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Adjusting the melting point of a model system via Gibbs-Duhem integration:
Application to a model of aluminum
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Department of Chemistry and Kansas Institute for Theoretical and Computational Science, University of Kansas,

Lawrence, Kansas 66045
~Received 15 June 2000!

Model interaction potentials for real materials are generally optimized with respect to only those experi-
mental properties that are easily evaluated as mechanical averages@e.g., elastic constants~at T50 K!, static
lattice energies, and liquid structure#. For such potentials, agreement with experiment for the nonmechanical
properties, such as the melting point, is not guaranteed and such values can deviate significantly from experi-
ment. We present a method for reparametrizing any model interaction potential of a real material to adjust its
melting temperature to a value that is closer to its experimental melting temperature. This is done without
significantly affecting the mechanical properties for which the potential was modeled. This method is an
application of Gibbs-Duhem integration@D. Kofke, Mol. Phys.78, 1331 ~1993!#. As a test we apply the
method to an embedded atom model of aluminum@J. Mei and J.W. Davenport, Phys. Rev. B46, 21 ~1992!# for
which the melting temperature for the thermodynamic limit is 826.461.3 K—somewhat below the experi-
mental value of 933 K. After reparametrization, the melting temperature of the modified potential is found to
be 931.561.5 K.
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I. INTRODUCTION

The ability of a simulation to successfully predict th
properties of real materials is primarily dependent upon
accuracy of the model interaction potential used. The c
struction of model interactions generally involves the optim
zation of the parameters of the potential with respect tome-
chanicalproperties of the material~crystal lattice constants
elastic constants, liquid density, etc.! as determined from ex
periment orab initio calculations. Nonmechanical propertie
~i.e., those not obtainable as local averages over coordina!
such as phase transition temperatures are difficult to inc
in such optimization procedures and are generally calcula
for the optimized modela posteriori, and the agreement o
such quantities with experiment is not guaranteed. Howe
for some applications that deal directly with such properti
such as in the study of solid-liquid interfaces1 in which the
melting temperature plays an obviously important role, it
desirable to develop efficient procedures for including su
nonmechanical properties in the optimization. Recently, E
ington and Panagiotopoulos2 have developed a method i
which histogram reweighting grand canonical Monte Ca
techniques are used to optimize the parameters of mode
tentials with respect to vapor-liquid coexistence data,
such procedures are not well suited for optimizations invo
ing solid-liquid coexistence properties, such as the melt
temperature. In this work, we outline a general procedure
adjusting the potential parameters for a system designe
model a real system to improve the agreement of the mel
point of that system with the experimental value. As an
ample we present an application to an existing embed
atom model of aluminum.3

Our reparametrization scheme is based on the powe
Gibbs-Duhem integration method developed by Kofke.4,5 In
this technique, the derivative along the coexistence curv
PRB 620163-1829/2000/62~22!/14720~8!/$15.00
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any coexistence condition~such as melting temperature o
pressure! with respect to any parameter of the potential c
be determined by an appropriate configurational average
previously determined melting point. The method is gen
ated by the integration of a generalized Gibbs-Duhem eq
tion and the steps are analogous to the derivation of the
miliar Clapeyron equation for the slope of theP-T
coexistence curve. Gibbs-Duhem integration has been sh
to be quite successful in efficiently determining the coex
ence conditions for entire classes of potentials. For exam
the phase diagram for the class of repulsive inverse po
potentials,u(r )5e(s/r )n, was determined6 by starting with
the known hard-sphere (n5`) coexistence and integratin
the derivative of coexistence curve with respect to the
rameters[1/n. The method has also proved useful in a v
riety of other applications.7–9

In the current application, one begins with a model pote
tial, parametrized for a real system in the usual way w
respect to mechanical properties of the real system.
melting temperature~or pressure! for the model system is
then calculated by thermodynamic integration. Once this
done, the derivative of the melting temperature~or pressure!
with respect to all parameters of the system can be de
mined via separate simulations on the coexisting fluid a
solid using the Gibbs-Duhem procedure. The calculated
rivatives allow an assessment of the effect of each individ
parameter on the melting point. From this information
appropriate scheme to adjust the parameters to improve
melting point can be devised in such a way that the agr
ment with the other experimental properties is not unacce
ably compromised. The Gibbs-Duhem integration and
reparametrization scheme is outlined in more detail in
next section.

As a test application of this procedure, we examine
embedded atom model of aluminum developed by Mei a
14 720 ©2000 The American Physical Society
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PRB 62 14 721ADJUSTING THE MELTING POINT OF A MODEL . . .
Davenport.3 This particular model was chosen for three re
sons: First, the importance of aluminum as a material ma
the development of an accurate model potential for simu
tion purposes desirable. Second, the large number of pa
eters and complicated nature of the embedded atom pote
increases the need for a systematic, as opposed toad hoc,
procedure for adjusting the melting point. In addition, t
zero-pressure melting point for the Mei-Davenport poten
has been previously determined3 to be 80069 K, somewhat
lower than the experimental melting point of aluminum
933 K. ~Note that the melting point determined by Mei an
Davenport was calculated for a 256-particle system—the
tual value for this potential in the thermodynamic limit
slightly higher at 826.461.3 K.! We find that, in this specific
case, only one of the parameters of the potential has
significant effect on the potential and that changing this
rameter according to the Gibbs-Duhem procedure yield
new model with the correct experimental melting point w
no significant change in the quality of the agreement of
quantities with respect to which the model was origina
optimized. Details of this calculation as well as a descript
of the model can be found in Sec. II below.

II. GIBBS-DUHEM INTEGRATION AND MELTING POINT
OPTIMIZATION

The technique of Gibbs-Duhem integration has been w
described previously by Kofke4, but in the interest of com-
pleteness and clarity we repeat the basic derivation h
Consider a single-component system with an arbitrary in
action potentialU($Ri%,$Xi%), where theRi are the atomic
coordinates and theXi are the parameters that define t
potential—no restriction to pairwise additivity need be a
sumed. Assume there are two phasesa andb in coexistence
at a temperatureT and pressureP. On the surface of coex
istence, the chemical potentials~molar Gibbs free energies!
of the two phases must be equal. To quantify how change
P, T, andXi will affect the chemical potential one can defin
a generalized Gibbs-Duhem equation

dm52sdT1vdP1(
i

l idXi , ~1!

wherem is the chemical potential,s and v are the entropy
and volume per particle, respectively, and thel i are gener-
alized thermodynamic variables conjugate to the poten
parametersXi , defined as

Nl i[S ]G

]Xi
D

T,P,Xj Þ i

. ~2!

Now as one moves infinitesimally away from the origin
coexistence point (P,T,$l i%) to another point (P1dP,T
1dT,$l i1dl i%) on the surface of coexistence, the chan
in m must be identical in both phases. This condition
gether with Eq.~1! gives

ma2mb52~sa2sb!dT1~va2vb!dP

1(
i

~la,i2lb,i !dXi50, ~3!
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wherema andmb are the chemical potentials for each of th
respective phases. Assuming constant pressure (dP50),
since we are interested here in changes in the transition
perature, the previous equation can be rearranged to giv

S ]T

]Xi
D

P,Xj Þ i ;coex

5
T~la i2lb i !

ha2hb
5

TDl i

Dh
, ~4!

where we have also assumed that at coexistence,Ds
5Dh/T, where Dh is the latent heat per particle for th
phase transition.@Note that the corresponding equations f
(]P/]l i)T,l j ; j Þ i ;coex can be easily obtained by replacin

Dh/T in Eq. ~5! with Dv.#
The l i can be related to mechanical averages that can

easily calculated in a molecular dynamics or Monte Ca
simulation. First, the Gibbs free energy is related to
isothermal-isobaric distributionD(N,P,T) as follows:

G52kbT ln D~N,P,T!, ~5!

which for a classical system with interaction potent
U($r i%) is given by

D~N,P,T!5
1

L3NN!
E

0

`

dVE dNr exp~2bU2bPV!,

~6!

whereV is the volume. Taking the derivative of Eq.~6! with
respect to the parameterXi gives

S ]G

]Xi
D

T,P,Xj Þ i

52kTS ] ln D

]Xi
D

T,P,Xj Þ i

5
1

DE0

`

dVE dNr S ]U
]Xi

D
XjÞ i

3exp~2bU2bPV!. ~7!

Using Eq.~2! we have

l i5S dG

dXi
D

T,P,Xj Þ i

5K S ]U
]Xi

D
Xj Þ i

L
N,P,T

. ~8!

Using Eq.~5! and Eq.~10! we can calculate the chang
necessary in each of the parameters$Xi% to alter the melting
temperature of our interaction potential by some arbitr
amount. As long as the changes are not too large, the ca
lation can be greatly simplified by the assumption that
deviation remains linear:

Tm~$Xi%!5Tm,01(
i

S ]T

]Xi
D

Xj Þ i ,coex

~Xi2Xi ,0!, ~9!

whereTm,0 is the melting point of the original model with
parameters$Xi ,0%. ~If the linear approximation does no
hold—and it should always be checked—one could integr
the differential equation using an appropriate numerical te
nique.! From a single simulation, one could calculate t
necessary change in all the different parameters of the po
tial corresponding to a particular change in the melting te
perature. One could then use this information to constru
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TABLE I. Parameters for the aluminum embedded atom potential developed by Mei and DavenpoEc

andf0 are in units of eV.r 0 is in units of Å, and the other parameters are dimensionless.

Ec f0 r 0 a b g d
3.39 0.1318 2.8638 4.60 7.10 7.34759 7.35
c0 c1 c2 c3 c4 c5

0.64085 26.83764 26.75616 247.16495 36.18925 28.60834
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cost function to reoptimize the potential that includes
previously used set$Aj

expt% of experimentally determined
~mechanical! properties as well as the experimental melti
temperatureTm

expt as optimization targets. For example, a li
ear least squares procedure could be utilized using an ap
priately chosen set of weight functionswi :

f ~$Xi%!5wT@Tm
expt2Tm~$Xi%!#21(

j
wj@Aj

expt2Aj~$Xi%!#2.

~10!

~In the example application discussed in the next section,
found that only one of the several parameters of the poten
had any significant effect on the melting point, which grea
simplified the reparametrization by making it possible
modify the potential without having to directly use such
cost function. It is not expected, however, that this will
true, in general.!

III. RESULTS FOR A MODEL OF ALUMINUM:
DETERMINING THE ORIGINAL MELTING POINT

As an application of the method we examine an emb
ded atom model10 for aluminum developed by Mei an
Davenport.3 The parameters in their potential were fit in o
der to optimize the potential with respect to a variety
experimental properties such as the cohesive energy (Ec),
lattice constant (A2r 0), unrelaxed vacancy-formation en
ergy, and elastic constants of the static fcc crystal at z
temperature. The total potential energy has the form

U5(
i

F~r i !1
1

2 (
i , j Þ i

f~r ij !, ~11!

where
e

ro-

e
al

-

f

ro

F~r!52EcF12
a

b
lnS r

re
D G S r

re
D a/b

1
1

2
f0 (

m51

3

sm exp@2~Am21!g#

3F11~Am21!d2AmS d

b D lnS r

re
D G

3S r

re
D Amg/b

, ~12!

and

r i5 (
j (Þ i )

f ~r i j !, ~13!

f ~r !5re(
l 50

5
cl

12S r 0

r D l

, ~14!

f~r !52f0F11dS r

r 0
21D GexpF2gS r

r 0
21D G , ~15!

and is used in conjunction with the following cutoff function

q~r !5H 1, r<r n ,

~12x!3~113x16x2!, r n,r ,r c ,

0, r>r c ,

~16!

x5~r 2r n!/~r c2r n!, ~17!

with a cutoff distance (r c) between the third- and fourth
neighbor shells of a static fcc crystal. Using values ofr n
51.75r 0 and r c51.95r 0, the functions q(r ) f (r ) and
-
a

f

g
,
a

FIG. 1. The different splitting
methods for the pair part of the
aluminum embedded atom poten
tial are graphed separately as
function of r. ~a! Mei-Davenport
splitting and ~b! WCA splitting
methods. Note the difference in
the effective radii between the
combined and repulsive parts o
the potential. In the Mei-
Davenport splitting this difference
is large and can lead to freezin
during the course of integration
whereas the WCA method has
much smaller difference ineffec-
tive radii.
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TABLE II. Coefficients for the solid and liquid energy and density curves. The curves are polynomials of the formy5a0x21a1x
1a2.

N 256 500 864 2048 4000

Liquid energya0 23.9577331028 22.6276531028 23.4721931028 22.8272431028 23.1466331028

a1 4.2438831024 3.9826631024 4.1565831024 4.0284131024 4.0895031024

a2 23.39543 23.38194 23.39085 23.38448 23.38731
Solid energy a0 5.7526331028 5.8562731028 5.8895131028 5.8862431028 5.8884931028

a1 2.3070131024 2.3033131024 2.3028331024 2.3052831024 2.3056531024

a2 23.38550 23.38533 23.38529 23.38532 23.38531
Liquid densitya0 7.59175310210 1.61803310210 5.35909310210 3.19601310210 3.91853310210

a1 21.0317731025 29.1521331026 29.9198931026 29.4797431026 29.6232031026

a2 6.0930931022 6.0349531022 6.0744431022 6.0523231022 6.0592031022

Solid density a0 22.5926731029 22.6208831029 22.6374931029 22.6414931029 22.6408631029

a1 22.7976831026 22.7873931026 22.7775231026 22.7786931026 22.7812531026

a2 6.0042731022 6.0040431022 6.0037931022 6.0038031022 6.0038731022
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q(r )f(r ) go smoothly to zero atr 5r c . The parameters o
the potential3,11 are given in Table I. For this embedded ato
model, mass is measured in amu, distance in Å, and en
in eV. The natural simulation time unit is calculated to
10.181 fs.

To begin, the melting temperature of the original mod
~at P50) must be determined. Mei and Davenport p
formed a calculation of the free energies of the alumin
melt and fcc crystal using thermodynamic integration of
Gibbs free energy. For a 256-particle system, they obta
melting temperature of 80069 K.

In repeating their melting point determination, we fou
that the value they obtained is not quite correct, due prim
rily to the small system size studied and a problem in
choice of thermodynamic integration path for the liqu
phase. Our melting point determination was performed us
the same basic methodology as Mei and Davenport,
scribed below.

The Gibbs free energies per particle of the liquid a
crystal as a function of temperature at constant pressure
be obtained by thermodynamic integration using the integ
form of the Gibbs-Helmholtz equation

g~T,P!

T
5

g~T0 ,P!

T0
2E

T0

T h~t,P!

t2
dt, ~18!

where T0 is a predetermined reference temperature
h(T,P) is the average total enthalpy per particle, which
P50 is equal to the average total energy,e(T,P50). The
Gibbs free energy at the reference temperature must be
tained separately by thermodynamic integration from a s
able ideal reference state. To do this, the interaction pote
is parametrized along a linear path between that of the
erence potentialU0 and the full potentialU:

U~j!5jU1~12j!U0 . ~20!

The Gibbs free energy per particle relative to that of
reference system can then be obtained by thermodyna
integration along the path:
gy

l
-

e
a

-
e

g
e-

an
al

d
r

b-
t-
ial
f-

e
ic

g~T,P50![g~T,0;j51!5g~T0 ,0;j50!

1E
0

1

dj K ]e~j!

]j L
j

. ~21!

For the crystal, the reference system chosen is that o
Einstein crystal,12

UE~$r i%!5
1

2
mvD

2 (
i

~r i2r i0!2, ~22!

where the$r i0% are the ideal crystal lattice positions,m is the
mass, andvD is the Debye frequency, which to minimize th
difference between the reference and full system should
chosen to give a similar mean-squared displacement for
atoms at the temperature of interest. For this system at

FIG. 2. Integrand for the numerical integration for the solid fr
energy at 296 K as a function ofj. Values ofj were chosen based
on the ten-point Gauss-Legendre quadrature. As the valuej
changes from 1 to 0, the system is transformed from an embed
atom solid to that of an Einstein crystal.
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FIG. 3. ~a! Simulation results for the integrand of step 1 of the liquid free energy calculation atT51092 K as a function ofj. This
integration slowly turns off the attractive part of the potential as the value ofj changes from 1 to 0. Values forj were again based upon th
ten-point Gauss-Legendre quadrature.~b! Integrand for the volume expansion integration~step 2! in the liquid free energy calculation a
T51092 K as a function ofr* 5r/r0. The numerical integration for this step was performed using the ten-point Simpson quadratur
value atr* 50 was obtained by an analytic calculation of the second virial coefficient@B2(T)#.
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K, the optimum Debye frequency corresponds to a De
temperature (TD5\vD /k) of 207 K. Note that this fre-
quency is different than the one used by Mei and Davenp

The reference system for the liquid phase is an ideal g
but the transformation must performed as a two-step pro
in order to avoid the liquid-gas phase transition. Mei a
Davenport follow the reversible expansion method used
Broughton and Li.13 The two-step process is accomplish
by first turning off the attractive part of the potential fo
lowed by a volume expansion to reach the ideal gas limit
step 1, it is extremely important to turn off the attractive p
of the potential in a way that will not drastically alter th
effective radius of the potential. If care is not taken, t
system will freeze during the integration of this step. He
we write the interatomic potential as a linear interpolati
between the actual potential and the reference system:

f~r ;z!5f rep~r !1zfatt~r !. ~23!

As the value ofz is varied from 1 to 0, the system is tran
formed from the original Mei-Davenport potential to that
a purely repulsive potential. Step 2 of the integration is
volume expansion. The free energy change in this ste
given by
e

rt.
s,
ss
d
y

n
t

,

a
is

Dgstep 25kbT0E
0

r dr8

r8
FbP

r8
21G . ~24!

The potential splitting that Mei and Davenport use has
problem in that their repulsive potentialf rep5f0d exp
@2g(r/r021)# has an effective radius that is much larger th
the actual potential@see Fig. 1~a!# so that as the rest of th
potential is turned off the system freezes as the effec
packing fraction increases. To remedy this we use
Weeks-Chandler-Anderson14 ~WCA! splitting where the re-
pulsive part of the potential is equal to the potential ene
for radii less than the radius at the minimum of the poten
and zero for larger radii. This prescription~illustrated in Fig.
1! gives an effective radius similar to the full system a
avoids the freezing transition.

In order to obtain energy curves needed in Eq.~18! as a
function of temperature, molecular dynamics~MD! simula-
tions were conducted at several different temperatures u
the Nose´-Poincare´-Anderson algorithm15 for isothermal-
isobaric molecular dynamics. The fcc crystal was simula
at 50-K intervals from 296 to 946 K, while the liquid wa
studied over a smaller temperature range from 762 to 115
using 30-K intervals. All of the isothermal-isobaric MD
simulation runs were equilibrated for 100 000 steps a
sampled for 300 000 steps. From these simulations we
several
TABLE III. Simulation averages for the solid and liquid Gibbs free energies along with the calculated melting temperature for
system sizes. Free energies are in units of eV/atom and the melting temperature is in K.

N 256 500 864 2048 4000
Original d 7.35 7.35 7.35 7.35 7.35
gs(T5296 K! ~eV/atom! 23.40200(3) 23.40219(2) 23.40236(2) 23.40246(1) 23.40254(1)
gl(T51092 K ~eV/atom! 23.8561(6) 23.8561(4) 23.8563(3) 23.8565(2) 23.8565(2)
Tm ~K! 802.865.6 814.363.7 819.762.9 822.561.9 825.261.3
New d; 8.70 8.57 8.50 8.47 8.45

gs(T5296 K ~eV/atom! 23.39538(3) 23.39615(2) 23.39664(1) 23.39687(1) 23.39704(1)
gl(T51092 K ~eV/atom! 23.8135(6) 23.8175(5) 23.8200(3) 23.8209(2) 23.8217(2)
Tm ~K! 934.965.9 933.164.4 930.963.0 931.962.0 931.561.5
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PRB 62 14 725ADJUSTING THE MELTING POINT OF A MODEL . . .
tained the average energy and density for both the cry
and liquid as a function of temperature and system size. B
the energies and densities were fit to second-order polyno
als. The coefficients for these polynomials are shown
Table II. These polynomials were used in the construction
the free energy curves as described in Eq.~18!.

Using the density obtained from the constantNPT simu-
lations, the Gibbs free energy of the fcc crystal atT05296 K
was calculated by running several simulations at cons
NVT using the Einstein crystal reference state to evaluate
integrand of Eq.~21! at values ofj corresponding to a ten
point Gauss-Legendre quadrature. The simulations were
formed using the Nose´-Poincare´ algorithm.16 Figure 2 shows
a plot of the integrand vsj for all of the system sizes studied
At a value of j51 the system is governed solely by th
embedded atom potential. As the value ofj goes to zero, the
potential is gradually changed to that of an Einstein crys
For each value ofj, the system was equilibrated for 100 00
steps and sampled for 100 000 steps.

Simulations for step 1 of the liquid free energy at a te
perature of 1092 K were performed in the same manne
for the crystal. Here the attractive part of the potential@Eq.
~22!# was slowly turned off as the valuej was changed from
1 to 0. This is shown graphically in Fig. 3~a!. As with the
solid, ten-point Gauss-Legendre integration was used to
merically compute this integral. The second step of the liq
free-energy calculation included a series of constantNVT
simulations at decreasing densities starting with the repul
potential system from the conclusion of step 1. Average v
ues for the step-2 integrand@Eq. ~24!# are shown graphically
in Fig. 3~b!. The simulations for both steps of the liqu
free-energy integrations were equilibrated for 100 000 st
and sampled for 100 000 steps at each value of the integr
The numerical integration for step 2 was performed using
ten-point Simpsons quadrature. This method was cho
over the Gauss-Legendre quadrature due to the inaccura
the sampling at low density. The value of the integrand
zero density was obtained by an analytical calculation of
second virial coefficient (B2).

Free energies and melting points are shown in Table II
a function of particle number. A graph of the melting tem
perature vs 1/N ~Fig. 4! shows that at infinite particle numbe
the melting point for the embedded atom potential propo
by Mei and Davenport approaches 826.461.3 K. It should
be noted that the major error in the melting point calcula
by Mei and Davenport for their potential 80069 K is prima-
rily due to the small size of their system. The problems w
their potential splitting appears to have had little effect, pro
ably due to cancellation of errors, as the melting point t
we determine here for the 256-particle system agrees
theirs within the simulation error. Recently, Morriset al.17

argued on the basis of the stability of crystal-liquid interfac
that the melting point of the Mei-Davenport aluminum p
tential is actually significantly lower~around 725 K!. Our
results do not support this conclusion and as a check we h
carefully set up stable stress-free interfaces at our calcul
melting point. The systems exhibit melting~freezing! as the
temperature is raised~lowered! away from our calculated
melting point. The lower-temperature transitions of Mor
et al. were most likely due to significant unrelaxed stress
the crystal.
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IV. RESULTS FOR A MODEL OF ALUMINUM:
REPARAMETRIZING THE POTENTIAL

To adjust the melting temperature of the embedded a
potential for aluminum, we first calculate]Tm /]Xi for each
of the parameters in the potential.@Note that, for simplicity
and consistency, the expansion coefficientscl in Eq. ~14!
were kept constant.# The derivatives were calculated in
single~constantNPT) simulation at the melting temperatur
calculated in the previous section withP50, for each of
several system sizes (N5256, 500, 864, 2048, and 4000!.

FIG. 4. The melting temperature of the embedded atom po
tial is plotted as a function of inverse particle size. AsN goes to
infinity (1/N→0), the melting temperature approaches 826.4 K

FIG. 5. Values ofd along the Gibbs-Duhem integration of th
crystal-melt coexistence curve. These curves were generated u
a fourth-order predictor corrector and show the melting tempera
as a function ofd for each of the various system sizes.
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TABLE IV. Here the vacancy formation energy, latent heat values, and elastic constants are prese
the original version of the EAM Al potential and the modified version.C11 andC12 for the modified version
~with the experimental melting temperature! are closer to their experimental values.C44 seems to get slightly
worse.

d57.35 d58.45 Experimental

Unrelaxed vacancy formation~eV/atom! 4.07211 4.18679 N/A
Latent heat~eV/atom! 0.0830 0.0973 0.111
C11 (J/m3) 0.093 0.096 0.107
C12 (J/m3) 0.069 0.068 0.061
C44 (J/m3) 0.033 0.036 0.028
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The system was equilibrated for 100 000 steps followed
100 000 steps for averaging. From this simulation it was
termined that]Tm /]Xi was significant only for the param
eterd—the other parameters of the potential have little eff
on the melting point. The complicated nature of the poten
makes it difficult to assign any physical explanation to t
sensitivity of the melting point tod relative to the other
parameters.

Next, a series of simulations were performed for ea
system size to integrate along the coexistence curve from
initial calculated melting point of the potential to the tru
experimental melting temperature. At each temperat
along the coexistence curve, the system was equilibrated
100 000 steps and sampled over 300 000 steps. In our ex
ments we use a fourth-order predictor corrector integrato
carry out the integration along the coexistence curve a
function of d. Figure 5 shows this integration graphical
with final values ofd corresponding to a melting temperatu
of Tm5933 K. These values are listed in Table III.~Note
that, although we did an accurate numerical integration al
the coexistence curve, the results indicate that using the
proximation that the derivative is a constant in the region
interest would have been correct to within the simulat
error.!

In order to confirm that the melting point did indee
change as expected, the melting point calculation was
peated using the newly calculated value ofd. The new melt-
ing temperature for the embedded atom potential with
value ofd58.45 corresponding to a system size of N54000
was calculated to be 931.561.5 K. Melting temperatures fo
the other system sizes are listed in Table III. The experim
tal value for the melting temperature of aluminum is 933.
K.

Mei and Davenport initially determinedd ~and the other
parameters in the potential! by fitting the potential to certain
physical constants. For the new value ofd ~8.45!, we have
recalculated a variety of physical properties of aluminu
These quantities, for the original potential, the repara
etrized potential, and the experimental values, are colle
in Table IV. From these data, we see that, in comparison
the original potential withd57.35, the new potential mor

*Author to whom correspondence should be addressed.
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closely models the experimental values18 of the (T50 K!
elastic constantsC11 and C22 while C44 becomes slightly
worse in comparison to its experimentally determined val
In addition, mostly as a consequence of the improved m
ing point, the latent heat is considerably improved.

V. SUMMARY

We have outlined an application of the Gibbs-Duhem
tegration method of Kofke,4 with which a model interaction
potential can be reparametrized, including the experime
melting point in the optimization protocol. The melting tem
perature of a potential can then be adjusted similar to
tuning of other parameters in the potential. Since nonm
chanical properties, such as the melting point, are not ge
ally included in potential optimization and the agreement
such quantities with experiment is not guaranteed, suc
procedure will be useful in situations, such as in the simu
tion of crystal-melt interfaces, where having the correct me
ing point is highly desirable. The method is general and c
easily be extended to a variety of systems. As an exampl
the utility of the method, we apply the procedure to repara
etrizing a popular model of aluminum3 for which the melting
point has been calculated to be over 100 K below the
cepted experimental value. We demonstrate that the repa
trized potential has a melting point that agrees within
statistical error with the experimental value of 933 K a
that reparametrization does not degrade the quality of
potential with respect to a variety of properties, and that
fact, for quantities such as the elastic constantsC11 andC12
and the latent heat, agreement is improved.
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