212 research outputs found

    Sevoflurane and desflurane protect cholinergic-induced bronchoconstriction of hyperreactive airways in rabbits

    Get PDF
    Purpose: The potential of desflurane to alter respiratory mechanics in the presence of bronchial hyperresponsiveness (BHR) is still a subject of debate. Accordingly, we evaluated the bronchoprotective potential of desflurane compared with sevoflurane following cholinergic lung constriction in rabbits with normal and hyperreactive airways. Methods: The input impedance of the respiratory system (Zrs) was measured during midazolam-based anesthesia before and during intravenous infusions of increasing doses of methacholine (MCh). The rabbits in the control group (Group C) were then randomized to receive either sevoflurane 1 MAC followed by desflurane 1 MAC or vice versa, whereas ovalbumin-sensitized rabbits received sevoflurane followed by desflurane (Group S-SD) or vice versa (Group S-DS). Baseline Zrs measurements and the MCh provocations were repeated under the maintenance of each volatile agent. Airway resistance (Raw), tissue damping (G), and elastance data were obtained from Zrs by model fitting. Results: Similar bronchoprotective effects of sevoflurane and desflurane against MCh-induced bronchoconstriction were observed independently of the severity of the bronchospasm and the presence of BHR. With sevoflurane, the decreases in Raw ranged from 22 (8.8)% to 44 (12)%, and with desflurane, they ranged from 22 (8.7)% to 50 (12)%. The increases in G reflecting the enhanced ventilation heterogeneities in the lung periphery were not affected by the volatile agents. Conclusions: If the contractile stimulus is cholinergic in origin, sevoflurane and desflurane exert similar bronchoprotective potentials to act against lung constriction independent of the presence of BHR. These volatile anesthetics otherwise lack a potential to improve the enhanced ventilation heterogeneities that develop particularly in the presence of BH

    Difficult tracheal intubation in neonates and infants. NEonate and Children audiT of Anaesthesia pRactice IN Europe (NECTARINE):a prospective European multicentre observational study

    Get PDF
    Background: Neonates and infants are susceptible to hypoxaemia in the perioperative period. The aim of this study was to analyse interventions related to anaesthesia tracheal intubations in this European cohort and identify their clinical consequences.Methods: We performed a secondary analysis of tracheal intubations of the European multicentre observational trial (NEonate and Children audiT of Anaesthesia pRactice IN Europe [NECTARINE]) in neonates and small infants with difficult tracheal intubation. The primary endpoint was the incidence of difficult intubation and the related complications. The secondary endpoints were the risk factors for severe hypoxaemia attributed to difficult airway management, and 30 and 90 day outcomes.Results: Tracheal intubation was planned in 4683 procedures. Difficult tracheal intubation, defined as two failed attempts of direct laryngoscopy, occurred in 266 children (271 procedures) with an incidence (95% confidence interval [CI]) of 5.8% (95% CI, 5.1e6.5). Bradycardia occurred in 8% of the cases with difficult intubation, whereas a significant decrease in oxygen saturation (SpO2&lt;90% for 60 s) was reported in 40%. No associated risk factors could be identified among comorbidities, surgical, or anaesthesia management. Using propensity scoring to adjust for confounders, difficult anaesthesia tracheal intubation did not lead to an increase in 30 and 90 day morbidity or mortality.Conclusions: The results of the present study demonstrate a high incidence of difficult tracheal intubation in children less than 60 weeks post-conceptual age commonly resulting in severe hypoxaemia. Reassuringly, the morbidity and mortality at 30 and 90 days was not increased by the occurrence of a difficult intubation event. Clinical trial registration: NCT02350348.</p

    Difficult tracheal intubation in neonates and infants. NEonate and Children audiT of Anaesthesia pRactice IN Europe (NECTARINE):a prospective European multicentre observational study

    Get PDF
    BACKGROUND Neonates and infants are susceptible to hypoxaemia in the perioperative period. The aim of this study was to analyse interventions related to anaesthesia tracheal intubations in this European cohort and identify their clinical consequences. METHODS We performed a secondary analysis of tracheal intubations of the European multicentre observational trial (NEonate and Children audiT of Anaesthesia pRactice IN Europe [NECTARINE]) in neonates and small infants with difficult tracheal intubation. The primary endpoint was the incidence of difficult intubation and the related complications. The secondary endpoints were the risk factors for severe hypoxaemia attributed to difficult airway management, and 30 and 90 day outcomes. RESULTS Tracheal intubation was planned in 4683 procedures. Difficult tracheal intubation, defined as two failed attempts of direct laryngoscopy, occurred in 266 children (271 procedures) with an incidence (95% confidence interval [CI]) of 5.8% (95% CI, 5.1-6.5). Bradycardia occurred in 8% of the cases with difficult intubation, whereas a significant decrease in oxygen saturation (SpO2<90% for 60 s) was reported in 40%. No associated risk factors could be identified among co-morbidities, surgical, or anaesthesia management. Using propensity scoring to adjust for confounders, difficult anaesthesia tracheal intubation did not lead to an increase in 30 and 90 day morbidity or mortality. CONCLUSIONS The results of the present study demonstrate a high incidence of difficult tracheal intubation in children less than 60 weeks post-conceptual age commonly resulting in severe hypoxaemia. Reassuringly, the morbidity and mortality at 30 and 90 days was not increased by the occurrence of a difficult intubation event. CLINICAL TRIAL REGISTRATION NCT02350348

    Value of brain natriuretic peptide in the perioperative follow-up of children with valvular disease

    Get PDF
    Objective: To characterize N-terminal pro-brain natriuretic peptide (N-proBNP) and troponin I (TnI) profile following mitral and/or aortic valve surgery and to evaluate correlations with echocardiography measures and outcome criteria. Design and setting: Prospective cross-controlled study in auniversity children's hospital. Patients: Twenty children with acquired valvular disease requiring valvular surgery. Interventions: We prospectively studied clinical, biochemical, and echocardiographic characteristics at baseline and 6, 12, 24 h and 3-4 weeks postoperatively. Results: TnI peaked 6 h after surgery and remained elevated during the first 24 h. N-proBNP was significantly lower 3-4 weeks after surgery than during the perioperative period. Overall, N-proBNP was correlated with the Pediatric Heart Failure Index, left ventricle shortening fraction, left atrium to aorta ratio, left ventricle mass index, end-systolic wall stress, and with outcome measures such as inotropic score, duration of inotropic support, and ICU length of stay. Preoperative N-proBNP was significantly more elevated in patients with complicated outcome than in patients with uneventful postoperative course. Conclusions: In pediatric valvular patients, perioperative N-proBNP is apromising risk stratification predicting factor. It is correlated with evolutive echocardiographic measures, need for inotropic support, and ICU length of sta

    Peri-operative red blood cell transfusion in neonates and infants: NEonate and children audiT of anaesthesia pRactice IN Europe: A prospective European multicentre observational study.

    Get PDF
    BACKGROUND Little is known about current clinical practice concerning peri-operative red blood cell transfusion in neonates and small infants. Guidelines suggest transfusions based on haemoglobin thresholds ranging from 8.5 to 12 g dl-1, distinguishing between children from birth to day 7 (week 1), from day 8 to day 14 (week 2) or from day 15 (≥week 3) onwards. OBJECTIVE To observe peri-operative red blood cell transfusion practice according to guidelines in relation to patient outcome. DESIGN A multicentre observational study. SETTING The NEonate-Children sTudy of Anaesthesia pRactice IN Europe (NECTARINE) trial recruited patients up to 60 weeks' postmenstrual age undergoing anaesthesia for surgical or diagnostic procedures from 165 centres in 31 European countries between March 2016 and January 2017. PATIENTS The data included 5609 patients undergoing 6542 procedures. Inclusion criteria was a peri-operative red blood cell transfusion. MAIN OUTCOME MEASURES The primary endpoint was the haemoglobin level triggering a transfusion for neonates in week 1, week 2 and week 3. Secondary endpoints were transfusion volumes, 'delta haemoglobin' (preprocedure - transfusion-triggering) and 30-day and 90-day morbidity and mortality. RESULTS Peri-operative red blood cell transfusions were recorded during 447 procedures (6.9%). The median haemoglobin levels triggering a transfusion were 9.6 [IQR 8.7 to 10.9] g dl-1 for neonates in week 1, 9.6 [7.7 to 10.4] g dl-1 in week 2 and 8.0 [7.3 to 9.0] g dl-1 in week 3. The median transfusion volume was 17.1 [11.1 to 26.4] ml kg-1 with a median delta haemoglobin of 1.8 [0.0 to 3.6] g dl-1. Thirty-day morbidity was 47.8% with an overall mortality of 11.3%. CONCLUSIONS Results indicate lower transfusion-triggering haemoglobin thresholds in clinical practice than suggested by current guidelines. The high morbidity and mortality of this NECTARINE sub-cohort calls for investigative action and evidence-based guidelines addressing peri-operative red blood cell transfusions strategies. TRIAL REGISTRATION ClinicalTrials.gov, identifier: NCT02350348

    Effect of body position on the redistribution of regional lung aeration during invasive and non-invasive ventilation of COVID-19 patients

    Get PDF
    Severe COVID-19-related acute respiratory distress syndrome (C-ARDS) requires mechanical ventilation. While this intervention is often performed in the prone position to improve oxygenation, the underlying mechanisms responsible for the improvement in respiratory function during invasive ventilation and awake prone positioning in C-ARDS have not yet been elucidated. In this prospective observational trial, we evaluated the respiratory function of C-ARDS patients while in the supine and prone positions during invasive (n = 13) or non-invasive ventilation (n = 15). The primary endpoint was the positional change in lung regional aeration, assessed with electrical impedance tomography. Secondary endpoints included parameters of ventilation and oxygenation, volumetric capnography, respiratory system mechanics and intrapulmonary shunt fraction. In comparison to the supine position, the prone position significantly increased ventilation distribution in dorsal lung zones for patients under invasive ventilation (53.3 ± 18.3% vs. 43.8 ± 12.3%, percentage of dorsal lung aeration ± standard deviation in prone and supine positions, respectively; p = 0.014); whereas, regional aeration in both positions did not change during non-invasive ventilation (36.4 ± 11.4% vs. 33.7 ± 10.1%; p = 0.43). Prone positioning significantly improved the oxygenation both during invasive and non-invasive ventilation. For invasively ventilated patients reduced intrapulmonary shunt fraction, ventilation dead space and respiratory resistance were observed in the prone position. Oxygenation is improved during non-invasive and invasive ventilation with prone positioning in patients with C-ARDS. Different mechanisms may underly this benefit during these two ventilation modalities, driven by improved distribution of lung regional aeration, intrapulmonary shunt fraction and ventilation-perfusion matching. However, the differences in the severity of C-ARDS may have biased the sensitivity of electrical impedance tomography when comparing positional changes between the protocol groups

    Optimal crystalloid volume ratio for blood replacement for maintaining hemodynamic stability and lung function: an experimental randomized controlled study

    Get PDF
    Background: Crystalloids are first line in fluid resuscitation therapy, however there is a lack of evidence-based recommendations on the volume to be administered. Therefore, we aimed at comparing the systemic hemodynamic and respiratory effects of volume replacement therapy with a 1:1 ratio to the historical 1:3 ratio. Methods: Anesthetized, ventilated rats randomly included in 3 groups: blood withdrawal and replacement with crystalloid in 1:1 ratio (Group 1,n= 11), traditional 1:3 ratio (Group 3,n= 12) and a control group with no interventions (Group C,n= 9). Arterial blood of 5% of the total blood volume was withdrawn 7 times, and replacedstepwise with different volume rations of Ringer’s acetate, according to group assignments. Airway resistance (Raw),respiratory tissue damping (G) and tissue elastance (H), mean arterial pressure (MAP) and heart rate (HR) were assessed following each step of fluid replacement with a crystalloid (CR1-CR6). Lung edema index was measured from histological samples. Results:Raw decreased in Groups 1 and 3 following CR3 (p< 0.02) without differences between the groups. H elevated in all groups (p< 0.02), with significantly higher changes in Group 3 compared to Groups C and 1(both p= 0.03). No differences in MAP or HR were present between Groups 1 and 3. Lung edema was note din Group 3 (p< 0.05). Conclusions: Fluid resuscitation therapy by administering a 1:1 blood replacement ratio revealed adequate compensation capacity and physiological homeostasis similar with no lung stiffening and pulmonary edema. Therefore, considering this ratio promotes the restrictive fluid administration in the presence of continuous and occult bleedin
    corecore