFα-induced protein 2 (TNFAIP2) as a major network “hub” gene (WGCNA). Using the oPOSSUM algorithm, we analyzed transcription factors (TF) controlling expression of the nine DEG/hub genes in the ALS samples and identified TF’s involved in inflammation (NFkB, REL, NFkB1) and macrophage function (NR1H2::RXRA heterodimer). Transient expression in human iPSC-derived motor neurons of TNFAIP2 (also a DEG identified by all three algorithms) reduced cell viability and induced caspase 3/7 activation. Using high-density RNAseq, multiple algorithms for DEG identification, and an unsupervised gene co-expression network approach, we identified significant elevation of inflammatory processes in ALS spinal cord with TNF as a major regulatory molecule. Overexpression of the DEG TNFAIP2 in human motor neurons, the population most vulnerable to die in ALS, increased cell death and caspase 3/7 activation. We propose that therapies targeted to reduce inflammatory TNFα signaling may be helpful in ALS patients

    The Endothelial Glycocalyx in Pig-to-Baboon Cardiac Xenotransplantation - First Insights

    Get PDF
    Cardiac xenotransplantation has seen remarkable success in recent years and is emerging as the most promising alternative to human cardiac allotransplantation. Despite these achievements, acute vascular rejection still presents a challenge for long-term xenograft acceptance and new insights into innate and adaptive immune responses as well as detailed characterizations of signaling pathways are necessary. In allotransplantation, endothelial cells and their sugar-rich surface—the endothelial glycocalyx—are known to influence organ rejection. In xenotransplantation, however, only in vitro data exist on the role of the endothelial glycocalyx so far. Thus, in the current study, we analyzed the changes of the endothelial glycocalyx components hyaluronan, heparan sulfate and syndecan-1 after pig-to-baboon cardiac xenotransplantations in the perioperative (n = 4) and postoperative (n = 5) periods. These analyses provide first insights into changes of the endothelial glycocalyx after pig-to-baboon cardiac xenotransplantation and show that damage to the endothelial glycocalyx seems to be comparable or even less pronounced than in similar human settings when current strategies of cardiac xenotransplantation are applied. At the same time, data from the experiments where current strategies, like non-ischemic preservation, growth inhibition or porcine cytomegalovirus (a porcine roseolovirus (PCMV/PRV)) elimination could not be applied indicate that damage of the endothelial glycocalyx also plays an important role in cardiac xenotransplantation

    Heart re-transplantation in Eurotransplant

    Get PDF
    Internationally 3% of the donor hearts are distributed to re-transplant patients. In Eurotransplant, only patients with a primary graft dysfunction (PGD) within 1 week after heart transplantation (HTX) are indicated for high urgency listing. The aim of this study is to provide evidence for the discussion on whether these patients should still be allocated with priority. All consecutive HTX performed in the period 1981-2015 were included. Multivariate Cox' model was built including: donor and recipient age and gender, ischaemia time, recipient diagnose, urgency status and era. The study population included 18 490 HTX, of these 463 (2.6%) were repeat transplants. The major indications for re-HTX were cardiac allograft vasculopathy (CAV) (50%), PGD (26%) and acute rejection (21%). In a multivariate model, compared with first HTX hazards ratio and 95% confidence interval for repeat HTX were 2.27 (1.83-2.82) for PGD, 2.24 (1.76-2.85) for acute rejection and 1.22 (1.00-1.48) for CAV (P < 0.0001). Outcome after cardiac re-HTX strongly depends on the indication for re-HTX with acceptable outcomes for CAV. In contrast, just 47.5% of all hearts transplanted in patients who were re-transplanted for PGD still functioned at 1-month post-transplant. Alternative options like VA-ECMO should be first offered before opting for acute re-transplantation

    Assessing learning and memory in pigs

    Get PDF
    In recent years, there has been a surge of interest in (mini) pigs (Sus scrofa) as species for cognitive research. A major reason for this is their physiological and anatomical similarity with humans. For example, pigs possess a well-developed, large brain. Assessment of the learning and memory functions of pigs is not only relevant to human research but also to animal welfare, given the nature of current farming practices and the demands they make on animal health and behavior. In this article, we review studies of pig cognition, focusing on the underlying processes and mechanisms, with a view to identifying. Our goal is to aid the selection of appropriate cognitive tasks for research into pig cognition. To this end, we formulated several basic criteria for pig cognition tests and then applied these criteria and knowledge about pig-specific sensorimotor abilities and behavior to evaluate the merits, drawbacks, and limitations of the different types of tests used to date. While behavioral studies using (mini) pigs have shown that this species can perform learning and memory tasks, and much has been learned about pig cognition, results have not been replicated or proven replicable because of the lack of validated, translational behavioral paradigms that are specially suited to tap specific aspects of pig cognition. We identified several promising types of tasks for use in studies of pig cognition, such as versatile spatial free-choice type tasks that allow the simultaneous measurement of several behavioral domains. The use of appropriate tasks will facilitate the collection of reliable and valid data on pig cognition
    corecore