1,127 research outputs found

    Lost in Translation: Cross-Country Differences in Hotel Guest Satisfaction

    Get PDF
    With the global expansion of the hotel industry and greater mobility of international travelers, awareness of international differences in guests’ attitudes about their travel experiences is important. As a consequence, most multinational hotel chains currently invest significant resources in implementing large-scale measurement programs to track, compare, and benchmark guest satisfaction across their various international markets. They do so for two related reasons. First, most hoteliers understand that highly satisfied guests are much more likely to return to that property and spend more during future stays than guests who are indifferent or displeased.1 More important, successful hoteliers understand that simply tracking performance is not enough. What is required is using the results of tracking programs to guide day-to-day management decisions and, ultimately, long-term operational strategies

    Scientific chart image recognition and interpretation

    Get PDF
    Ph.DDOCTOR OF PHILOSOPH

    Beyond triplet loss: a deep quadruplet network for person re-identification

    Get PDF
    Person re-identification (ReID) is an important task in wide area video surveillance which focuses on identifying people across different cameras. Recently, deep learning networks with a triplet loss become a common framework for person ReID. However, the triplet loss pays main attentions on obtaining correct orders on the training set. It still suffers from a weaker generalization capability from the training set to the testing set, thus resulting in inferior performance. In this paper, we design a quadruplet loss, which can lead to the model output with a larger inter-class variation and a smaller intra-class variation compared to the triplet loss. As a result, our model has a better generalization ability and can achieve a higher performance on the testing set. In particular, a quadruplet deep network using a margin-based online hard negative mining is proposed based on the quadruplet loss for the person ReID. In extensive experiments, the proposed network outperforms most of the state-of-the-art algorithms on representative datasets which clearly demonstrates the effectiveness of our proposed method.Comment: accepted to CVPR201

    Acquiring Knowledge from Pre-trained Model to Neural Machine Translation

    Full text link
    Pre-training and fine-tuning have achieved great success in the natural language process field. The standard paradigm of exploiting them includes two steps: first, pre-training a model, e.g. BERT, with a large scale unlabeled monolingual data. Then, fine-tuning the pre-trained model with labeled data from downstream tasks. However, in neural machine translation (NMT), we address the problem that the training objective of the bilingual task is far different from the monolingual pre-trained model. This gap leads that only using fine-tuning in NMT can not fully utilize prior language knowledge. In this paper, we propose an APT framework for acquiring knowledge from the pre-trained model to NMT. The proposed approach includes two modules: 1). a dynamic fusion mechanism to fuse task-specific features adapted from general knowledge into NMT network, 2). a knowledge distillation paradigm to learn language knowledge continuously during the NMT training process. The proposed approach could integrate suitable knowledge from pre-trained models to improve the NMT. Experimental results on WMT English to German, German to English and Chinese to English machine translation tasks show that our model outperforms strong baselines and the fine-tuning counterparts

    Deep Reinforcement Learning-based Multi-objective Path Planning on the Off-road Terrain Environment for Ground Vehicles

    Full text link
    Due to the energy-consumption efficiency between up-slope and down-slope is hugely different, a path with the shortest length on a complex off-road terrain environment (2.5D map) is not always the path with the least energy consumption. For any energy-sensitive vehicles, realizing a good trade-off between distance and energy consumption on 2.5D path planning is significantly meaningful. In this paper, a deep reinforcement learning-based 2.5D multi-objective path planning method (DMOP) is proposed. The DMOP can efficiently find the desired path with three steps: (1) Transform the high-resolution 2.5D map into a small-size map. (2) Use a trained deep Q network (DQN) to find the desired path on the small-size map. (3) Build the planned path to the original high-resolution map using a path enhanced method. In addition, the imitation learning method and reward shaping theory are applied to train the DQN. The reward function is constructed with the information of terrain, distance, border. Simulation shows that the proposed method can finish the multi-objective 2.5D path planning task. Also, simulation proves that the method has powerful reasoning capability that enables it to perform arbitrary untrained planning tasks on the same map
    corecore