23 research outputs found
Recommended from our members
Exposures to Carbon Monoxide in a Cookstove Intervention in Northern Ghana
Biomass burning for home energy use is a major environmental health concern. Improved cooking technologies could generate environmental health benefits, yet prior results regarding reduced personal exposure to air pollution are mixed. In this study, two improved stove types were distributed over four study groups in Northern Ghana. Participants wore real-time carbon monoxide (CO) monitors to measure the effect of the intervention on personal exposures. Relative to the control group (those using traditional stoves), there was a 30.3% reduction in CO exposures in the group given two Philips forced draft stoves (p = 0.08), 10.5% reduction in the group given two Gyapa stoves (locally made rocket stoves) (p = 0.62), and 10.2% reduction in the group given one of each (p = 0.61). Overall, CO exposure for participants was low given the prevalence of cooking over traditional three-stone fires, with 8.2% of daily samples exceeding WHO Tier-1 standards. We present quantification methods and performance of duplicate monitors. We analyzed the relationship between personal carbonaceous particulate matter less than 2.5 microns (PM2.5) and CO exposure for the dataset that included both measurements, finding a weak relationship likely due to the diversity of identified air pollution sources in the region and behavior variability.</p
Recommended from our members
Attributing Air Pollutant Exposure to Emission Sources with Proximity Sensing
Biomass burning for home energy use contributes to negative health outcomes and environmental degradation. As part of the REACCTING study (Research on Emissions, Air quality, Climate, and Cooking Technologies in Northern Ghana), personal exposure to carbon monoxide (CO) was measured to gauge the effects of introducing two different cookstove types over four intervention groups. A novel Bluetooth Low-Energy (BLE) Beacon system was deployed on a subset of those CO measurement periods to estimate participants’ distances to their most-used cooking areas during the sampling periods. In addition to presenting methods and validation for the BLE Beacon system, here we present pollution exposure assessment modeling results using two different approaches, in which time-activity (proximity) data is used to: (1) better understand exposure and behaviors within and away from homes; and (2) predict personal exposure via microenvironment air quality measurements. Model fits were improved in both cases, demonstrating the benefits of the proximity measurements.</p
Recommended from our members
Differential maintenance of cortical and cancellous bone strength following discontinuation of bone-active agents.
Osteoporotic patients treated with antiresorptive or anabolic agents experience an increase in bone mass and a reduction in incident fractures. However, the effects of these medications on bone quality and strength after a prolonged discontinuation of treatment are not known. We evaluated these effects in an osteoporotic rat model. Six-month-old ovariectomized (OVX) rats were treated with placebo, alendronate (ALN, 2 µg/kg), parathyroid hormone [PTH(1-34); 20 µg/kg], or raloxifene (RAL, 2 mg/kg) three times a week for 4 months and withdrawn from the treatments for 8 months. Treatment with ALN, PTH, and RAL increased the vertebral trabecular bone volume (BV/TV) by 47%, 53%, and 31%, with corresponding increases in vertebral compression load by 27%, 51%, and 31%, respectively (p < .001). The resulting bone strength was similar to that of the sham-OVX control group with ALN and RAL and higher (p < .001) with PTH treatment. After 4 months of withdrawal, bone turnover (BFR/BS) remained suppressed in the ALN group versus the OVX controls (p < .001). The vertebral strength was higher than in the OVX group only in ALN-treated group (p < .05), whereas only the PTH-treated animals showed a higher maximum load in tibial bending versus the OVX controls (p < .05). The vertebral BV/TV returned to the OVX group level in both the PTH and RAL groups 4 months after withdrawal but remained 25% higher than the OVX controls up to 8 months after withdrawal of ALN (p < .05). Interestingly, cortical bone mineral density increased only with PTH treatment (p < .05) but was not different among the experimental groups after withdrawal. At 8 months after treatment withdrawal, none of the treatment groups was different from the OVX control group for cortical or cancellous bone strength. In summary, both ALN and PTH maintained bone strength (maximum load) 4 months after discontinuation of treatment despite changes in bone mass and bone turnover; however, PTH maintained cortical bone strength, whereas ALN maintained cancellous bone strength. Additional studies on the long-term effects on bone strength after discontinuation and with combination of osteoporosis medications are needed to improve our treatment of osteoporosis