78 research outputs found

    Regulation of B1 cell migration by signals through Toll-like receptors

    Get PDF
    Peritoneal B1 cells are known to generate large amounts of antibodies outside their residential site. These antibodies play an important role in the early defense against bacteria and viruses, before the establishment of adaptive immune responses. Although many stimuli, including antigen, lipopolysaccharide, or cytokines, have been shown to activate B1 cells and induce their differentiation into plasma cells, the molecular signals required for their egress from the peritoneal cavity are not understood. We demonstrate here that direct signals through Toll-like receptors (TLRs) induce specific, rapid, and transient down-regulation of integrins and CD9 on B1 cells, which is required for detachment from local matrix and a high velocity movement of cells in response to chemokines. Thus, we revealed an unexpected role for TLRs in governing the interplay between integrins, tetraspanins, and chemokine receptors required for B1 cell egress and, as such, in facilitating appropriate transition from innate to adaptive immune responses

    TCF/β-catenin plays an important role in HCCR-1 oncogene expression

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Oncogene <it>HCCR-1 </it>functions as a negative regulator of the p53 and contributes to tumorigenesis of various human tissues. However, it is unknown how <it>HCCR-1 </it>contributes to the cellular and biochemical mechanisms of human tumorigenesis.</p> <p>Results</p> <p>In this study, we showed how the expression of <it>HCCR-1 </it>is modulated. The luciferase activity assay indicated that the <it>HCCR-1 </it>5'-flanking region at positions -166 to +30 plays an important role in <it>HCCR-1 </it>promoter activity. Computational analysis of this region identified two consensus sequences for the T-cell factor (TCF) located at -26 to -4 (Tcf1) and -136 to -114 (Tcf2). Mutation at the Tcf1 site led to a dramatic decrease in promoter activity. Mobility shift assays (EMSA) revealed that nuclear proteins bind to the Tcf1 site, but not to the Tcf2 site. LiCl, Wnt signal activator by GSK-3β inhibition, significantly increased reporter activities in wild-type Tcf1-containing constructs, but were without effect in mutant Tcf1-containing constructs in HEK/293 cells. In addition, endogenous <it>HCCR-1 </it>expression was also increased by treatment with GSK-3β inhibitor, LiCl or AR-A014418 in HEK/293 and K562 cells. Finally, we also observed that the transcription factor, TCF, and its cofactor, β-catenin, bound to the Tcf1 site.</p> <p>Conclusion</p> <p>These findings suggest that the Tcf1 site on the <it>HCCR-1 </it>promoter is a major element regulating <it>HCCR-1 </it>expression and abnormal stimulation of this site may induce various human cancers.</p

    Fibrinogen gamma-A chain precursor in CSF: a candidate biomarker for Alzheimer's disease

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Cerebrospinal fluid (CSF) may be valuable for exploring protein markers for the diagnosis of Alzheimer's disease (AD). The prospect of early detection and treatment, to slow progression, holds hope for aging populations with increased average lifespan. The aim of the present study was to investigate candidate CSF biological markers in patients with mild cognitive impairment (MCI) and AD and compare them with age-matched normal control subjects.</p> <p>Methods</p> <p>We applied proteomics approaches to analyze CSF samples derived from 27 patients with AD, 3 subjects with MCI and 30 controls. The AD group was subdivided into three groups by clinical severity according to clinical dementia rating (CDR), a well known clinical scale for dementia.</p> <p>Results</p> <p>We demonstrated an elevated level of fibrinogen gamma-A chain precursor protein in CSF from patients with mild cognitive impairment and AD compared to the age-matched normal subjects. Moreover, its expression was more prominent in the AD group than in the MCI and correlated with disease severity and progression. In contrast, fibrinogen gamma-A chain precursor protein was detected very low in the age-matched normal group.</p> <p>Conclusion</p> <p>These findings suggest that the CSF level of fibrinogen gamma-A chain precursor may be a candidate biomarker for AD.</p

    Efficacy and safety of rapid intermittent bolus compared with slow continuous infusion in patients with severe hypernatremia (SALSA II trial): a study protocol for a randomized controlled trial

    Get PDF
    Background Hypernatremia is a common electrolyte disorder in children and elderly people and has high short-term mortality. However, no high-quality studies have examined the correction rate of hypernatremia and the amount of fluid required for correction. Therefore, in this study, we will compare the efficacy and safety of rapid intermittent bolus (RIB) and slow continuous infusion (SCI) of electrolyte-free solution in hypernatremia treatment. Methods This is a prospective, investigator-initiated, multicenter, open-label, randomized controlled study with two experimental groups. A total of 166 participants with severe hypernatremia will be enrolled and divided into two randomized groups; both the RIB and SCI groups will be managed with electrolyte-free water. We plan to infuse the same amount of fluid to both groups, for 1 hour in the RIB group and continuously in the SCI group. The primary outcome is a rapid decrease in serum sodium levels within 24 hours. The secondary outcomes will further compare the efficacy and safety of the two treatment protocols. Conclusion This is the first randomized controlled trial to evaluate the efficacy and safety of RIB correction compared with SCI in adult patients with severe hypernatremia

    CD160 serves as a negative regulator of NKT cells in acute hepatic injury

    Get PDF
    [EN] CD160 and BTLA both bind to herpes virus entry mediator. Although a negative regulatory function of BTLA in natural killer T (NKT) cell activation has been reported, whether CD160 is also involved is unclear. By analyzing CD160−/− mice and mixed bone marrow chimeras, we show that CD160 is not essential for NKT cell development. However, CD160−/− mice exhibit severe liver injury after in vivo challenge with α-galactosylceramide (α-GalCer). Moreover, CD160−/− mice are more susceptible to Concanavalin A challenge, and display elevated serum AST and ALT levels, hyperactivation of NKT cells, and enhanced IFN-γ, TNF, and IL-4 production. Lastly, inhibition of BTLA by anti-BTLA mAb aggravates α-GalCer-induced hepatic injury in CD160−/− mice, suggesting that both CD160 and BTLA serve as non-overlapping negative regulators of NKT cells. Our data thus implicate CD160 as a co-inhibitory receptor that delivers antigen-dependent signals in NKT cells to dampen cytokine production during early innate immune activationSIWe thank the NIH Tetramer Core Facility for providing PBS 57 ligand loaded CD1d Tetramers. Further, we thank the staffs of Gyerim Experimental Animal Resource Center for animal care and technical assistance. K.-M. Lee was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Science, ICT, and Future planning (NRF-2016M3A9B6948342, NRF- 2017R1A2B3004828, and NRF-2018M3A9D3079288). S.-J. Kim was supported by the Korea Health Industry Development Institute (KHIDI-HI14C2640) grant funded by Korea Government. S.-J. Ha was supported by a grant from the NRF (NRF- 2018R1A2A1A05076997). T.-J. Kim was additionally supported by a grant from the NRF (NRF-2016R1A6A3A04009698

    Effects of warming and eutrophication on coastal phytoplankton production

    Get PDF
    Phytoplankton production in coastal waters influences seafood production and human health and can lead to harmful algal blooms. Water temperature and eutrophication are critical factors affecting phytoplankton production, although the combined effects of warming and nutrient changes on phytoplankton production in coastal waters are not well understood. To address this, phytoplankton production changes in natural waters were investigated using samples collected over eight months, and under 64 different initial conditions, established by combining four different water temperatures (i.e., ambient T, + 2, + 4, and + 6 degrees C), and two different nutrient conditions (i.e., non-enriched and enriched). Under the non-enriched conditions, the effect of warming on phytoplankton production was significantly positive in some months, significantly negative in others, or had no effect. However, under enriched conditions, warming affected phytoplankton production positively in all months except one, when the salinity was as low as 6.5. These results suggest that nutrient conditions can alter the effects of warming on phytoplankton production. Of several parameters, the ratio of initial nitrate concentration to chlorophyll a concentration [NCCA, mu M (pg L-1)(-1))] was one of the most critical factors determining the directionality of the warming effects. In laboratory experiments, when NCCA in the ambient or nutrient-enriched waters was >= 1.2, warming increased or did not change phytoplankton production with one exception; however, when NCCA was < 1.2, warming did not change or decreased production. In the time series data obtained from the coastal waters of four target countries, when NCCA was 1.5 or more, warming increased phytoplankton production, whereas when NCCA was lower than 1.5, warming lowered phytoplankton production, Thus, it is suggested that NCCA could be used as an index for predicting future phytoplankton production changes in coastal waters.11Ysciescopu

    Transdifferentiation-inducing HCCR-1 oncogene

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Cell transdifferentiation is characterized by loss of some phenotypes along with acquisition of new phenotypes in differentiated cells. The differentiated state of a given cell is not irreversible. It depends on the up- and downregulation exerted by specific molecules.</p> <p>Results</p> <p>We report here that <it>HCCR-1</it>, previously shown to play an oncogenic role in human cancers, induces epithelial-to-mesenchymal transition (EMT) and mesenchymal-to-epithelial transition (MET) in human and mouse, respectively. The stem cell factor receptor CD117/c-Kit was induced in this transdifferentiated (EMT) sarcoma tissues. This MET occurring in <it>HCCR-1 </it>transfected cells is reminiscent of the transdifferentiation process during nephrogenesis. Indeed, expression of <it>HCCR-1 </it>was observed during the embryonic development of the kidney. This suggests that <it>HCCR-1 </it>might be involved in the transdifferentiation process of cancer stem cell.</p> <p>Conclusions</p> <p>Therefore, we propose that <it>HCCR-1 </it>may be a regulatory factor that stimulates morphogenesis of epithelia or mesenchyme during neoplastic transformation.</p

    Gremlin-1 Induces BMP-Independent Tumor Cell Proliferation, Migration, and Invasion

    Get PDF
    Gremlin-1, a bone morphogenetic protein (BMP) antagonist, is overexpressed in various cancerous tissues but its role in carcinogenesis has not been established. Here, we report that gremlin-1 binds various cancer cell lines and this interaction is inhibited by our newly developed gremlin-1 antibody, GRE1. Gremlin-1 binding to cancer cells was unaffected by the presence of BMP-2, BMP-4, and BMP-7. In addition, the binding was independent of vascular endothelial growth factor receptor-2 (VEGFR2) expression on the cell surface. Addition of gremlin-1 to A549 cells induced a fibroblast-like morphology and decreased E-cadherin expression. In a scratch wound healing assay, A549 cells incubated with gremlin-1 or transfected with gremlin-1 showed increased migration, which was inhibited in the presence of the GRE1 antibody. Gremlin-1 transfected A549 cells also exhibited increased invasiveness as well as an increased growth rate. These effects were also inhibited by the addition of the GRE1 antibody. In conclusion, this study demonstrates that gremlin-1 directly interacts with cancer cells in a BMP- and VEGFR2-independent manner and can induce cell migration, invasion, and proliferation

    p-Glycoprotein ABCB5 and YB-1 expression plays a role in increased heterogeneity of breast cancer cells: correlations with cell fusion and doxorubicin resistance

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Cancer cells recurrently develop into acquired resistance to the administered drugs. The iatrogenic mechanisms of induced chemotherapy-resistance remain elusive and the degree of drug resistance did not exclusively correlate with reductions of drug accumulation, suggesting that drug resistance may involve additional mechanisms. Our aim is to define the potential targets, that makes drug-sensitive MCF-7 breast cancer cells turn to drug-resistant, for the anti-cancer drug development against drug resistant breast cancer cells.</p> <p>Methods</p> <p>Doxorubicin resistant human breast MCF-7 clones were generated. The doxorubicin-induced cell fusion events were examined. Heterokaryons were identified and sorted by FACS. In the development of doxorubicin resistance, cell-fusion associated genes, from the previous results of microarray, were verified using dot blot array and quantitative RT-PCR. The doxorubicin-induced expression patterns of pro-survival and pro-apoptotic genes were validated.</p> <p>Results</p> <p>YB-1 and ABCB5 were up regulated in the doxorubicin treated MCF-7 cells that resulted in certain degree of genomic instability that accompanied by the drug resistance phenotype. Cell fusion increased diversity within the cell population and doxorubicin resistant MCF-7 cells emerged probably through clonal selection. Most of the drug resistant hybrid cells were anchorage independent. But some of the anchorage dependent MCF-7 cells exhibited several unique morphological appearances suggesting minor population of the fused cells maybe de-differentiated and have progenitor cell like characteristics.</p> <p>Conclusion</p> <p>Our work provides valuable insight into the drug induced cell fusion event and outcome, and suggests YB-1, GST, ABCB5 and ERK3 could be potential targets for the anti-cancer drug development against drug resistant breast cancer cells. Especially, the ERK-3 serine/threonine kinase is specifically up-regulated in the resistant cells and known to be susceptible to synthetic antagonists.</p

    Combined analysis of AFP and HCCR-1 as an useful serological marker for small hepatocellular carcinoma: a prospective cohort study

    Get PDF
    Abstract. Hepatocellular carcinoma (HCC) is one of the most frequent malignant tumors in the world. The only serological marker widely used for the diagnosis of HCC is alpha-fetoprotein (AFP). Despite that AFP is widely used for the diagnosis of HCC, it has a limit as a serological marker due to its low sensitivity and specificity. The human cervical cancer proto-oncogene 1 (HCCR-1) was previously reported as a new biomarker for HCC. To further evaluate the HCCR-1 as a biomarker for HCC, we conducted the prospective cohort study. We evaluated the significance of simultaneous measurement of 2 tumor markers in the diagnosis of HCC in China, Japan and Korea. Two markers for HCC, AFP and HCCR-1, were measured in the sera obtained from 1,338 patients at the time of initial diagnosis of HCC. Of the 1338 HCC patients, 616 (46%) and 686 (51.3%) were sero-positive for AFP and HCCR-1, respectively. The positive rate for HCC was increased up to 74.1% in combined use of AFP and HCCR-1. Many cases (54%) for AFP-negative HCC were positive for HCCR-1 and vice versa. More importantly, the diagnostic rate for small HCC (&lt; 2 cm) was significantly improved in the combined analysis of AFP and HCCR-1 to 56.9% although it was only 40.1% and 23.4% in the single analysis of HCCR-1 and AFP, respectively. Our result suggests that the HCCR-1 could be an useful biomarker for HCC while the diagnostic rate could be significantly improved in the combined use of HCCR-1 and AFP
    corecore