310 research outputs found

    Covid-19 pandemic and the unprecedented mobilisation of scholarly efforts prompted by a health crisis: Scientometric comparisons across SARS, MERS and 2019-nCov literature

    Full text link
    During the current century, each major coronavirus outbreak has triggered a quick surge of academic publications on this topic. The spike in research publications following the 2019 Novel Coronavirus (Covid-19), however, has been like no other. The global crisis caused by the Covid-19 pandemic has mobilised scientific efforts in an unprecedented way. In less than five months, more than 12,000 research items have been indexed while the number increasing every day. With the crisis affecting all aspects of life, research on Covid-19 seems to have become a focal point of interest across many academic disciplines. Here, scientometric aspects of the Covid-19 literature are analysed and contrasted with those of the two previous major Coronavirus diseases, i.e. SARS and MERS. The focus is on the co-occurrence of key-terms, bibliographic coupling and citation relations of journals and collaborations between countries. Certain recurring patterns across all three literatures were discovered. All three outbreaks have commonly generated three distinct and major cohort of studies: (i) studies linked to the public health response and epidemic control, (ii) studies associated with the chemical constitution of the virus and (iii) studies related to treatment, vaccine and clinical care. While studies affiliated with the category (i) seem to have been the first to emerge, they overall received least numbers of citations compared to those of the two other categories. Covid-19 studies seem to have been distributed across a broader variety of journals and subject areas. Clear links are observed between the geographical origins of each outbreak or the local geographical severity of each outbreak and the magnitude of research originated from regions. Covid-19 studies also display the involvement of authors from a broader variety of countries compared to SARS and MRS

    Relief network design problem (RNDP): A scoping review, challenges, and opportunities

    Full text link
    The Relief Network Design Problem (RNDP) is particularly important in emergency management. Any uncertain factors caused by natural disasters, the equity measurement in network design, and the adequate analysis of relief behavior will affect the efficiency of the relief network. This paper provides a comprehensive basis to support this view. The scope of the review allowed for exploring all existing literature on RNDP, where screening for titles, abstracts, keywords, and main contents, a total of 629 relevant articles are preserved. To construct the review work, existing research perspectives on the Relief Logistics Network Design Problem (RLNDP) as well as the Relief Transport Network Design Problem (RTNDP) are addressed, and their research focus and main research approaches are discussed. The existing studies on RNDP seem to be reached a bottleneck on how to design a humanitarian relief network. Hence, this paper contributes to the existing body of knowledge by summarizing the literature in the field, identifying gaps, analyzing future challenges, and providing solutions for future research. Specifically, this review reveals that while a large number of studies have considered uncertainty in the network design, they have not considered it at both the management level and the residents' level. In addition, equity is often mentioned, but the definition of humanitarian equity is unclear, as most studies consider equity at the management level. In real disaster relief scenarios, people do not only wait for relief, but self-evacuation is also a main behavior in the relief process, yet there are few studies that consider it in the network design. This review also emphasizes the relief network design structure problem, and the interdependence and coupling of the relief infrastructure transport or logistics facility network with other networks, such as the electric network, energy network, etc., deserves to be focused. In summary, five valuable research highlights are proposed based on a review of the existing literature: (1) Explore uncertainties from both the government management and disaster victim perspectives and integrate them into network design approaches. (2) Define and consider relief equity from both the government management and disaster victim perspectives. (3) Analyze self-evacuation behavior in the emergency relief phase and explore how it affects RNDP. (4) Optimize the transfer point location and relief routing from the perspective of management and humanitarian equity. (5) Strengthen the resilience of disaster relief interdependent network

    Changes in postural and trunk muscles responses in patients with chronic nonspecific low back pain during sudden upper limb loading

    Get PDF
    Background: Alterations in the neuromuscular control of the spine were found in patients with chronic low back pain (CLBP). Sudden loading of the spine is assumed to be the cause of approximately 12 of lower back injuries. However, some aspects of this problem, such as alterations in the sensory-motor control of the spine, remain questionable. This study investigated postural and neuro- motor changes in trunk muscles during sudden upper limb loading in patients with CLBP. Methods: Electromyography of the erector spinae (ES) and transverses abdominis/internal oblique (TrA/IO) and external oblique (EOA) muscles were recorded in 20 patients with CLBP and 20 asymptomatic individuals with eyes open (EO) and eyes closed (EC) conditions. Moreover, measurements of the center of pressure (COP) and vertical ground reaction force (GRF) or Fz were recorded using a force plate. Data were analyzed using paired t-test and independent t-test at the significance level of 0.05. Results: In patients with CLBP, decreased electrical activity of the ES muscle was observed under both the EO and EC conditions and that of the TrA/IO muscle was observed under the EO condition (p < 0.05). Other findings included a shorter peak latency of the ES muscle in the EO condition and a greater increase in the peak latency of the ES muscle following the EC condition (p < 0.05). No significant differences were observed in COP and GRF measurements between the groups. Conclusion: Electrical muscle activity may indicate less stiffening or preparatory muscle activity in the trunk muscle of patients with CLBP. Altered latency of the muscle may lead to microtrauma of lumbar structures and CLBP

    Spatial Characterization of Wetting in Porous Media Using Local Lattice-Boltzmann Simulations

    Get PDF
    Wettability is one of the critical parameters affecting multiphase flow in porous media. The wettability is determined by the affinity of fluids to the rock surface, which varies due to factors such as mineral heterogeneity, roughness, ageing, and pore-space geometry. It is well known that wettability varies spatially in natural rocks, and it is still generally considered a constant parameter in pore-scale simulation studies. The accuracy of pore-scale simulation of multiphase flow in porous media is undermined by such inadequate wettability models. The advent of in situ visualization techniques, e.g. X-ray imaging and microtomography, enables us to characterize the spatial distribution of wetting more accurately. There are several approaches for such characterization. Most include the construction of a meshed surface of the interface surfaces in a segmented X-ray image and are known to have significant errors arising from insufficient resolution and surface-smoothing algorithms. This work presents a novel approach for spatial determination of wetting properties using local lattice-Boltzmann simulations. The scheme is computationally efficient as the segmented X-ray image is divided into subdomains before conducting the lattice-Boltzmann simulations, enabling fast simulations. To test the proposed method, it was applied to two synthetic cases with known wettability and three datasets of imaged fluid distributions. The wettability map was obtained for all samples using local lattice-Boltzmann calculations on trapped ganglia and optimization on surface affinity parameters. The results were quantitatively compared with a previously developed geometrical contact angle determination method. The two synthetic cases were used to validate the results of the developed workflow, as well as to compare the wettability results with the geometrical analysis method. It is shown that the developed workflow accurately characterizes the wetting state in the synthetic porous media with an acceptable uncertainty and is better to capture extreme wetting conditions. For the three datasets of imaged fluid distributions, our results show that the obtained contact angle distributions are consistent with the geometrical method. However, the obtained contact angle distributions tend to have a narrower span and are considered more realistic compared to the geometrical method. Finally, our results show the potential of the proposed scheme to efficiently obtain wettability maps of porous media using X-ray images of multiphase fluid distributions. The developed workflow can help for more accurate characterization of the wettability map in the porous media using limited experimental data, and hence more accurate digital rock analysis of multiphase flow in porous media

    Static spherically symmetric three-form stars

    Full text link
    We consider interior static and spherically symmetric solutions in a gravity theory that extends the standard Hilbert-Einstein action with a Lagrangian constructed from a three-form field AαβγA_{\alpha \beta \gamma}, which generates, via the field strength and a potential term, a new component in the total energy-momentum tensor of the gravitational system. We formulate the field equations in Schwarzschild coordinates and investigate their solutions numerically for different equations of state of neutron and quark matter, by assuming that the three field potential is either a constant or possesses a Higgs-like form. Moreover, stellar models, described by the stiff fluid, radiation-like, bag model and the Bose-Einstein condensate equations of state are explicitly obtained in both general relativity and three-form gravity, thus allowing an in-depth comparison between the astrophysical predictions of these two gravitational theories. As a general result we find that for all the considered equations of state, three-form field stars are more massive than their general relativistic counterparts. As a possible astrophysical application of the obtained results, we suggest that the 2.5MM_{\odot} mass compact object, associated with the GW190814 gravitational wave event, could be in fact a neutron or a quark star described by the three-form field gravity theory.Comment: 23 pages, 24 figures; minor modifications, accepted for publication in EPJ

    Brane-f(R)f(R) gravity and dark matter

    Full text link
    The collision-free Boltzmann equation is used in the context of brane-f(R)f(R) gravity to derive the virial theorem. It is shown that the virial mass is proportional to certain geometrical terms appearing in the Einstein field equations and contributes to gravitational energy and that such a geometric mass can be attributed to the virial mass discrepancy in a cluster of galaxies. In addition, the galaxy rotation curves are studied by utilizing the concept of conformal symmetry and notion of conformal Killing symmetry. The field equations may then be obtained in an exact parametric form in terms of the parameter representing the conformal factor. This provides the possibility of studying the behavior of the angular velocity of a test particle moving in a stable circular orbit. The tangential velocity can be derived as a function of the conformal factor and integration constants, resulting in a constant value at large radial distances. Relevant phenomenon such as the deflection of light passing through a region where the rotation curves are flat and the radar echo delay are also studied.Comment: 12 pages, 2 figures, to appear in PR

    Lingulodinium machaerophorum expansion over the last centuries in the Caspian Sea reflects global warming

    Get PDF
    This article is made available through the Brunel Open Access Publishing Fund. Copyright @ Author(s) 2012. This work is distributed under the Creative Commons Attribution 3.0 License.We analysed dinoflagellate cyst assemblages in four short sediment cores, two of them dated by radionuclides, taken in the south basin of the Caspian Sea. The interpretation of the four sequences is supported by a collection of 27 lagoonal or marine surface sediment samples. A sharp increase in the biomass of the dinocyst occurs after 1967, especially owing to Lingulodinium machaerophorum. Considering nine other cores covering parts or the whole of Holocene, this species started to develop in the Caspian Sea only during the last three millennia. By analysing instrumental data and collating existing reconstructions of sea level changes over the last few millennia, we show that the main forcing of the increase of L. machaerophorum percentages and of the recent dinocyst abundance is global climate change, especially sea surface temperature increase. Sea level fluctuations likely have a minor impact. We argue that the Caspian Sea has entered the Anthropocene

    Thomas-Fermi Model in the Presence of Natural Cutoffs

    Get PDF
    It has been revealed, in the context of quantum gravity candidates, that measurement of position cannot be done with arbitrary precision and there is a finite resolution of space-time points. This leads naturally to a minimal measurable length of the order of Planck length. Also, in the context of newly proposed doubly special relativity theories, a test particle’s momentum cannot be arbitrarily imprecise leading nontrivially to a maximal momentum for a test particle. These two natural cutoffs affects most of quantum field theoretic arguments in the spirit of condensed matter physics. Here we focus on the role of these natural cutoffs on Thomas-Fermi theory in condensed matter physics. We show how quantum gravity effects can play important role phenomenologically in many-body interactions of solids

    Applications of brain imaging methods in driving behaviour research

    Get PDF
    Applications of neuroimaging methods have substantially contributed to the scientific understanding of human factors during driving by providing a deeper insight into the neuro-cognitive aspects of driver brain. This has been achieved by conducting simulated (and occasionally, field) driving experiments while collecting driver brain signals of certain types. Here, this sector of studies is comprehensively reviewed at both macro and micro scales. Different themes of neuroimaging driving behaviour research are identified and the findings within each theme are synthesised. The surveyed literature has reported on applications of four major brain imaging methods. These include Functional Magnetic Resonance Imaging (fMRI), Electroencephalography (EEG), Functional Near-Infrared Spectroscopy (fNIRS) and Magnetoencephalography (MEG), with the first two being the most common methods in this domain. While collecting driver fMRI signal has been particularly instrumental in studying neural correlates of intoxicated driving (e.g. alcohol or cannabis) or distracted driving, the EEG method has been predominantly utilised in relation to the efforts aiming at development of automatic fatigue/drowsiness detection systems, a topic to which the literature on neuro-ergonomics of driving particularly has shown a spike of interest within the last few years. The survey also reveals that topics such as driver brain activity in semi-automated settings or the brain activity of drivers with brain injuries or chronic neurological conditions have by contrast been investigated to a very limited extent. Further, potential topics in relation to driving behaviour are identified that could benefit from the adoption of neuroimaging methods in future studies

    Development of a unified design buckling curve for fibre reinforced polymer plates subjected to in-plane uniaxial and uniform compression

    Get PDF
    Presented are 24 non-dimensional buckling curves to estimate the strengths of Fibre-Reinforced Polymer (FRP) square plates having four simply supported edges and subjected to in-plane uniaxial and uniform in-plane compression. The curves are constructed by the authors from a parametric numerical analysis using ABAQUS® software with changing variables for: material properties; initial geometrical imperfections; laminate lay-ups; and plate thicknesses. These strength curves express relationships for the buckling reduction factor with plate slenderness, and account for post-buckling strength. We observe that regardless of the laminate lay-up (except for purely unidirectional), the choice of FRP material and the magnitude of the initial geometrical imperfection the predicted buckling reduction factors display a meaningful correlation with plate slenderness. Presented is a proposed unified buckling design curve, defined as the lower bound to 18 of the 24 ABAQUS®-generated buckling curves. This new curve is benchmarked by the authors against experimental test results extracted from the literature and it is found that there is a reasonable agreement. The authors recommend that the proposed buckling design curve has the potential to be introduced into structural design standards as a procedure to design the buckling strengths of FRP plates
    corecore