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Adjusting the melting point of a model system via Gibbs-Duhem integration:
Application to a model of aluminum
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Model interaction potentials for real materials are generally optimized with respect to only those experi-
mental properties that are easily evaluated as mechanical avéeageselastic constantat T=0 K), static
lattice energies, and liquid structdré-or such potentials, agreement with experiment for the nonmechanical
properties, such as the melting point, is not guaranteed and such values can deviate significantly from experi-
ment. We present a method for reparametrizing any model interaction potential of a real material to adjust its
melting temperature to a value that is closer to its experimental melting temperature. This is done without
significantly affecting the mechanical properties for which the potential was modeled. This method is an
application of Gibbs-Duhem integratid®. Kofke, Mol. Phys.78, 1331 (1993]. As a test we apply the
method to an embedded atom model of alumifuiMei and J.W. Davenport, Phys. Rev4B 21(1992] for
which the melting temperature for the thermodynamic limit is 826148 K—somewhat below the experi-
mental value of 933 K. After reparametrization, the melting temperature of the modified potential is found to
be 931.5-1.5 K.

[. INTRODUCTION any coexistence conditiofsuch as melting temperature or
pressurg with respect to any parameter of the potential can

The ability of a simulation to successfully predict the be determined by an appropriate configurational average at a
properties of real materials is primarily dependent upon thereviously determined melting point. The method is gener-
accuracy of the model interaction potential used. The conated by the integration of a generalized Gibbs-Duhem equa-
struction of model interactions generally involves the optimi-tion and the steps are analogous to the derivation of the fa-
zation of the parameters of the potential with respean®  miliar Clapeyron equation for the slope of the-T
chanical properties of the materidtrystal lattice constants, coexistence curve. Gibbs-Duhem integration has been shown
elastic constants, liquid density, etas determined from ex- to be quite successful in efficiently determining the coexist-
periment orab initio calculations. Nonmechanical properties ence conditions for entire classes of potentials. For example,
(i.e., those not obtainable as local averages over coordjnatethe phase diagram for the class of repulsive inverse power
such as phase transition temperatures are difficult to includpotentials,u(r)= e(a/r)", was determinétby starting with
in such optimization procedures and are generally calculatethe known hard-spheren ) coexistence and integrating
for the optimized modea posteriori and the agreement of the derivative of coexistence curve with respect to the pa-
such quantities with experiment is not guaranteed. Howeverameters=1/n. The method has also proved useful in a va-
for some applications that deal directly with such propertiesriety of other application4:®
such as in the study of solid-liquid interfa¢éa which the In the current application, one begins with a model poten-
melting temperature plays an obviously important role, it istial, parametrized for a real system in the usual way with
desirable to develop efficient procedures for including suctrespect to mechanical properties of the real system. The
nonmechanical properties in the optimization. Recently, Errmelting temperaturéor pressure for the model system is
ington and Panagiotopoufodhiave developed a method in then calculated by thermodynamic integration. Once this is
which histogram reweighting grand canonical Monte Carlodone, the derivative of the melting temperat(me pressurg
techniques are used to optimize the parameters of model pavith respect to all parameters of the system can be deter-
tentials with respect to vapor-liquid coexistence data, bumined via separate simulations on the coexisting fluid and
such procedures are not well suited for optimizations involv-solid using the Gibbs-Duhem procedure. The calculated de-
ing solid-liquid coexistence properties, such as the meltingivatives allow an assessment of the effect of each individual
temperature. In this work, we outline a general procedure foparameter on the melting point. From this information an
adjusting the potential parameters for a system designed @ppropriate scheme to adjust the parameters to improve the
model a real system to improve the agreement of the meltingnelting point can be devised in such a way that the agree-
point of that system with the experimental value. As an eximent with the other experimental properties is not unaccept-
ample we present an application to an existing embeddedbly compromised. The Gibbs-Duhem integration and our

atom model of aluminum. reparametrization scheme is outlined in more detail in the
Our reparametrization scheme is based on the powerfuiext section.
Gibbs-Duhem integration method developed by KdfRén As a test application of this procedure, we examine an

this technique, the derivative along the coexistence curve afmbedded atom model of aluminum developed by Mei and
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Davenport This particular model was chosen for three rea-whereu,, and s are the chemical potentials for each of the
sons: First, the importance of aluminum as a material makesespective phases. Assuming constant pressdie=(Q),

the development of an accurate model potential for simulasince we are interested here in changes in the transition tem-
tion purposes desirable. Second, the large number of pararperature, the previous equation can be rearranged to give
eters and complicated nature of the embedded atom potential
increases the need for a systematic, as opposex tbog
procedure for adjusting the melting point. In addition, the
zero-pressure melting point for the Mei-Davenport potential
has been previously determirfe be 806:9 K, somewhat where we have also assumed that at coexisterice,
lower than the experimental melting point of aluminum at=Ah/T, where Ah is the latent heat per particle for the
933 K. (Note that the melting point determined by Mei and phase transition.Note that the corresponding equations for
Davenport was calculated for a 256-particle system—the ad:dP/d\)t,y. . .coex CaN be easily obtained by replacing
tual value for this potential in the thermodynamic limit is An/T in Eq. (5) with Av. ]

slightly higher at 826.4:1.3 K)) We find that, in this specific  The \; can be related to mechanical averages that can be
case, only one of the parameters of the potential has an¥asily calculated in a molecular dynamics or Monte Carlo
significant effect on the potential and that changing this pasjmulation. First, the Gibbs free energy is related to the

rameter according to the Gibbs-Duhem procedure yields gothermal-isobaric distributiod (N, P, T) as follows:
new model with the correct experimental melting point with

no significant change in the quality of the agreement of the G=—-k,TINnA(N,P,T), (5)
guantities with respect to which the model was originally . . L . .
optimized. Details of this calculation as well as a descriptionWhICh for a classical system with interaction potential
of the model can be found in Sec. Il below. U({ri}) is given by

JT
X

T(Ngi—Ag)  TAN
h,—h,  Ah

4

P’Xj#i ;coex

Il. GIBBS-DUHEM INTEGRATION AND MELTING POINT A(N,P,T)=

deJ dNr exp(— BU— BPV),
OPTIMIZATION A3NNJ P AU BRY)

0
The techni f Gibbs-Duhem int tion has b Il ©
e technique of Gibbs-Duhem integration has been we . . I .
described previously by Koffebut in the interest of com- whereV is the volume. Taking the derivative of E@) with

pleteness and clarity we repeat the basic derivation her&€SPect to the parameti gives

Consider a single-component system with an arbitrary inter- 9G JlInA
action potential/({R;},{X;}), where theR; are the atomic (_) =— )
coordinates and th&; are the parameters that define the IX; T.P.X i 26 T.PX 4
potential—no restriction to pairwise additivity need be as-
sumed. Assume there are two phaaesnd S in coexistence _ ifdeJ dNr(ﬂ)
at a temperaturd@ and pressur®. On the surface of coex- Ao IXi) s .,
istence, the chemical potentiaisolar Gibbs free energigs !
of the two phases must be equal. To quantify how changes in X exp(— BU— BPV). (7)
P, T, andX; will affect the chemical potential one can define
a generalized Gibbs-Duhem equation Using Eq.(2) we have
dG au
dp=—sdT+odP+ >, \dX;, (1) M=(W) =<(y) > : ®
i VTPX 4 VX4 NPT

where u is the chem.ical potentins andv are the entropy Using Eq.(5) and Eq.(10) we can calculate the change
alri]g \c/iommr?npgr r?arrr?ide\} rreisglectlvelz', an? era:ﬁ genfr-nti necessary in each of the parametetg to alter the melting
alize teg( 0 g ]:?‘ (;: ariables conjugate fo the pote a1!emperature of our interaction potential by some arbitrary
parameterss;, defined as amount. As long as the changes are not too large, the calcu-
lation can be greatly simplified by the assumption that the

IG n | jreatly sin
(2) deviation remains linear:

20 T,P.Xj i

Tm({xi}) = Tm,0+ El:

Now as one moves infinitesimally away from the original
coexistence pointR,T,{\;}) to another point P+dP,T
+dT,{\;+d\;}) on the surface of coexistence, the changewhere T, is the melting point of the original model with
in 4 must be identical in both phases. This condition to-parameters{X; o}. (If the linear approximation does not

ﬁT) (Xi=Xio, (9
_ i—Xi0),
26 Xj 4 ,COX I I

gether with Eq(1) gives hold—and it should always be checked—one could integrate
the differential equation using an appropriate numerical tech-
Mo~ Mp=—(Sy—Sp)dT+(v,~v,)dP nique) From a single simulation, one could calculate the
necessary change in all the different parameters of the poten-
+2 (Nai—Np)d% =0, 3) tial corresponding to a particular change in the melting tem-
1

perature. One could then use this information to construct a
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TABLE |. Parameters for the aluminum embedded atom potential developed by Mei and Dave&gport.
and ¢ are in units of eVry is in units of A, and the other parameters are dimensionless.

Ec do ) @ B Y )

3.39 0.1318 2.8638 4.60 7.10 7.34759 7.35
Co (o c, C3 C4 Cs

0.64085 —6.83764 26.75616 —47.16495 36.18925 —8.60834

cost function to reoptimize the potential that includes the p p\ P
previously used se{A®P} of experimentally determined F(p)=—E1-ZIn| —| || —

; AR ) . B Pe/ |\ Pe
(mechanical properties as well as the experimental melting
temperaturd &*' as optimization targets. For example, a lin- 1 3
ear least squares procedure could be utilized using an appro- + §¢om§=:1 Smexd —(Ym—1)y]
priately chosen set of weight functioms :

X

o\ [p
1+(ym—1)8- ﬁ(—)ln(—”
f({xi}>=wT[Tﬁ$m—Tm({xi}>12+; wi[ AP A ({XiD12 Bl pe

(10

(In the example application discussed in the next section, we
found that only one of the several parameters of the potentiging
had any significant effect on the melting point, which greatly
simplified the reparametrization by making it possible to
modify the potential without having to directly use such a Pi:j(zi) f(rij), 13
cost function. It is not expected, however, that this will be

true, in general. 5 (

ymyl B

2l (12)

Pe

X

f(=pe3 15

I=0

|
r°) , (14)

r
r r
As an application of the method we examine an embed- $(r)==do E_1> eXH ~ 7<E_1)
ded atom modé? for aluminum developed by Mei and . . ) i ) . .
Davenporf The parameters in their potential were fit in or- and is used in conjunction with the following cutoff function:

der to optimize the potential with respect to a variety of

Ill. RESULTS FOR A MODEL OF ALUMINUM:
DETERMINING THE ORIGINAL MELTING POINT

146 , (19

experimental properties such as the cohesive enefgy, ( 1, F=fn
lattice constant (2r,), unrelaxed vacancy-formation en- q(r)=9 (1=x)%(1+3x+6x%), r,<r<rg, (16)
ergy, and elastic constants of the static fcc crystal at zero 0, r=r.,
temperature. The total potential energy has the form
1 X=(r—ro)l(re—ry), (17)
UZZ Flp)+5 iéi d(ry), (1) with a cutoff distance 1(,) between the third- and fourth-
! neighbor shells of a static fcc crystal. Using valuesr pf
where =175, and r,=1.95, the functions q(r)f(r) and
0.2 T T LA | T T T T TT I T I 1
. . |—~- attractive FIG. 1. The different splitting
- (a) 1 F . |---- repulsive methods for the pair part of the
_ : : |— attractive + repulsive aluminum embedded atom poten-
5 0.1— 1 : - tial are graphed separately as a
2 | " 1 L : | function of r. (a) Mei-Davenport
3 splitting and (b) WCA splitting
g o » methods. Note the difference in
= the effective radii between the
£ - - - combined and repulsive parts of
~ the potential. In the Mei-
E 01— — ] Davenport splitting this difference
—————— is large and can lead to freezing
i i ] during the course of integration,
02 , | . l . l . l , whereas the WCA method has a
0 2 0 2 4 6 8 much smaller difference ieffec-
tive radii.
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TABLE 1l. Coefficients for the solid and liquid energy and density curves. The curves are polynomials of the famgx?+a;x

+a,.

N 256 500 864 2048 4000

Liquid energya, —3.9577% 108 —2.62765¢10° 8 —3.4721% 108 —2.82724¢10° 8 —3.14663x 108
a; 4.24388 104 3.98266< 104 4.15658< 104 4.02841x 104 4.08950< 10~ 4
a, —3.39543 —3.38194 —3.39085 —3.38448 —3.38731

Solid energy a, 5.75263< 10 8 5.85627% 10 8 5.88951x 108 5.88624x 108 5.88849% 10 8
a, 2.3070x 10°* 2.3033x10°* 2.30283« 10 * 2.30528<10 * 2.30565¢10 4
a, —3.38550 —3.38533 —3.38529 —3.38532 —3.38531

Liquid densitya, 7.59175¢ 10 10 1.61803« 10 %0 5.35909%< 10~ 1° 3.19601x 10 1° 3.91853 10 1°
a, —1.0317% 105 —9.15213x 1076 —9.9198%< 1076 —9.47974<10°6 —9.62320<10°6
a, 6.09309 102 6.03495¢ 102 6.07444< 102 6.05232 102 6.05920< 102

Solid density a —2.59267% 10" ° —2.62088<10°° —2.6374%10°° —2.6414%10°° —2.64086<10°°
a; —2.79768< 1076 —2.7873% 1076 —2.7775% 1076 —2.77869% 1076 —2.78125¢10°©
a, 6.00427 10 2 6.00404x 102 6.00379% 10 2 6.00380< 102 6.00387 10 2

q(r)¢(r) go smoothly to zero at=r.. The parameters of
the potentiat!' are given in Table I. For this embedded atom
model, mass is measured in amu, distance in A, and energy
in eV. The natural simulation time unit is calculated to be
10.181 fs.

To begin, the melting temperature of the original model  For the crystal, the reference system chosen is that of an
(at P=0) must be determined. Mei and Davenport per-ginstein crystal?
formed a calculation of the free energies of the aluminum
melt and fcc crystal using thermodynamic integration of the
Gibbs free energy. For a 256-particle system, they obtain a
melting temperature of 8609 K.

In repeating their melting point determination, we foundynere the(r;o} are the ideal crystal lattice positions,is the
t_hat the value they obtain_ed is not quite correct, due Primamass, andvp, is the Debye frequency, which to minimize the
rily to the small system size studied and a problem in thejifference between the reference and full system should be
choice of thermodynamic integration path for the liquid chosen to give a similar mean-squared displacement for the

phase. Our melting point determination was performed Usingioms at the temperature of interest. For this system at 296
the same basic methodology as Mei and Davenport, de-

scribed below. _3.35 i

The Gibbs free energies per particle of the liquid and
crystal as a function of temperature at constant pressure can - .
be obtained by thermodynamic integration using the integral

g(T,P=0)=9g(T,0;6=1)=9(T(,0;£=0)

1 Joe(é)
+f0dg< Y >§. (21)

1
Ue({rih=3mep 2 (ri=rio)?, (22)

2

form of the Gibbs-Helmholtz equation -3.36 N= 256 7]
N= 500 i

N= 864
T.,P) o(To,P) (Th(r,P - iapresd I

a( ):9( 0 )_f (7 )dr, (18 3.37 N = 4000

T TO To T

where T, is a predetermined reference temperature and = -3-38

h(T,P) is the average total enthalpy per particle, which for
P=0 is equal to the average total energyT,P=0). The
Gibbs free energy at the reference temperature must be ob- _339
tained separately by thermodynamic integration from a suit-

able ideal reference state. To do this, the interaction potential i
is parametrized along a linear path between that of the ref- 34 N P R R
erence potential{, and the full potential/: "0 0.2 0.4 0.6 0.8 1

g

FIG. 2. Integrand for the numerical integration for the solid free
energy at 296 K as a function gf Values of¢ were chosen based
The Gibbs free energy per particle relative to that of theon the ten-point Gauss-Legendre quadrature. As the valug of
reference system can then be obtained by thermodynamighanges from 1 to 0, the system is transformed from an embedded
integration along the path: atom solid to that of an Einstein crystal.

< (JE(E)/9E) > (eV/atom)

UCE)=&U+(1-8U. (20
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FIG. 3. (a) Simulation results for the integrand of step 1 of the liquid free energy calculatidr=4092 K as a function of. This
integration slowly turns off the attractive part of the potential as the valgeobfanges from 1 to 0. Values fdrwere again based upon the
ten-point Gauss-Legendre quadratui®. Integrand for the volume expansion integrati@tep 2 in the liquid free energy calculation at
T=1092 K as a function op* = p/p,. The numerical integration for this step was performed using the ten-point Simpson quadrature. The
value atp* =0 was obtained by an analytic calculation of the second virial coeffiigptT)].

K, the optimum Debye frequency corresponds to a Debye »dp’ [ BP
temperature Tp=rAwp/k) of 207 K. Note that this fre- AgstepfkaOJ —|—=-1] (24)
quency is different than the one used by Mei and Davenport. 0 P

The reference system for the liquid phase is an ideal gasye otential splitting that Mei and Davenport use has a
but the transformation must performed as a two-step proceﬁﬁoblem in that their repulsive potentiab,e,= ¢odexp

in order to avoid the quuid—.gas phase_transition. Mei and —(r/ry—1)] has an effective radius that is much larger than
Davenport foIIowiLtshe reversible expansmn'method uged b he actual potentidlsee Fig. 1a)] so that as the rest of the
Broqghton a_md Li.* The two-s_tep Process 1S accom_pllshed potential is turned off the system freezes as the effective
by first turning off the attractive part of the potential fol- acking fraction increases. To remedy this we use a
lowed by a volume expansion to reach the ideal gas limit. | eeks-Chandler-AndersBh(WCA) splitting where the re-
step 1, it is extremely important to turn off the attractive part . I .
of tF;le otential in aywap that will not drastically alter &e pulswe__part of the potent_lal 's equal to the potential energy
P y y for radii less than the radius at the minimum of the potential

effective _radlus of the_ potent_|al. I care Is not taken, theand zero for larger radii. This prescriptidiiustrated in Fig.
SVSte”F wil frgeze d“”F‘g the |n'_[egrat|on .Of th's_ step. He_re,l) gives an effective radius similar to the full system and
we write the interatomic potential as a linear mterpolanon(,ywOids the freezing transition.

between the actual potential and the reference system: In order to obtain energy curves needed in Ei®) as a

function of temperature, molecular dynami®dD) simula-
Cey tions were conducted at several different temperatures usin
P10 = rep(r) +{ban(r). @3 the NosePoincareAnderson algorithrt? for iZOthermaI— ’
isobaric molecular dynamics. The fcc crystal was simulated
As the value of¢ is varied from 1 to 0, the system is trans- at 50-K intervals from 296 to 946 K, while the liquid was
formed from the original Mei-Davenport potential to that of studied over a smaller temperature range from 762 to 1152 K
a purely repulsive potential. Step 2 of the integration is ausing 30-K intervals. All of the isothermal-isobaric MD
volume expansion. The free energy change in this step isimulation runs were equilibrated for 100000 steps and
given by sampled for 300000 steps. From these simulations we ob-

TABLE lll. Simulation averages for the solid and liquid Gibbs free energies along with the calculated melting temperature for several
system sizes. Free energies are in units of eV/atom and the melting temperature is in K.

N 256 500 864 2048 4000
Original 6 7.35 7.35 7.35 7.35 7.35
9s(T=296 K) (eV/atom —3.40200(3) —3.40219(2) —3.40236(2) —3.40246(1) —3.40254(1)
0/(T=1092 K (eV/atom) —3.8561(6) —3.8561(4) —3.8563(3) —3.8565(2) —3.8565(2)
Tm (K) 802.8£5.6 814.33.7 819.7#2.9 822.5-1.9 825.2:1.3
New &; 8.70 8.57 8.50 8.47 8.45
g<(T=296 K (eV/atom —3.39538(3) —3.39615(2) —3.39664(1) —3.39687(1) —3.39704(1)
9,(T=1092 K (eV/atom —3.8135(6) —3.8175(5) —3.8200(3) —3.8209(2) —3.8217(2)

T (K) 934.9-5.9 933.1*-4.4 930.9-3.0 931.9-2.0 931515
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tained the average energy and density for both the crysta 830 T T T | T T T
and liquid as a function of temperature and system size. Bott - .
the energies and densities were fit to second-order polynomi 825
als. The coefficients for these polynomials are shown in
Table Il. These polynomials were used in the construction of 820
the free energy curves as described in B@). °
Using the density obtained from the const&l® T simu-
lations, the Gibbs free energy of the fcc crystal'geE 296 K
was calculated by running several simulations at constan§ gqq
NV T using the Einstein crystal reference state to evaluate thé,
integrand of Eq(21) at values of¢ corresponding to a ten- = 805
point Gauss-Legendre quadrature. The simulations were perﬁ"
formed using the NosPoincarealgorithm?® Figure 2 shows
a plot of the integrand v§ for all of the system sizes studied.
At a value of é=1 the system is governed solely by the
embedded atom potential. As the valueéajoes to zero, the
potential is gradually changed to that of an Einstein crystal.
For each value of, the system was equilibrated for 100 000 790, 0_(',01
steps and sampled for 100 000 steps. ,
Simulations for step 1 of the liquid free energy at a tem- 1/N (atoms ™)
perature of 1092 K were performed in the same manner as
for the crystal. Here the attractive part of the potenitizd,.
(22)] was slowly turned off as the valuewas changed from
1 to 0. This is shown graphically in Fig(&. As with the
soliq, ten-point Gaus_s—]_egendre integration was used foNu- |, RESULTS FOR A MODEL OF ALUMINUM:
merically compute this integral. The second step of the liquid REPARAMETRIZING THE POTENTIAL
free-energy calculation included a series of constdMT
simulations at decreasing densities starting with the repulsive To adjust the melting temperature of the embedded atom
potential system from the conclusion of step 1. Average valpotential for aluminum, we first calcula##T ,/dX; for each
ues for the step-2 integranéq. (24)] are shown graphically of the parameters in the potentifiNote that, for simplicity
in Fig. 3(b). The simulations for both steps of the liquid and consistency, the expansion coefficieatsn Eq. (14)
free-energy integrations were equilibrated for 100 000 stepwere kept constant.The derivatives were calculated in a
and sampled for 100 000 steps at each value of the integransingle (constantNPT) simulation at the melting temperature
The numerical integration for step 2 was performed using thealculated in the previous section with=0, for each of
ten-point Simpsons quadrature. This method was choseseveral system sizefN& 256, 500, 864, 2048, and 4000
over the Gauss-Legendre quadrature due to the inaccuracy of
the sampling at low density. The value of the integrand at  8.75
zero density was obtained by an analytical calculation of the
second virial coefficientB,).
Free energies and melting points are shown in Table lll as 830
a function of particle number. A graph of the melting tem-
perature vs M (Fig. 4 shows that at infinite particle number
the melting point for the embedded atom potential proposec 825
by Mei and Davenport approaches 826 4.3 K. It should
be noted that the major error in the melting point calculated
by Mei and Davenport for their potential 88® K is prima- ~ © 800
rily due to the small size of their system. The problems with
their potential splitting appears to have had little effect, prob-
ably due to cancellation of errors, as the melting point that
we determine here for the 256-particle system agrees witt
theirs within the simulation error. Recently, Morris al’
argued on the basis of the stability of crystal-liquid interfaces
that the melting point of the Mei-Davenport aluminum po-
tential is actually significantly lowefaround 725 K. Our o A T N T T NI
results do not support this conclusion and as a check we hav 800 820 840 860 880 900 920 940
carefully set up stable stress-free interfaces at our calculate
melting point. The systems exhibit meltirifyeezing as the
temperature is raisedowered away from our calculated FIG. 5. Values ofs along the Gibbs-Duhem integration of the
melting point. The lower-temperature transitions of Morris crystal-melt coexistence curve. These curves were generated using
et al. were most likely due to significant unrelaxed stress ina fourth-order predictor corrector and show the melting temperature
the crystal. as a function ofs for each of the various system sizes.

815

perature

B T, =826.4 — 6067.6 * (1/N)
800

795 -

|
0.003 0.004

1
0.002

FIG. 4. The melting temperature of the embedded atom poten-
tial is plotted as a function of inverse particle size. Rgyoes to
infinity (1/N—0), the melting temperature approaches 826.4 K.

1.75

7.50

Melting Temperature (K)
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TABLE IV. Here the vacancy formation energy, latent heat values, and elastic constants are presented for
the original version of the EAM Al potential and the modified versiGp, andC;, for the modified version
(with the experimental melting temperatuege closer to their experimental valu€s,, seems to get slightly

worse.

6=17.35 6=8.45 Experimental
Unrelaxed vacancy formatiofeV/atom) 4.07211 4.18679 N/A
Latent heateV/atom 0.0830 0.0973 0.111
Cy1 (I/mM3) 0.093 0.096 0.107
Cyp (I/mM3) 0.069 0.068 0.061
Caq (I/M3) 0.033 0.036 0.028

The system was equilibrated for 100 000 steps followed bylosely models the experimental valifesf the (T=0 K)

100 000 steps for averaging. From this simulation it was deelastic constant€;; and C,, while C,, becomes slightly
termined thatdT,,/dX; was significant only for the param- worse in comparison to its experimentally determined value.
eter 5—the other parameters of the potential have little effectin addition, mostly as a consequence of the improved melt-
on the melting point. The complicated nature of the potentiaing point, the latent heat is considerably improved.

makes it difficult to assign any physical explanation to the
sensitivity of the melting point tod relative to the other
parameters.

Next, a series of simulations were performed for each We have outlined an application of the Gibbs-Duhem in-
system size to integrate along the coexistence curve from thegration method of Kofké& with which a model interaction
initial calculated melting point of the potential to the true potential can be reparametrized, including the experimental
experimental melting temperature. At each temperaturenelting point in the optimization protocol. The melting tem-
along the coexistence curve, the system was equilibrated fgrerature of a potential can then be adjusted similar to the
100 000 steps and sampled over 300 000 steps. In our expetitning of other parameters in the potential. Since nonme-
ments we use a fourth-order predictor corrector integrator tehanical properties, such as the melting point, are not gener-
carry out the integration along the coexistence curve as ally included in potential optimization and the agreement of
function of 8. Figure 5 shows this integration graphically such quantities with experiment is not guaranteed, such a
with final values ofé corresponding to a melting temperature procedure will be useful in situations, such as in the simula-
of T,,=933 K. These values are listed in Table I(Note tion of crystal-melt interfaces, where having the correct melt-
that, although we did an accurate numerical integration alongng point is highly desirable. The method is general and can
the coexistence curve, the results indicate that using the aasily be extended to a variety of systems. As an example of
proximation that the derivative is a constant in the region ofthe utility of the method, we apply the procedure to reparam-
interest would have been correct to within the simulationetrizing a popular model of aluminuhfor which the melting
error) point has been calculated to be over 100 K below the ac-

In order to confirm that the melting point did indeed cepted experimental value. We demonstrate that the reparam-
change as expected, the melting point calculation was retized potential has a melting point that agrees within the
peated using the newly calculated valuesofThe new melt-  statistical error with the experimental value of 933 K and
ing temperature for the embedded atom potential with dhat reparametrization does not degrade the quality of the
value of §=8.45 corresponding to a system size o£AD00  potential with respect to a variety of properties, and that, in
was calculated to be 9314515 K. Melting temperatures for fact, for quantities such as the elastic const&ysandC,
the other system sizes are listed in Table Ill. The experimenand the latent heat, agreement is improved.
tal value for the melting temperature of aluminum is 933.47
K.

Mei and Davenport initially determined (and the other
parameters in the potentjdly fitting the potential to certain We gratefully acknowledge J. W. Davenport for helpful
physical constants. For the new value ®18.45, we have conversations, as well as the Kansas Center for Advanced
recalculated a variety of physical properties of aluminum.Scientific Computing for the use of their computer facilities.
These quantities, for the original potential, the reparamWe also would like to thank the National Science Foundation
etrized potential, and the experimental values, are collectetlinder Grant No. CHE-950021 4s well as the University of
in Table IV. From these data, we see that, in comparison t&ansas General Research Fund for their generous support of
the original potential withs=7.35, the new potential more this research.

V. SUMMARY
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