211 research outputs found
Quantum statistics and locality
It is shown that two observers have mutually commuting observables if they
are able to prepare in each subsector of their common state space some state
exhibiting no mutual correlations. This result establishes a heretofore missing
link between statistical and locality (commensurability) properties of the
observables of spacelike separated observers in relativistic quantum physics,
envisaged four decades ago by Haag and Kastler. It is based on a discussion of
coincidence experiments and suggests a physically meaningful quantitative
measure of possible violations of Einstein causality.Comment: 3 pages, no figure
RISK-RETURN ANALYSIS OF INCORPORATING ANNUAL LEGUMES AND LAMB GRAZING WITH DRYLAND CROP ROTATIONS
Profitability and risk, 1988-2001, are examined for lamb-grazed field pea as a fallow alternative with wheat, or an extended wheat-sunflower-millet rotation. Switching from conventional wheat-fallow to an extended rotation with grazed-peas increases profitability (2.3% to 7.3%), and reduces risk (below 0% target in only 2 versus 7 of 14 years).Crop Production/Industries,
Optimizing Biomedical Discoveries as an Engine of Culture Change in an Academic Medical Center
Academic discovery in biomedicine is a growing enterprise with tens of billions of dollars in research funding available to universities and hospitals. Protecting and optimizing the resultant intellectual property is required in order for the discoveries to have an impact on society. To achieve that, institutions must create a multidisciplinary, collaborative system of review and support, and utilize connections to industry partners. In this study, we outline the efforts of Case Western Reserve University, coordinated through its Clinical and Translational Science Collaborative (CTSC), to promote entrepreneurial culture, and achieve goals of product development and startup formation for biomedical and population health discoveries arising from the academic ecosystem in Cleveland. The CTSC Office of Translation and Innovation, with the university’s Technology Transfer Office (TTO), helps identify and derisk promising IP while building interdisciplinary project teams to optimize the assets through key preclinical derisking steps. The benefits of coordinating funding across multiple programs, assuring dedicated project management to oversee optimizing the IP, and ensuring training to help improve proposals and encourage an entrepreneurial culture, are discussed in the context of a case study of therapeutic assets, the Council to Advance Human Health. This case study highlights best practices in academic innovation
The second law of thermodynamics, TCP, and Einstein causality in anti-de Sitter space-time
If the vacuum is passive for uniformly accelerated observers in anti-de
Sitter space-time (i.e. cannot be used by them to operate a "perpetuum
mobile"), they will (a) register a universal value of the Hawking-Unruh
temperature, (b) discover a TCP symmetry, and (c) find that observables in
complementary wedge-shaped regions are commensurable (local) in the vacuum
state. These results are model independent and hold in any theory which is
compatible with some weak notion of space-time localization.Comment: 8 pages, slightly improved results, minor changes in the expository
part, new title; to appear in "Classical and Quantum Gravity
Dialogue Concerning Two Views on Quantum Coherence: Factist and Fictionist
A controversy that has arisen many times over in disparate contexts is
whether quantum coherences between eigenstates of certain quantities are fact
or fiction. We present a pedagogical introduction to the debate in the form of
a hypothetical dialogue between proponents from each of the two camps: a
factist and a fictionist. A resolution of the debate can be achieved, we argue,
by recognizing that quantum states do not only contain information about the
intrinsic properties of a system but about its extrinsic properties as well,
that is, about its relation to other systems external to it. Specifically, the
coherent quantum state of the factist is the appropriate description of the
relation of the system to one reference frame, while the incoherent quantum
state of the fictionist is the appropriate description of the relation of the
system to another, uncorrelated, reference frame. The two views, we conclude,
are alternative but equally valid paradigms of description.Comment: 14 pages, Contribution to the Int. J. of Quant. Info. issue dedicated
to the memory of Asher Peres; v2 updated summary and critique of prior
literatur
Intermediate statistics in quantum maps
We present a one-parameter family of quantum maps whose spectral statistics
are of the same intermediate type as observed in polygonal quantum billiards.
Our central result is the evaluation of the spectral two-point correlation form
factor at small argument, which in turn yields the asymptotic level
compressibility for macroscopic correlation lengths
Remarks on Causality in Relativistic Quantum Field Theory
It is shown that the correlations predicted by relativistic quantum field
theory in locally normal states between projections in local von Neumann
algebras \cA(V_1),\cA(V_2) associated with spacelike separated spacetime
regions have a (Reichenbachian) common cause located in the union of
the backward light cones of and . Further comments on causality and
independence in quantum field theory are made.Comment: 10 pages, Latex, Quantum Structures 2002 Conference Proceedings
submission. Minor revision of the order of definitions on p.
Adjusting the melting point of a model system via Gibbs-Duhem integration: application to a model of Aluminum
Model interaction potentials for real materials are generally optimized with
respect to only those experimental properties that are easily evaluated as
mechanical averages (e.g., elastic constants (at T=0 K), static lattice
energies and liquid structure). For such potentials, agreement with experiment
for the non-mechanical properties, such as the melting point, is not guaranteed
and such values can deviate significantly from experiment. We present a method
for re-parameterizing any model interaction potential of a real material to
adjust its melting temperature to a value that is closer to its experimental
melting temperature. This is done without significantly affecting the
mechanical properties for which the potential was modeled. This method is an
application of Gibbs-Duhem integration [D. Kofke, Mol. Phys.78, 1331 (1993)].
As a test we apply the method to an embedded atom model of aluminum [J. Mei and
J.W. Davenport, Phys. Rev. B 46, 21 (1992)] for which the melting temperature
for the thermodynamic limit is 826.4 +/- 1.3K - somewhat below the experimental
value of 933K. After re-parameterization, the melting temperature of the
modified potential is found to be 931.5K +/- 1.5K.Comment: 9 pages, 5 figures, 4 table
Dendritic Polyglycerol Amine: An Enhanced Substrate to Support Long-Term Neural Cell Culture
Long-term stable cell culture is a critical tool to better understand cell function. Most adherent cell culture models require a polymer substrate coating of poly-lysine or poly-ornithine for the cells to adhere and survive. However, polypeptide-based substrates are degraded by proteolysis and it remains a challenge to maintain healthy cell cultures for extended periods of time. Here, we report the development of an enhanced cell culture substrate based on a coating of dendritic polyglycerol amine (dPGA), a non-protein macromolecular biomimetic of poly-lysine, to promote the adhesion and survival of neurons in cell culture. We show that this new polymer coating provides enhanced survival, differentiation and long-term stability for cultures of primary neurons or neurons derived from human induced pluripotent stem cells (hiPSCs). Atomic force microscopy analysis provides evidence that greater nanoscale roughness contributes to the enhanced capacity of dPGA-coated surfaces to support cells in culture. We conclude that dPGA is a cytocompatible, functionally superior, easy to use, low cost and highly stable alternative to poly-cationic polymer cell culture substrate coatings such as poly-lysine and poly-ornithine.
Summary statement
Here, we describe a novel dendritic polyglycerol amine-based substrate coating, demonstrating superior performance compared to current polymer coatings for long-term culture of primary neurons and neurons derived from induced pluripotent stem cells
Reference frames, superselection rules, and quantum information
Recently, there has been much interest in a new kind of ``unspeakable''
quantum information that stands to regular quantum information in the same way
that a direction in space or a moment in time stands to a classical bit string:
the former can only be encoded using particular degrees of freedom while the
latter are indifferent to the physical nature of the information carriers. The
problem of correlating distant reference frames, of which aligning Cartesian
axes and synchronizing clocks are important instances, is an example of a task
that requires the exchange of unspeakable information and for which it is
interesting to determine the fundamental quantum limit of efficiency. There
have also been many investigations into the information theory that is
appropriate for parties that lack reference frames or that lack correlation
between their reference frames, restrictions that result in global and local
superselection rules. In the presence of these, quantum unspeakable information
becomes a new kind of resource that can be manipulated, depleted, quantified,
etcetera. Methods have also been developed to contend with these restrictions
using relational encodings, particularly in the context of computation,
cryptography, communication, and the manipulation of entanglement. This article
reviews the role of reference frames and superselection rules in the theory of
quantum information processing.Comment: 55 pages, published versio
- …