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Abstract:  This dissertation presents the research work on scientific chart image 

recognition and interpretation, a relatively new area of document image 

analysis. First of all, we introduce the background and objective of the 

project. Next we conduct a literature review to summarize previous 

research activities that are relevant to ours and find out their limitations 

that are to be overcome. This dissertation then provides a general chart 

recognition and interpretation paradigm, and investigates all the major 

aspects of the research problem, including chart image recognition, chart 

interpretation and its applications, and ground truth dataset generation. 

Chart image recognition focuses on extracting low-level graphical 

symbols and text symbols and using model based method or learning 

based method to achieve classification and construction of chart 

components. Chart interpretation performs high-level association of 

textual and graphical information to capture the semantics of chart images 

and generate descriptions. The result of interpretation can be used by other 

applications to enhance their performance. This dissertation also 

investigates two good examples of such application: optical character 

recognition (OCR) and question answering (QA). The generation of public 

dataset and ground truth is also an important issue. In this dissertation, we 

apply both automatic and semi-automatic approaches for generating public 

dataset with ground truth.  
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Chapter 1 

Introduction 

 

1.1 Motivation 

 

Soon after the personal computer became popular in the early 1980’s, it was believed that 

the world is moving towards paperless work environment. However in our society today, 

paper is still an important medium for exchanging information in literary, scientific and 

commercial fields. Converting paper-based documents into a computer readable 

electronic format is a crucial step for broadening the scope of the information source. As 

far back as 1985, it was stated that about one trillion statistical graphs were printed each 

year [1]. Many more of such graphs are expected with the proliferation of printed paper 

documents today. Most statistical graphs appearing in scientific papers are scientific 

charts or diagrams. While forms or tables are good tools to convey information from 

structurally arranged data, scientific charts are a very powerful visual tool for 

representing data, because people understand symbolic graphs better and faster than the 

corresponding text [2].  

In this dissertation, the most accurate definition of a chart we are dealing with states 

that “a chart is a type of information graphic or graphic organizer that represents tabular 

numeric data and/or functions” [90]. As the term “chart” can also refer to other meanings, 
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such as music popularity rankings, we use a more specific phrase “scientific chart” here 

to avoid confusion. “Scientific chart” does not mean a chart is only used for scientific 

purposes. Rather it is mainly because plotting data or functions is a common practice in 

most scientific fields. There are also other types of information graphic that use the term 

“chart”, such as flow chart, organization chart etc. These types of information graphics 

are not in the scope of this dissertation.  

According to Zhou [3], the process of converting a scientific chart image into 

computer readable form is called scientific chart recognition, while scientific chart 

interpretation refers to the process of understanding the semantic meaning of a scientific 

chart and obtaining the tabular data from it. In the literature, there is little research work 

and practical results reported on recognizing and interpreting scientific chart images, 

comparing to those on other types of document images such as forms or tables. Thus it is 

a relatively young research field to explore into. While early attempts mainly focused on 

scientific chart recognition and only touched a little on the interpretation part, this 

research project aims at providing more details and proposing new methods for both 

recognition and interpretation of scientific chart images. The work reported here has the 

following significance: 

 In their book “Document Image Analysis” [4], O’Gorman and Kasturi stated the 

ultimate goal of document image analysis: “to recognize the text and graphics 

components in images and extract the intended information as a human would”. To 

meet this goal, chart images, as one of the various types of document images that are 
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frequently used, should be made machine readable. 

 Recognition and interpretation of chart images fill in the blanks of existing 

information retrieval systems and document recognition systems. For example, more 

powerful content-based retrieval of graphics images can be achieved for image-based 

search engines. More complete content of a scanned document page can also be 

captured by an OCR system if scientific charts in the document page are converted 

into a machine readable form. 

 Researching in the field of scientific chart image interpretation reveals new problems 

that were not studied in depth before. For example, traditional document image 

recognition handles textual and graphical information separately. In fact, most 

researchers treat text recognition and graphics recognition as two separate problems, 

as can be seen from the survey paper by George Nagy [5]. However, to achieve chart 

image interpretation, we are facing the newly discovered problem of associating these 

two kinds of information at both structural and semantic level, to which no satisfying 

solution exists yet. 

 

1.2 Challenges  

 

Zhou listed four major challenges in scientific chart recognition [3], including: (i) the 

great diversity of chart types and styles, (ii) the flexibilities in the structural arrangement, 

(iii) the difficulties in describing the syntax and semantics of the complex charts and (iv) 
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the difficulty in dealing with degraded, distorted or noisy input. Although Zhou has done 

substantial work to deal with these challenges, she also pointed out several aspects that 

need to be further explored, including: 

• Broadening chart types to be recognized and interpreted. In Zhou’s work, most 

methods were developed specifically for bar charts only, except for the coordinate 

line detection that works for all 2D and 3D chart types with coordinate lines. Thus it 

still remains open how a more general chart classification can be constructed to 

discriminate a wide range of different chart types. 

• Associating information from multiple modalities in the interpretation process. It 

is impossible to achieve full interpretation by examining just the information from a 

single modality, say graphical information alone or textual information alone. Text 

and graphics must be associated to provide both structural and semantic information. 

However, as we have already mentioned, there is no existing solution to this problem 

yet. 

• Enriching the types of text labels in the charts to be handled. In Zhou’s work, only 

axis labels, axis titles and figure titles are defined for the text blocks in the charts. 

When more types of labels are included, such as legends, data labels and data values, 

especially when some chart types do not even have axis lines, the original method for 

assigning text labels no longer works. 

• Building a publicly available dataset with ground truth. The existence of a ground 

truth dataset allows the evaluation and comparison of performance of different 
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scientific chart recognition and interpretation systems from various ways. However, 

so far such a dataset does not exist in this relatively new research field, making the 

evaluation and comparison between different systems difficult.   

 

1.3 Objectives of the Research 

 

This dissertation aims to investigate into the problems in both chart image recognition 

and chart image interpretation. The investigation and solution proposed leads to a 

working system. Within the time frame of the present dissertation, the chart images 

handled by the system are of three most commonly used types only: bar charts, pie charts 

and line charts. The main objective is to provide a general chart recognition paradigm and 

to find a solution for each of the major modules in the paradigm, which can be further 

broken down into the following objectives: 

1. Chart recognition and interpretation: To propose a general framework for the 

recognition and interpretation of scientific chart images. To propose new techniques 

and evaluate existing techniques to be applied in each module in the framework. 

2. Chart segmentation: Investigate the top-down process of segmenting a chart into 

various components. Identify the key components in scientific charts. Extraction of 

such components involves bottom-up symbol construction using graphical primitives. 

Two of the most important issues are investigated: the extraction of a set of coordinate 

lines and the extraction of data components.  
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3. Chart classification: Investigate both model-based and learning-based chart 

classification. Features used for classification include image features, graphical 

primitives and chart components extracted from the chart images.  

4. Text/graphics association and chart interpretation: Investigate the problem of 

associating text with corresponding graphical symbols to identify the role of text 

blocks in a chart and to obtain semantic information of a chart image. Chart 

interpretation is achievable by applying a domain-specific interpretation method on 

the associated textual and graphical information.  

5. Generation of ground truth dataset for public use: Build up a collection of chart 

images and create its corresponding ground truth data. Both synthetic chart images 

and real-life chart images are to be included. Formulate the ground truth data so that it 

can be used for evaluating the performance of chart recognition systems, chart 

interpretation systems, and other systems such as graphical symbol construction 

system or text recognition system etc. 

 

1.4 Contributions 

 

We aim to make contributions from three problem domains that we will investigate in this 

dissertation: chart classification and recognition, chart interpretation and applications, and 

the generation of ground truth dataset.  

In the problem domain of chart classification and recognition, the contributions will 
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be as follows: 

1. We will propose a method for extracting line information based on vectorization. 

The vector information of straight lines, circular arcs and elliptic arcs are 

extracted and used in following steps. The vectors are used to construct higher 

level graphical symbols for chart recognition. 

2. We will propose a method for identifying the coordinate lines in a chart image. 

Unlike the traditional approach, the proposed method makes use of both textual 

and graphical information. 

3. We will apply domain knowledge to build chart models for classification of chart 

images and the recognition of chart components. Comparing to Zhou’s work, we 

enrich the domain knowledge to handle multiple chart types.  

4. We will also explore machine learning based method for training the system to 

automatically classify input chart images, hence this is a data based approach. 

In the problem domain of chart interpretation and applications, the contributions are 

as follows: 

1. A more general set of text classes is designated and their text labels are assigned 

accordingly, comparing to what was defined by Zhou. We will also propose a set 

of features for learning the relationship between text blocks and graphical 

symbols in a chart image. By associating the text with graphics, the structural 

information of the chart image can be re-constructed. 

2. We will study the interpretation of different chart types and the extraction of 
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tabular data. The result of chart interpretation will be stored in both XML format 

and natural language format. 

3. We will explore how chart interpretation is integrated with the existing techniques 

such as OCR systems and question answering (QA) systems. 

In the problem domain of generation of a ground truth dataset, the contributions can 

be summarized as follows: 

1. We will define ground truth data in the context of chart image recognition and 

interpretation. The defined ground truth has multiple levels of details.  

2. We will propose a semi-automatic ground truthing system for extraction ground 

truth data from existing chart images. 

3. We will also propose an automatic system for synthesizing chart images and 

generating ground truth data at a large scale. 

 

1.5 Outline of the Dissertation 

 

The remaining chapters in this dissertation are organized in the following way: 

Chapter 2 surveys related works in scientific chart recognition and interpretation, 

including parsing and interpretation of electronic charts, and recognition and 

interpretation of chart images. The limitation of these works is identified as well.  

Chapter 3 introduces the terminology used in chart generation, which we adopt in our 

work. We then revisit design principles and other key issues on chart generation that are 
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useful for designing the general chart recognition and interpretation paradigm. 

Chapter 4 focuses on chart image classification and recognition. Recognition of 

graphics and text are being presented separately. At the beginning of graphics recognition, 

a vectorization method is proposed to obtain graphical primitives such as straight lines 

and arcs. Two graphical symbol construction methods are explored: a parsing based 

method using available domain knowledge, and another graph based method without 

domain knowledge. The former is used for model based chart classification, while the 

latter is used for machine learning based classification. Methods for recognition of chart 

components, namely coordinate lines and data components, are also introduced. For text 

recognition, a text segmentation method is applied to form text blocks. Then optical 

character recognition is applied to obtain text information. 

Chapter 5 discusses methods for text/graphics association and chart interpretation. 

Association of text and graphics is achieved through learning based classification of text 

blocks based on a set of features proposed by us. After these two types of information are 

combined, chart interpretation is then carried out to recover tabular data in the chart. The 

result of interpretation is stored in XML format or plain natural language text format. 

Chapter 6 discusses practical applications of chart interpretation. Two sample 

applications are illustrated here. The first one is optical character recognition (OCR) 

system whose output becomes more complete with the chart information added. The 

second one is question answering (QA) systems that can handle more variety of questions 

using the supplement information provided by chart interpretation. 
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Chapter 7 addresses the issue of ground truth and public datasets in chart image 

recognition and interpretation. It then presents two systems for generating ground truth 

chart image dataset. First, a semi-automatic system has been developed to extract 

multi-level ground truth data from real-life chart images. Second, an automatic system is 

developed to synthesize large scale chart images with ground truth recorded at the same 

time. 

Chapter 8 concludes the dissertation by summarizing the contributions of this 

dissertation. It also points out some future directions to be further explored. 
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Chapter 2 

Literature Review 

 

When a chart is generated using graphics software, it is in a structured graphical form, in 

which the individual chart elements can be accessed and some elements are still 

modifiable. On the other hand, when a chart is converted into a raster image format, such 

as BMP or JPG, all the structural information is lost and everything turns into pixels. To 

differential the two, the former is denoted as “graphic charts” and the latter is denoted as 

“chart images”. Depending on the nature of the input, previous works related to scientific 

chart recognition and interpretation can be further divided into graphic chart recognition 

and chart image recognition. For graphic charts, primitive information such as the text 

strings and the graphical elements can be extracted from the chart itself. Structural 

information such as the correspondence between text strings and graphical elements can 

also be captured through methods such as parsing. Thus the emphasis is on the 

interpretation of the chart based on these raw pieces of information. On the other hand, 

the problem of chart image recognition is obviously more challenging and involves more 

techniques. Image processing techniques are required to process the image and to 

separate text components from graphical elements. Raster-to-vector conversion is needed 

to change raster pixels into vector format graphical primitives so that the graphical 

symbols can be constructed. Text recognition methods are needed to convert text 

components into electronic form. If the input is a scanned document page, then layout 
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analysis is also needed to locate chart areas in the page. In this chapter, we will review 

works in both graphic chart interpretation and chart image recognition.     

 

2.1 Graphic Chart Recognition 

 

The earliest research work related to graphic chart recognition was done by Futrelle et al. 

The initial framework was proposed in 1985 [6], and a system named Diagram 

Understanding System (DUS) was reported subsequently [7-9]. The diagram 

understanding system developed by them became complete and operational in 1996, and 

was claimed to be the first working system to fully parse a variety of actual diagrams 

drawn from the research literature, including x-y plots, linear gene diagrams and finite 

state machines. Example of such diagrams is given in Figure 2.1. 

 

(a) X-Y plots 

(b) Finite state machine 

(c) Linear gene diagram 

 

 

 

 

 

 

 

 

Figure 2.1. Three types of diagrams handled by DUS 
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The core method used in the system is called context-based constraint grammars that 

build hierarchical parse tree for each diagram type for classification and description 

generation. Example of such grammar is shown in Figure 2.2. There are two strengths of 

the approach. Firstly, the parsing process captures the structural information of the 

diagram and geometric relationships among the graphical elements. The structured 

description is more useful than a collection of primitive objects. Secondly, the parse tree 

built by the system facilitates further automated reasoning about a diagram. The input 

diagrams are in the vector format rather than raster format. Both the grammars and 

Graphical User Interface of the system was written in LISP.  

 
;;; ****************** < Y-Ticks > *************** 
( Y-Ticks -> Ticks Y-Line 
  (Y-Line) 
(Ticks (touch Y-Line '?) :constraints (> (size Ticks) 2))) 
 
;;; ****************** < X-Line > *************** 
( Y-Line -> Line 
(:constraints (vertp Line) 
(long Line))) 
 
;;; ****************** < Ticks > *************** 
( Ticks -> Set(Line) 
(:element-constraints (horizp Line) 
(short Line))) 
 

 

 

 

 

 

Figure 2.2. Sample grammar with three rules in the DUS 

 

Futrelle et al. also proposed a scheme for recognizing and classifying vector format 

graphics in PDF documents [10-11]. The scheme includes three major stages, as shown in 

Figure 2.3: (1) extraction of the PDF vector entities and converting them to self-contained 

Java 2D objects; (2) grapheme recognition based on spatial analysis; and (3) figure 

classification and recognition. In this work, the concept “grapheme” is defined as a 

combination of graphical primitives based on constraints. The classifier classifies each 
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detected figure in the PDF document into five figure types: data point figure, line figure, 

bar chart, curve figure and tree/hierarchy figure. The feature vector contains 16 numerical 

values corresponding to the count of 16 types of graphemes defined in a figure. Futrelle 

et al. admitted that majority of the figures in the PDF documents are in raster format 

rather than vector format, but they assumed that the raster format can easily be converted 

to vector format using vectorization. This may be true for the graphical part of the figure, 

but obtaining vector format textual information and the overall structural information 

from a raster format figure requires additional techniques other than vectorization.   

 

 

 

 

 

Extraction of 
PDF vector 

entities 

Grapheme 
recognition 

Figure 
classification and 

recognition 

Graphics 
primitives 

Text 
primitives

Graphemes 
Figure type 

PDF 
document 

Figure 2.3. Three stages for recognition and classification of  
figures in PDF documents. 

 

Carberry et al. also studied the problem of understanding information graphics for 

users who have serious sight impairments. They modeled the problem as a discourse level 

problem in which knowledge from multiple sources (text, graphics, etc.) are to be 

obtained and combined [12]. Notably, the term “information graphics” used by them has 

a broad scope that covers any graphical representation of information, including maps, 

diagrams, charts, etc. However, the major type of information graphics being studied by 

Carberry et al. is graphic scientific chart. The probabilistic framework of their system can 

be seen in Figure 2.4.  
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The visual extraction module (VEM) in Carberry et al.’s system extracts both textual 

and graphical primitives and then groups them into meaningful components at the level 

of abstraction [15]. For textual information, the text primitives are characters and the 

highest level of meaningful text is the phrase level. For graphical information, the 

graphical primitives are the line primitives and then they are grouped to form the x-y axis, 

axis tick marks, data components etc. based on the domain knowledge specified manually. 

These captured components are then stored in an XML format. 

Figure 2.4. Main architecture of Carberry et al.’s system 

 

In [13, 14], Carberry et al. explained how the intention recognition component (IRC) 

in their proposed system recognizes the intended message embedded in an information 

graphic through a plan inference process which relies on a Bayesian network for 

hypotheses analysis. The hypothesized message is then summarized and returned to the 

user. Two sample operators in the system are shown in Figure 2.5. Each operator consists 

of the following fields: 

• Goal: the goal that the operator achieves. 
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• Data-requirements: requirements that the data must satisfy in order for the operator to 

be applicable in a graphic planning paradigm. 

• Display-constraints: features that constrain how the graphic is eventually constructed 

if this operator is part of the final plan. 

• Body: lower-level sub-goals that must be accomplished in order to achieve the overall 

goal of the operator. 

Although the types of information graphics are still limited to several commonly used 

scientific charts, their work showed great potential of extending traditional language 

understanding and document summarization to graphical documents. 

 Goal:  Find-value(<viewer>, <g>, <e>, <ds>, <att>, <v>) 
Gloss:  Given graphical element <e> in graphic <g>, <viewer> can find the value <v> 
in dataset <ds> of attribute <att> for <e> 
Data-req:  Dependent-variable(<att>, <ds>) 
Body:      1. Perceive-dependent-value(<viewer>, <g>, <att>, <e>, <v>) 
 

Goal:     Find-value(<viewer>, <g>, <e>, <ds>, <att>, <v>) 
Gloss:   Given graphical element <e> in graphic <g>, <viewer> can find the value <v> 
in dataset <ds> of attribute <att> for <e> 
Data-req:  Natural-quantitative-ordering(<att>) 
Display-const:  Ordered-values-on-axis(<g>, <axis>, <att>) 
Body:  1. Perceive-info-to-interpolate(<viewer>,<g>,<axis>,<e>,<l1>,<l2>,<f>) 
 2. Interpolate(<viewer>, <l1>, <l2>, <f>, <v>) 
 

(a) Operator for achieving a goal perceptually 

(b) Operator that employs both perceptual and 
cognitive subgoals 

Figure 2.5. Sample operators in Carberry’s system 

 

 

 

 

 

 

 

 

 

 

2.2 State of the Art in Chart Image Recognition 

 

The most recent systematic work in chart image recognition was done by Zhou, who has 
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made contributions in four aspects of scientific chart image recognition and interpretation.  

 

Binarization 

Noise removal 

Connected component analysis 

Connected component classification 

Gray chart images 

Low-level vision 
(preprocessing) 

                                           

Plot area detection 

Axes detection 

Areas segmentation 

Chart dimension 
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Figure 2.6. Zhou’s scientific chart image recognition framework 
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Firstly, she gave notation definitions of a scientific chart and investigated the 

mechanism of human visual perception on chart recognition. Based on these findings, she 

proposed a hierarchical statistical-model-based chart recognition framework which 

focuses on the intermediate level of vision [3], as shown in Figure 2.6. From the diagram, 

we can see that the tasks in the framework are divided into three levels: low-level vision 

that preprocesses an input image, intermediate-level vision that performs the recognition, 

and high-level vision that achieves the interpretation.  

Secondly, she suggested an improved projection-based approach for plot area 

detection, comparing to earlier works. A method for coordinate system reconstruction 

based on Hough feature clustering and geometric analysis was proposed to detect 2-D 

and 3-D axes in chart images [17, 18].  

Her third proposal for a framework of chart classification and segmentation was 

based on a statistical modeling [16]. The chart models are defined making the use of 

Hidden Markov Model (HMM). Selected feature points are located in the chart images. 

They are used for both training and matching the HMM models.  

Last but not least, she proposed a zoned directional X-Y tree structure to 

hierarchically represent the text in graphical documents [3]. Structural analysis is based 

on the X-Y tree constructed and the text primitives are labeled. Procedures to extract axes 

tick labels and titles were illustrated. 

There were not many other works, publications found in the open literature on 

scientific chart image recognition and interpretation. In 1997, Yokokura et al. proposed a 

layout-based network which is a schema-based framework to graphically describe the 
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layout relationship information of bar charts [19]. Vertical and horizontal projection is 

used for the segmentation of graphical symbol objects and the extraction of the bar chart 

layout information while constructing graphical and text primitives. Scanned bar chart 

images were tested and the performance was reported. The performance of coordinate 

system detection was later compared with that of Zhou’s approach [17]. Due to the 

simplicity of the segmentation method, the types of bar charts that can be recognized are 

constrained by many assumptions. Furthermore, their work did not really cover other 

chart types. The most recent work that is relevant to ours was reported by W. Browuer et 

al. on segregating and extracting information from 2D plots [88]. The proposed method 

attempts to detect axes features and text features for classification of figure images. Then 

both graphical symbols, such as the axis ticks and data points, and textual components, 

such as the axis labels and legends, are detected in the 2D plots identified. The extracted 

information has been combined for data set generation.   

 

2.3 Limitations of Previous Works 

 

While the related works provided valuable sketch and direction on the problems we 

intend to solve, however, they do have the following limitations and short comings: 

 Some of the proposed methods are designed for a specific chart type only. For 

example, Zhou’s methods work for charts with coordinate lines, Yokokura’s work 

focuses on only the bar chart, and W. Browuer et al.’s method works only for 2D plots. 

Although works on graphic chart interpretation cover more variety of chart types, the 

nature of the problem is quite different. Recognition and interpretation of scientific 
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chart images is far more challenging as it requires image processing and re-

construction of both syntactic and semantic information. A more general framework 

for recognition and interpretation of various chart types will make the implemented 

system more easily expansible, by adding new domain knowledge, or by machine 

learning techniques. In short, it is our intention to make our system more robust. 

 Most works on scientific chart image recognition concentrate only on low-level 

features to retrieve partial information from the chart images, without constructing 

high-level components for performing further interpretation of the chart content. In 

other words, only low-level and intermediate-level vision tasks (as shown in Figure 

2.6) were studied intensively, while exploration into high-level vision is still quite 

limited. However, the methods proposed for graphic chart interpretation give good 

hints on how to achieve high level vision. 

 Most works completely ignore the textual information in the chart images or only 

make use of the textual information to a very limited extent. Futrelle’s work extracts 

only the x-y axes labels. In Carberry’s proposed approach, there is an OCR module for 

text recognition, but how to obtain the role of the text strings is not even very clearly 

defined and formulated. Zhou’s method of labeling text based on X-Y tree structure 

assumes Manhattan layout of the text strings in the chart image, which may not be true 

for chart types other than bar chart. Furthermore, only axis labels and titles were 

identified using her method. 

 Although different researchers have reported their results to some extent, there is no 

public dataset with the ground truth and the performance evaluation tool available, 

thus it is difficult to compare the performance among different systems. Futrelle et al. 
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tested their system using figures extracted from the biological research papers. 

Carberry et al. tested their system using their own corpus of graphics. Zhou et al. 

collected a set of scientific chart images which were taken from scanned technical 

journal pages. The images were scanned using a standard resolution of 300 dpi, with 

the existence of noise, discontinuity and skew angle. The majority of the images are 

bar charts and line charts. However, the major problem is that there is no ground truth 

data available with this collection.  

Some of these points were mentioned in Zhou’s work [3] as a suggestion for some 

future directions. In this dissertation, however, we do aim to overcome these limitations 

and come up with practical solutions to these yet unsolved problems as well.  
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Chapter 3 

Chart Generation and Chart Recognition 

 

Before we go into some detailed problem formulations and solutions for chart recognition 

and interpretation, it is important to define first the terminology for the various elements 

in a chart and to revisit the key issues in generation of charts from data. As chart 

recognition and interpretation can be viewed as the reverse process of chart generation, 

the design principles and other relevant studies on chart generation provide helpful 

guidelines for us to solve problems in chart recognition and interpretation.  

 

3.1 Terminology 

 

The key elements in a chart have been defined by various researchers in the past. The 

terminology used for these elements can be different as appeared in different works, and 

its usage is not consistent even in recent literature. Some of the terms may have different 

names, although the meaning carried by each term is more or less the same. For example 

in Figure 3.1, we can see the obvious difference between the terminology used by 

William S. Cleveland [20] and the terminology used by Anders Wallgren et al. [22]. In 

our work, we adopt the terminology similar to the one proposed by Anders Wallgren et al. 

The set of terms are defined in the way that it is applicable to all types of charts and every 

key element is specifically distinguished from others. The terminology is summarized in 
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Table 3.1, and it will be used throughout the whole dissertation. Table 3.1 also specifies 

the type of information for each element, which is either text or graphics. Note that 

although many terms are related to coordinate lines or the plot area specified by them, the 

remaining terms are sufficient to be applied to chart types without coordinate lines. 

 

Figure 3.1 Different terminology used by researchers 

(b) Terminology used by Anders Wallgren et al. 

(a) Terminology used by William Cleveland 
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Table 3.1 Terminology used in our work 

Term Type Meaning 

Chart title Text The title of the whole chart 

Plot area Graphics The area in which data is plotted 

Axis Graphics The coordinate lines that defines the plot area 

Tick Graphics The small ticks along an axis line to specify units 

Axis title Text The title of an axis line 

Axis unit Text The unit of an axis line 

Axis label Text Labels placed along an axis line 

Grid line Graphics Horizontal or vertical lines placed in the plot area to assist 
with the measurement of data values 

Data 
component 

Graphics A graphical symbol representing data plotted 

Data label Text A label assigned to a data component 

Data value Text The value corresponding to a data component 

Legend Text The legend distinguishes different data series 

 

 

3.2 Key Issues in Chart Generation 

 

To make the graphical representation more effective in plotting data and delivering the 

intended message, there are several key issues to be considered. First of all, the general 

principles of graphing data need to be enforced in order to guarantee a clear and 

meaningful plotted chart. Secondly, although there is no conclusion about under which 

situation a chart type gives best representation, the choice of chart type follows certain 

convention. Thirdly, there are a number of attributes of the graphical symbols to represent 

data, that are useful for data recovery. Lastly, the amount of information represented by 

graphics or text need to be well determined to make the chart both information packing 

and easy to interpret.  
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3.2.1 The Principles of Graphing Data 

The principles listed by Cleveland [20] were originally meant not only for chart 

construction but also for construction of general graphic information, such as figures and 

diagrams. By following these principles, the graphical symbols can be visualized without 

difficulties and ambiguities, making the graphical information easy to be viewed and 

understood. According to Cleveland, the important principles include: 

• Clear vision: the data should stand out and must be represented by prominent 

graphical symbols. Symbols in the data region should not interfere with each other, and 

must be visually distinguishable.  

• Clear understanding: major conclusions should be put into graphical form. Textual 

description should be comprehensive and informative. Label, scales and data symbols 

should be consistent with each other. 

• Scales: the range of the tick marks should include the range of data. The data should 

fill up as much of the data region as possible. Choose appropriate scales when graphs 

are compared. 

• General strategy: Pack large amount of quantitative information into a small region. 

The process of graphing data is an iterative and experimental process.  

 

3.2.2 The Choice of Chart Types 

There are almost an infinite number of different kinds of charts. However, most of them 

can be traced back to a limited number of basic types [22]. Bar charts are more suitable to 

show numbers, proportions, frequencies or other ratios. In a bar chart, the variable is 
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qualitative or discrete. A variation of bar chart is the histogram, where the variable to be 

illustrated is continuous. Pie charts are most appropriate for giving a general picture in 

situations where we want to compare proportions. Scatter plots are used to show how two 

variables co-vary (or how they do not co-vary). Line charts are normally used for 

describing developments of a continuous variable. As the variable is continuous, the 

different values can be joined by lines. Area charts are also used to show developments 

over a continuous variable. Maps and flow charts are also categorized as charts, but 

unlike other charts that plot statistical data, they emphasize more on geographical 

information and procedural information.  

 

3.2.3 The Data Representation versus Perceptual Judgments 

A representation of data refers to the way we visualize data. Cleveland listed ten basic 

perceptual judgments that a human being performs to visually decode quantitative 

information encoded on graphs, including: 

1. Angle 

2. Area 

3. Color hue 

4. Color saturation 

5. Density (Amount of black) 

6. Length (Distance) 

7. Position along a common scale 

8. Position along identical, nonaligned scales 

9. Slope 
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10. Volume 

By encoding corresponding characteristics into data representations, in our case the 

graphical symbols, it is highly possible that the same quantitative information is 

recoverable from the graphical symbols. For example, data values are represented by the 

lengths of the bars in a bar chart. Thus by calculating the lengths of the bars, and by 

obtaining the scale information from the coordinate lines, the original data value can be 

calculated.  

 

Figure 3.2. Inappropriate ratio of text caption versus 
graphical content 

 

 

 

 

 

 

 

 

 

 

 

3.2.4 Textual Content versus Graphical Content 

As the chart is a powerful tool for plotting statistical data in a visual way, it is suggested 

that the major conclusions should be put into graphical form. The text accompanying a 

chart, typically a figure caption, should be both comprehensive and informative. 
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Cleveland suggested a framework for generating text that contributes to a clear 

explanation of a chart, which contains three aspects: describe everything that is graphed; 

draw attention to the important features of the data; describe the conclusions that are 

drawn from the data on the graph.  

The figure caption, the explanation text and the chart itself combines to provide 

complete information to a reader. We further suggest that minimum redundancy should be 

enforced to the information carried by graph and by text, to make the chart more 

information packing and to avoid extra workload of the reader. This means whatever 

presented in the graph need not be repeated in the text, unless it is worth being pointed 

out. A short explanation text may be combined with the figure caption so that all relevant 

information is kept close to each other. However, if the explanation text is significantly 

long, then it should be placed in the paragraph before or after the chart, instead of in the 

figure caption, otherwise it reduces the comprehensiveness of the figure caption. Figure 

3.2 shows a negative example where explanation is overdone in the caption.    

 

3.3 The Task of Chart Recognition 

 

By examining the basic principles of graphing data, the different usage of each chart type 

to plot data and the set of perceptual judgments commonly used for data representation, 

we can properly design methods to recover both textual and graphical information from a 

chart that is converted into imaged format and to perform further interpretation to get 

back the data plotted in the chart. The whole task can be divided into the following sub-

goals: 
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3.3.1 Recognizing the Chart Type 

To recognize the type of a given chart, the key point is to extract various graphical 

elements from the chart. As different charts use different set of graphical elements, most 

importantly the different data representations, the extraction of graphical elements is 

crucial to distinguish different chart types. Based on this fact, a model based chart 

recognition method is the appropriate approach.  Each chart type is represented as a 

model in which common graphical elements appearing in the chart type are specified. 

The model can be obtained by either manual specification or machine learning. 

Recognition of chart type is done through model matching. On the other hand, the text is 

mainly used to annotate individual graphical symbols or provide explanations to the 

whole chart. Thus textual information does not play a crucial role in chart type 

recognition.  

 

3.3.2 Recognizing the Chart Components 

During the recognition of the type of a given chart, the major graphical symbols are 

extracted. Thus the chart components represented by these graphical symbols are also 

obtained at the same time. This is an advantage of the model based approach that the 

outcome of a step can be applied for multiple purposes, which guarantees the efficiency 

of the method. However the chart components obtained so far only include graphical 

information in a chart. Textual information in the same chart still needs to be recognized. 

To obtain textual information, text segmentation and recognition techniques should be 

applied to extract text blocks and the actual content of each block. Furthermore, as text 
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plays multiple roles in a chart, the specific role of each text block needs to be identified. 

This task is done by associating text blocks with graphical symbols.   

 

3.3.3 Recognizing the Data in a Chart 

As section 3.2.3 mentioned, data values in a chart are perceptually judged in a number of 

ways. In other words, a data is represented by a number of attributes of the data 

components. For a specific chart type, the way to represent data is fixed. Thus one way to 

specify how data is represented is to directly associate the data representation with each 

chart type. Once the chart type is identified, corresponding interpretation of data 

components can be applied to calculate detailed data values. Another possibility is to let 

the system find it out automatically through machine learning, given the number of 

representations can be exhaustively enumerated.  One key issue here is that to calculate 

absolute data values, textual information must be correctly associated with graphical 

information, to provide scale information and index for data etc., otherwise the data 

obtained can only be relative. 

 

3.3.4 Recognizing the Intended Message Carried by a Chart 

After data values are obtained and other textual information is available, a summary of 

the chart content can be generated. The most direct way of summarization is to generate a 

description listing the facts obtained such as the type of the chart, the data indices and 

values, and other textual information. From this, the intended message that the author of 

the chart wants to deliver to the readers can be estimated. Carberry et al. implemented 

this step using Bayesian network and hypothesis analysis [13, 14]. The output of their 

SCIENTIFIC CHART IMAGE RECOGNITION AND INTERPRETATION                                      WEIHUA HUANG 



CHART GENERATION AND CHART RECOGNITION 31

method is a summary of the hypothesized message in natural language form. Natural 

language form summary of a given chart is important for information extraction 

applications such as question answering (QA) or web based search etc.  

 

3.4 General Chart Recognition and Interpretation Paradigm 

 

Figure 3.3 summarizes an overall picture of chart recognition and interpretation. It 

illustrates detailed steps on how each sub-goal discussed in section 3.3 is to be achieved. 

Comparing with that of Zhou’s framework in Figure 2.6, the proposed paradigm here is 

much more general in the sense that it places no assumption on the existence of 

coordinate lines. The coordinate lines are treated as part of the chart components that may 

or may not exist. The paradigm also shows much more clearly how the textual and 

graphical information is being processed separately during recognition and associated 

during the interpretation. 
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Figure 3.3. General chart recognition and interpretation 

Textual information 

Text segmentation 

OCR 

Text 
recognition 

module 

Vectorization 

Chart type/components  

Graphical symbol construction 

 Chart model matching 

Chart 
recognition 

module 

Text/graphics Association

Chart data calculation 

Description generation 

Chart Interpretation module 

Chart descriptions 

Question answering Web based search OCR supplement 

Text  
Image 

Graphics  
Image 

Text /graphics separation

Input chart image 

Preprocessings

Application 
level 

Interpretation 
level 

Recognition 
level 

Preparation 
level vision 

SCIENTIFIC CHART IMAGE RECOGNITION AND INTERPRETATION                                      WEIHUA HUANG 



CHART IMAGE RECOGNITION  33

 

Chapter 4 

Chart Image Recognition 

 

The task of chart recognition is the extraction of textual and graphical information from a 

given chart image without further interpretation. The extraction of graphical information 

further includes the recognition of the chart type as well as the construction of major 

chart components, namely the coordinate lines and data components. For the graphical 

information extraction, a model based approach is adopted first, then an alternative 

approach based on machine learning is explored. Text information extraction is done by 

segmenting the text into appropriate blocks followed by optical character recognition 

(OCR). Experiments for the works reported in this chapter were done using both 

synthetic chart images and real-life chart images downloaded from the internet or 

scanned from books and papers. At the beginning of the chapter, low level vision tasks 

such as image preprocessing and separation of text and graphics are also introduced.  

 

4.1 Low Level Vision Tasks 

 

4.1.1 Image preprocessing 

The main task of image preprocessing is to apply color conversion to the input image for 

future steps. If an image is in RGB color scheme, it is converted to a grayscale image [22] 

using the following color conversion. I(x, y) is the intensity of a pixel with coordinate of 
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(x, y), R(x, y), G(x, y) and B(x, y) represent the values in RGB channels of the same 

pixel in the color image. The set of coefficients in formula 4.1 is commonly used due to 

the fact that human eyes are more sensitive to green channel. A simpler alternative is to 

assign equal weights to all three channels.  

 I(x, y) = 0.3 × R(x, y) + 0.59 × G(x, y) + 0.11 × B(x, y)   (4.1) 

Changing RGB triples into grayscale intensities is required by certain steps such as 

edge detection etc. However, the original image is not overwritten by the new grayscale 

image. Thus both RGB colors and grayscale intensities are accessible for further 

processing. 

 

Figure 4.1. Example of text/graphics separation 

(a) Original image (b) Graphics extracted (c) Text extracted 

 

 

 

 

 

 

4.1.2 Text/Graphics Separation 

From the grayscale image, connected component analysis is performed within the image 

area to separate text from graphics [23]. Firstly, connected components are constructed by 

grouping pixels with similar intensities and are 8-neighbors of each other [22]. A series of 

filters are applied to classify the connected components into textual components and 

graphical components. These filters take into consideration the size (number of pixels), 

the height and width, the height/width ratio and the black pixel density of each connected 
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component constructed. Thresholds that are obtained through training examples are used 

for classification purpose. In this way, the connected components are classified into three 

types: graphical component, textual component and noise. Textual components and 

graphical components are stored separately, as shown in Figure 4.1, to be processed by 

corresponding recognition units. Connected components that are treated as noise are 

discarded. 

 

4.2 Graphics Recognition 

 

In this work, graphics recognition is modeled as a bottom-up process that gradually 

constructs higher level graphical symbols using lower level entities. The most basic 

entities are the edge pixels. From the edge pixels, graphical primitives such as straight 

lines and curves are constructed through vectorization, which is a common approach for 

extracting graphical information from raster format inputs. The graphical primitives in 

vector form are useful for construction of higher level 2D and 3D shapes using geometric 

methods. The shapes are then used for more than one purpose: classification of the input 

image as well as the construction of chart components. Thus the classification of the input 

image is achieved right after all chart components are constructed, instead of being 

performed beforehand. In this work, we focus on the most important chart components: 

the coordinate lines and the data components. Each of the following sub-sections presents 

details in this bottom-up process.  

 

4.2.1 Edge Detection 
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An edge map is obtained for the graphical components. This is done by applying edge 

detection on the image storing graphical components. The Canny edge detector which is a 

commonly used edge detector is used here. As an input image may contain line drawings 

that should be preserved, an additional heuristic rule is applied before edge detection to 

skip such line drawings. The rule specifies the maximum expected line thickness. For 

each pixel, the number of consecutive pixels with the same intensity in the horizontal or 

vertical direction is calculated. If this number is smaller than the maximum expected line 

thickness, the pixel is skipped during edge detection. The edge map is passed to the 

vectorization step to extract straight lines and curves. An example is shown in Figure 4.2. 

 

(a) Original image (b) Edge map obtained 

Figure 4.2. Example of edge detection 

 

 

 

 

 

4.2.2 Vectorization 

Before graphical symbols are constructed, the task of vectorization is performed to group 

the edge pixels. Vectorization performs the raster-to-vector conversion and extracts 

graphical primitives such as straight lines and arcs. Examples of straight line 

vectorization include [24, 25, 27] and examples of arc vectorization include [25-28]. 

Noise in the input image and line junctions are the common obstacles to achieving 

satisfactory vectorization performance, while another major concern is the computational 
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complexity. Based on the nature of the approaches, methods in the literature can be 

divided into two categories: geometric based approaches and curve fitting. The former 

applies geometric constraints on pixel segments to construct vectors. The main drawback 

is that only straight lines or circular arcs are covered, as geometric constraints are hard to 

be specified for more complex graphical entities such as ellipse. Curve fitting is 

applicable to all kinds of curves that can be expressed in parametric form. However, the 

fitting requires a proper set of points and is fragile towards noise. Here we propose a 

novel vectorization method that combines the idea of the two approaches. The method is 

based on a data structure called Directional Single-Connected Chain (DSCC) and curve 

fitting. It constructs straight lines, circular arcs and elliptic arcs from the edge map.  

 

4.2.2.1 The Directional Single-Connected Chain 

The Directional Single-Connected Chain (DSCC) was originally proposed to extract 

frame lines in tables [29]. It is easy to construct and computationally efficient. A DSCC is 

composed by a set of short segments called run-lengths, and it can be horizontal or 

vertical. A horizontal (vertical) chain is formed by doing a linear regression of the middle 

points of its run-lengths, and satisfying the constraint that the line has a degree < ( ) π/4. 

A horizontal chain contains vertical run-lengths (Figure 4.3(b)) and a vertical chain 

contains horizontal run-lengths (Figure 4.3(c)).  

≥
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(c) 
 

Figure 4.3. Example of DSCC. (a): real lines; (b): vertical run-lengths in  the circled 
area in (a); horizontal chains: C1={R1,R2}; C2={R3,R4}; C3={R5,R6}; C4= {R7,R10,R12,R14}; 
C5={R8,R11,R13,R15}; C6= {R9} (c): horizontal run-lengths in the circled area in (a); vertical 
chains: C1={R1,R2,R3}; C2={R4}; C3={R5}; C4={R6}; C5={R7}; C6= {R8,R9}; C7={R10}; 
C8={R11,R15,R18}; C9= {R12,R16,R19}; C10={R13}; C11={R14,R17} 

 
 

A vertical run-length is defined as Ri (xi, ysi, yei) = {(x,y) | ∀p(x,y) = 1, x = xi, y ∈[ysi, 

yei] and p(xi, ysi-1) = p(xi, yei+1) = 0}, while p(x,y) is the location of a pixel in the image, 

1 is black pixel (foreground), 0 is white pixel (background). This run-length starts from 

(xi, ysi) and ends at (xi, yei). In a horizontal chain Ch, (Figure 4.3(b)) every run-length Ri is 

arranged in a horizontal sequence, and any two run-lengths Ri and Ri+1 are connected 

horizontally. Except for the run-lengths at both ends of the chain, Rl and Rr, any Ri has 
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one and only one run-length Rj connected on each side. For the left side of Rl and the right 

side of Rr, either there is no run-length or there are more than one run-lengths connected. 

The connection here refers to 8-neighbors connection. Also, the run-lengths in the same 

chain should have similar length within some range, which is set between half of the 

average length and twice of the average length. Otherwise, the chain is considered to be 

broken. The horizontal run-length is defined similarly as the vertical run-length described 

above. For a horizontal run-length Ri, Ri (yi, xsi, xei) = {(x,y) | ∀p(x,y) = 1, y = yi, x ∈[xsi, 

xei] and p(xsi-1, yi) = p(xei+1, yi) = 0}. This run-length starts from (xsi, yi) and ends at 

(xei, yi). Similarly, a vertical chain Cv is formed by horizontal run lengths (Figure 4.3(c)).  

 

 

 

 

 (a) Original Chart (b) Edge map of the chart ins and joints detected 

Figure 4.4. Example of processing a 3D pie chart 

(c) Cha

 

 

4.2.2.2 DSCC construction and post-processing 

DSCCs are constructed based on the above definitions. For vertical chains, the pixels in 

the image are scanned from top to bottom, while for horizontal chains, the scanning 

process is from left to right. An example is shown in Figure 4.4. Since the input image 

may be noisy, there are several post-processing steps performed to refine the resulting 

chains: 

• Filtering: the run-lengths with length 1 and no neighbors are treated as black dots and 

are removed. Run-lengths with length 1 and have only one neighbor are also removed. 
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Such run-lengths are treated as protrusions into actual line segments. Tiny chains with 

the number of run-lengths being one or two are also treated as noise and removed.  

• Smoothing: for vertical run-lengths, if two of them, Ri and Rj, are in the same column, 

i.e., xi = xj, and the blank area between them are less than 3 pixels, then they are 

combined to form a new run-length, Rk, where xk = xi, ysk = min(ysi, ysj), and yek = 

max(yei, yej). Similar process is carried out for horizontal run-lengths. With this step, 

the holes in the lines are filled. It also prevents broken line segments from appearing. 

An example of filtering and smoothing is shown in Figure 4.5.  

• Splitting: a DSCC may be a straight line, or a curve or even a polyline. To distinguish 

between a curve and a polyline, we need to record down the turning points along the 

DSCC. The idea is to use a divide-and-conquer strategy. The starting point and ending 

point of the DSCC is linked to form a virtual line L. A point p on the DSCC with the 

largest distance to L is treated as a turning point if the distance is greater than a 

predefined threshold. The turning point is stored and the same search process is then 

applied to the two sub-chains of the DSCC on the two sides of the point. In the end, a 

set of turning points {p1, p2, …, pn} is obtained.    

 

 
a. Chains before refinement 

Figure 4.5. Smoothing run-lengths 

b. Chains after refinement 
 

 

4.2.2.3 Ellipse-specific fitting theory using least square method 

A. Fitzgibbon et al. propose an ellipse-specific fitting [30]. This fitting method always 

constructs an ellipse from a given point set. In our case, the mid-points of the set of run-
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lengths stored with a DSCC are used as the point set for the method. By fitting the points 

to a hypothetical ellipse, and computing the ratio of the maximum radius versus the 

minimum radius, we are able to tell if a DSCC is a straight line, a circular arc or an 

elliptic arc. The main idea of their method is to represent an arc as a second order 

polynomial: 

  F(A; X) = A · X  = ax2 + bxy + cy2 + dx + ey + f = 0       (4.2) 

where A = [ a b c d e f ]T and X = [ x2 xy y2 x y 1]T. F(A; Xi) is called the “algebraic 

distance” of a point (xi, yi) to the conic F(A; X) = 0. Then the fitting of a general conic is 

done by minimizing the sum of squared algebraic distances: 

         (4.3) ∑
=

=
N

i
iA XAFAD

1

2);()(

of the curve to the N data points Xi. Enforcing quadratic constraint 4ac – b2 = 1 on the 

parameters helps to avoid the trivial solution to equation 4.3 and degenerate the problem 

to ellipse fitting. After a series of transformations, the minimization of equation 4.3 can 

be solved by solving a system of simultaneous equations: 

   SA = λCA                         (4.4) 

   ATCA = 1                      (4.5) 

where S is the scatter matrix DTD. D = [ x1 x2 … xn ]T  is called the design matrix and C 

is the matrix that expresses the constraint. λ is the Lagrange multiplier. For the complete 

derivation of the equations, please refer to [30]. 

After the solution vector A = [ a b c d e f ]T (i.e. all parameters) is obtained, an affine 

transformation is performed to transform the ellipse from general quadratic form to an 
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standard form: 
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xx                 (4.6)  

where the center is (x0, y0) with major radius max(a, b) and minor radius min(a, b). This 

is a basic operation in linear algebra. An example is shown in Figure 4.6(a). 

 

 

 

 

 

 
 

(a) An arc fitted on an ellipse (b) A straight line segment fitted on a very 
flat ellipse 

Figure 4.6. Example of ellipse fitting 

4.2.2.4 Extracting straight lines and circular arcs 

Because the curve fitting method always returns an elliptic arc (or a complete ellipse) 

from the given set of points, we still need to come up with rules to extract straight lines 

and circular arcs. The basis of the rules is the ratio of the maximum radius versus the 

minimum radius of the extracted elliptic arc.  

• Rule 1: if the ratio is greater than a predefined threshold value, then the original 

DSCC is treated as a straight line and the fitted elliptic arc is rejected. An example is 

shown in Figure 4.6(b). 

• Rule 2: if the ratio is close to 1 (with a small allowed error range), then the fitted arc 

is treated as circular arc instead of elliptic arc. 

As the DSCC may also be a polyline, one extra step is to calculate the least square 

error between the fitted arc and the original set of run-lengths stored with the DSCC. If 

the error is significant, then the DSCC is considered not an arc but a polyline. The turning 
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points obtained in the splitting step illustrated in section 4.2.2.2 are used as the turning 

points along the polyline.   

The last step is to combine straight lines and arcs that were originally broken. Firstly, 

we define a connected area. That is, if the starting or ending points of two chains have 

Euclidean distance less than a threshold value, they are considering in the same 

connected area. To combine two arcs, we define the following rules: 

1. The two arcs must be within the connected area. 

2. The two tangent lines of the staring or ending points of the two arcs should be angled 

less than 10 degrees. 

The first rule is straightforward. The second rule is implemented by computing the 

five continuous run-lengths counting from the starting or ending run-lengths and the 

linear regression on the midpoints of the five continuous run-lengths. The angle of the 

two lines is then computed. 

To combine two straight lines, we also define two similar rules as stated below. If a 

straight line is broken into several smaller segments with gaps in between, our method is 

able to re-join the segments to form the original line.  

1. The two lines must be within the connected area. 

2. The two lines should be angled less than 10 degrees. 

 

4.2.3 Coordinate Line Detection 

The first graphical symbol to be identified is the set of coordinate lines in a chart. 

Coordinate lines are very important because they provide both index information and 

scale information for plotting data. The existence of the coordinate lines also helps to 

SCIENTIFIC CHART IMAGE RECOGNITION AND INTERPRETATION                                      WEIHUA HUANG 



CHART IMAGE RECOGNITION  44

differentiate chart types. Some chart types such as bar chart or line chart have coordinate 

lines while others such as pie chart do not have coordinate lines. Both Yokokura et al. 

and Zhou et al. proposed methods to detect the coordinate lines [17-19].  

Yokokura’s method is based on the vertical and horizontal projection profiles of the 

chart image [17]. The left-most peak and the lowest peak in the vertical and horizontal 

projections are extracted and labeled as Y-axis and X-axis respectively. On the other 

hand, Zhou et al. use Hough transform to detect long vertical and horizontal lines and 

performs geometric constraint checking to specify the Y-axis and X-axis [19]. Zhou et 

al.’s method is more robust towards skew angles and is able to detect coordinate lines in 

3D charts. However, both previous methods cannot handle false positives like frames or 

border lines in input images, such as the one shown in Figure 4.7(b). This is because the 

methods only consider graphical information and completely ignore textual information, 

which is also a crucial part of the domain knowledge that we have to deal with. 

Our method is similar to Zhou et al.’s method reported in [19]. Straight lines are 

detected using the vectorization method introduced previously, instead of using Hough 

transform. The following geometric constraints are checked: 

• As the Y-axis is most likely placed at the left of a chart image, the preference of 

vertical lines descends from left to right.  

• As the X-axis is most likely placed at the bottom of a chart image, the preference of 

horizontal lines descends from bottom to top. 

• The two candidate coordinate lines must be perpendicular to each other, with a small 

angle tolerance of Tθ. 
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Furthermore, extra heuristics are applied to refine the detection of coordinate lines, 

taking into consideration of the domain knowledge.  

• For each pair of candidate lines, there should be small text blocks along the line. For 

the Y-axis candidate, the text blocks are checked on the left of the line. The text 

blocks found are sorted by vertical position of the bounding box of each text block. 

The distance between the center of the top-most text block and the center of the 

bottom-most text block is compared against the length of the Y-candidate and is 

stored as Coverage_Y. For the X-axis candidate, the text blocks are checked below 

the line. Similar checking and sorting is performed. The distance between the center 

of the left-most text block and the center of the right-most text block is compared 

against the length of the X-candidate and is stored as Coverage_X. Both Coverage_Y 

and Coverage_X must be higher than a threshold value, otherwise the candidate lines 

will not be selected as coordinate lines.    

• The area bounded by the candidate coordinate lines must contain most of the 

graphical objects. A bounding box is formed by the endpoints of the candidate lines. 

Then the center of each of the remaining graphical components is checked to see 

whether it is within the bounding box. The number of graphical components within 

the bounding box divided by the total number of graphical components is denoted as 

Total_coverage. Total_coverage must be higher than a threshold value for the two 

candidate lines to become coordinate lines. 
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(a) Coordinate lines detected (b) A false positive returned by existing 
methods 

Figure 4.7. Coordinate line detection and false positives.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Line1 Line2 

Arc1 

Pie 

Figure 4.9. Domain knowledge for pie chart 

Pie chart 

Wedge2 Wedge1

… Wedgen

(a) Chart level specification (b) Component level specification 

X Axis Y Axis

Bar1

… 

Barn

2D Bar chart 

Figure 4.8. Domain knowledge for 2D bar chart. 
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Figure 4.7(a) shows an example of the coordinate lines detected. Experiments on 

coordinate line detection will be discussed in section 4.4. 

 

4.2.4 Data Component Recognition 

To identify graphical symbols representing data for each chart type, domain 

knowledge is applied. There are two levels of domain knowledge. At the top level, the 

domain knowledge specifies the kind of graphical symbols that are expected to appear in 

each chart type. At the bottom level, the set of primitive graphical primitives and the 

constraints among them further determines how each graphical symbol is formed. 

Graphical form of the domain knowledge for 2D bar chart and pie chart are shown in 

Figure 4.8 and Figure 4.9 respectively.  

The domain knowledge can also be specified by a set of parsing rules, as shown 

below. 

• Bar chart:  

 BarChart = {x-axis, y-axis, BarSet}, where   

 BarSet = {Bar}, where number of elements ≥ 2  and  

 Bar = {l1, l2, l3 | l1 ┴ l3, l2 ┴ l3, l3 || x-axis, CE(l1,  l3), CE(l2, l3), EL(l1, x-axis), 

EL(l2, x-axis)} 

• Pie chart: 

 PieChart = {Wedge}, where number of elements ≥ 2  and 

 Wedge = {l1, l2, a1 | CE(l1, l2), EL(l1, a1), EL(l2, a1)}  

• Line chart: 
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 LineChart = {x-axis, y-axis, Polyline}, where 

 Polyline = {li | CE(li, li+1), for i = 1, …, n-1} where  n ≥ 2 

Here, li refers to a line and ai refers to an arc, where i = 1, 2, 3 … n. A set of binary 

constraints between two primitive graphical entities a and b are defined: 

• a || b: line a is parallel to line b. 

• a ┴ b: line a is perpendicular to b. 

• CE(a, b): shape a and b share one common endpoint. 

• EL(a, b): one end point of shape a lies on shape b. 

There are also global constraints for some chart models. For example, in a bar chart 

model, all bars must have similar width. The bars in the same data category are filled 

with the same color or texture. And in a pie chart, the summation of the angles from all 

wedges must be 2π. All the wedges have similar radius. These global constraints are hard 

to express using simple symbols thus they are not shown above. 

The actual graphical symbol construction process is done through extraction of all 

possible shapes or polylines specified in the domain knowledge of all chart models 

available. Based on the vectorized lines and arcs, a graph G(V, E) is formed where V is 

the set of intersection points among the lines and arcs, and E is the set of segments 

(straight line segment or arc segment) between intersection points. Considering all 

primitive graphical entities and their intersections, construction of graphic symbols is 

done using a constrained graph search on G. Both binary constraints and global 

constraints are checked during the search process. 

All constructed target graphical symbols, together with the coordinate lines detected 

in the previous section, are checked against every chart model available in the domain 
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knowledge to calculate the similarities between a given chart image and the known chart 

types. The similarity is calculated as below:  

                                                               (4.7)   = max(Similarity ∑ ∑
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where Wik is the weight of kth component in the chart model i,  Wjl is the weight of lth 

unexpected component in the image j, thus  ΣWik = 1 and ΣWjl = 1. Cijk is 1 if the kth chart 

component from model i exists in the image j, and it is 0 otherwise. Ojl indicates the 

existence of the lth component that is unexpected to appear in model i. The weights can be 

predefined or calculated based on a collecting of training samples. 

The chart type returning the highest similarity is deemed to be the type of the input 

infographic image. If all the similarity values are smaller than a cut-off value, then the 

given image is not treated as a chart. Thus formula 4.7 can also be used for differentiate 

charts from other types of figures. Once the chart type is determined, all relevant chart 

components are stored and passed to the interpretation process.  

 

4.2.5 Data Component Recognition and Chart Classification through Machine 

Learning 

The main drawback of the model based approach is that the domain knowledge is 

predefined and the types of chart that the system handles are also predefined. If a new 

type of chart is encountered, both the graphical symbols and constraints in the domain 

knowledge need to be manually expanded to handle the new chart type. This reduces the 

integrity and expandability of the system. Here we explore the use of machine learning 

techniques to achieve both data component recognition and chart classification. 

Traditional unsupervised or supervised learning methods require a class label to be 
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assigned to each feature vector. That is to say, the training examples are represented by 

(yi, xi1, xi2, …, xin) tuples, where i is the index of examples: i = 1, 2, 3, … and there are n 

features, each feature vector (xi1, xi2, …, xin) is tagged with the correct label yi.  If we 

adopt this representation, then we have two choices. The first choice is to perform 

classification of the chart types based on features extracted from the whole image. And 

the second choice is to extract features from components in the chart for classification 

purpose. The first choice is the same as previous works, where the features used for 

classification are global features that cannot be used for future stages. For the second 

choice, a crucial requirement is that the image can be properly decomposed into 

components. Fortunately charts are line drawings that can be decomposed. Thus now the 

problem becomes how to classify chart images that contain a variable number of 

components which are represented by feature vectors.  

The answer is to use multiple instance learning, or sometimes called semi-supervised 

learning. Please refer to Appendix A for detailed background information and 

formulations. The motivation is based on the observation that in a chart type, data always 

have a homogeneous representation and the representation is often shape-based graphical 

symbols. Furthermore, different chart types represent data using different shape (or 

combination of shapes). Based on the correlations among shapes, data representations and 

chart types, the chart classification problem can be modeled as a multiple-instance 

learning problem. The result of learning helps to answer two questions: which shape (or 

combination of shapes) represents data in a chart? How closely is a shape (or 

combination of shapes) correlated to the chart type? The answer to the first question can 

be used for further interpretation of the chart content and the answer to the second 
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question is for chart image classification.  

 

Figure 4.10. Example of shape construction from an input image. There 
are seven shapes in (b) labeled with numbers 

(a) The original image (b) Basic shapes obtained. 
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The preprocessing steps and vectorization step remain the same for the learning based 

approach. The major difference is that now we cannot assume the graphical symbols to be 

known beforehand. Thus all possible graphical symbols are enumerated in this case. 

Based on the vectorized lines and arcs, a graph G(V, E) is formed where V is the set of 

intersection points among the lines and arcs, and E is the set of segments (either straight 

line segment or arc segment) between intersection points. Shape construction is a process 

of finding the Minimum Cycle Basis (MCB) [86] on the graph G, and an efficient 

algorithm was proposed by Ferreira et al. [87]. However the original algorithm only finds 

polygons from a set of straight lines, thus some of the steps are modified to take care of 

arc segments. Figure 4.10 shows an example of graph constructed from a 3D pie chart, 

from which 7 shapes are constructed. Each number in the figure represents one shape. 

 Now a collection of shapes are obtained. The edges in a shape are classified into 

three types: (1) straight line, (2) circular arc or (3) elliptic arc. Although these three types 
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of edges are not sufficient for general shapes, they can cover all the edges extracted from 

the chart images we examined since shapes in chart images are relatively more regular. 

Four shape descriptors are used to form the feature vector for each shape constructed: 

number of edges ni for each edge type i; order o among the edges (represented as a 

sequence of edges); number of parallel edge pairs np; number of symmetric axes ns. Thus 

a feature vector can be represented as <n1, n2, n3, o, np, ns>. We choose these four shape 

descriptors because they are all invariant to translation, rotation and scaling, and a 

combination of them can uniquely define a shape class.  

To train a chart type A, a set of positive bags  and a set of negative 

bags  are provided by the user. Each bag is an image containing 

shapes. The first step is to find out the universal set of components (shapes) C = {C
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},...,2,1,{ mkBB k == −−

i, i = 

1, 2, …, l} where . Then the correlation factor CF(C−+ ∪= BBC i, A) between each Ci and 

a chart type A is derived from the conditional probability . Assuming that the 

training examples are conditionally independent given the chart type A, and by applying 

Bayes’ rule (assuming an uninformative prior over the shape C

),|( −+ BBCP i

i), we can get: 

),|( −+ BBCP i
1

11 )(/)|()|(
−+

=
−

=
+ ∏∏=

mnm
k iki

n
j ji CPBCPBCP           (4.8) 

where 

)),(exp(1)|( ++ −−= jji BCiNumBCP      (4.9)  

)),(exp()|( −− −= kki BCiNumBCP                             (4.10) 

As P(Ci) is independent of the training examples, we take it out from the expression in 

(4.8) to get: 

∏∏= =
−

=
+ m

k ki
n
j jii BCPBCPACCF 11 )|()|(),(          (4.11) 
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The derivation of formula (4.8) can be found in [83]. Both  and  

are exponential functions that depend on the number of shapes matching the component 

C

)|( +
ji BCP )|( −

ki BCP

i. calculates the number of shapes that match component C),( +
ji BCNum i in the positive 

example B+
j. As Num(Ci, B+

j) increases, P(Ci | B+
j) increases and is approaching 1. 

Num(Ci, ) calculates the number of shapes that match component C−
kB i in the negative 

example . As  increases, decreases and is approaching 0. Exact 

matching between feature vectors is required. 

−
kB ),( −

ki BCNum )|( −
ki BCP

For a new image that is also treated as a bag containing a number of components C’ 

= {Cg, g = 1, 2, …, h}, we calculate the similarity between C’ and type A as: 

            (4.12) ∑ =
=

h

g gg ACCFCCNumCASim
1

' ),(),()',(

where Num(Cg, C’) counts the number of occurrences of component Cg in the given 

image C’. If , then  is pre-computed during the training process, 

otherwise . Similarity between the new image and every existing chart type is 

calculated, and the chart type that results in the highest similarity value is deemed to be 

the type of the new image. It is also possible that the new image belongs to a new chart 

type that was not presented during the training process. Thus a manually set cut-off value 

can be set to judge whether the new images belongs to any of the existing types. 

CCg ∈ ),( ACCF g

0),( =ACCF g

 

Figure 4.11. A 3D bar chart 

 

 

 

 

SCIENTIFIC CHART IMAGE RECOGNITION AND INTERPRETATION                                      WEIHUA HUANG 



CHART IMAGE RECOGNITION  54

 

 In some cases, the data components in a chart are represented using more complex 

graphical symbols that are combinations of shapes. This happens very often for 3D chart 

types. Figure 4.11 shows an example of 3D bar chart in which the data components are 

represented as cuboids that consist of 1 rectangle and 2 parallelograms. Based on the 

observation of homogenous representation of data in charts, the shapes that form a data 

component should have a high degree of co-occurrence in the set of shapes recognized. 

Another heuristic is that the shapes forming a single symbol are not separated, which 

means they are neighbors of each other. Thus an extra step to detect a complex symbol 

(data component) is to identify those shapes that are neighbors of each other and have 

high degree of co-occurrence. Two shapes are neighbors if they share a common edge or 

part of an edge.  

 To find out the probability of a combination of shapes being a complex symbol, we 

can compute the degree of neighborhood DoN between two shape types T1 and T2. If the 

number of T1 shapes in a given image is N1 and the number of T2 shapes in the same 

image is N2, we can find out the number of T1-T2 neighboring pairs Nneighbor. Then DoN is 

calculated as: 

2/
21

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+=

N
N

N
N

DoN neighborneighbor              (4.13) 

Note that the value of DoN falls in interval [0, 1]. When none of the T1 shapes is 

neighbor of T2 shapes, Nneighbor becomes 0 and thus DoN becomes 0. In this situation, the 

two types of shape never appear together as neighbors. When all T1 shapes are neighbors 

of T2 shapes, and N1 = N2, DoN reaches its maximum value of 1. In this situation, the two 

types of shape always appear together as neighbor of each other. Thus we can see that the 
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higher the DoN is, the more possible that the two types of shapes form a complex symbol.    

 

4.3 Text Recognition 

 

To obtain textual information in a chart image, two steps are carried out. First of all, text 

components are grouped to form text blocks. Secondly, the electronic content of each text 

block is recognized using optical character recognition. Thus the output of text 

recognition consists of two types of information: zoning information for each text block 

and electronic content of each text block. 

 

4.3.1 Text Grouping 

Text components need to be grouped properly to form logical blocks. Each text block 

contains a sentence, an alphabetic phrase or a numerical string. The method proposed by 

Yuan et al. [31] is used to perform this task. The grouping function is defined as: 

                                                                                                  (4.14) 
21

21
21 )(

ks
f

+
=,

ss
s

ss

where s1 and s2 are the sizes of the two components and k is an adjustable parameter that 

is used to determine the grouping level. The size of a component is defined as the number 

of black pixels belonging to the component. If the calculated f is smaller than the distance 

between the two components, the components are considered belonging to the same text 

block. k is the only parameter to be manually specified here. A large k results in large text 

blocks while a small k results in more isolated blocks. In our case, the value of k is set to 

10. An example is given in Figure 4.12, where the text blocks formed are indicated by 

bounding boxes. 
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(a) Text components (b) Text blocks 

Figure 4.12. Example of text grouping 

 

 

 

 

 

 

An advantage of this method is that the calculation is based on characteristics of 

connected components, which are already obtained during the text/graphics separation 

step. This guarantees the efficiency of the method. Furthermore, the method is rotation 

invariant, as the size of the connected components and Euclidean distance between them 

are both rotational invariant. Even if the input image is skewed, or even rotated by a large 

degree, the method still returns the same result. On the other hand, the sparsely 

distributed text in charts and the possible existence of skew angle make it unsuitable to 

use the traditional methods mentioned in [89], including projection profile based methods, 

texture based methods, or other methods that assume existence of text lines. 

 

4.3.2 Optical Character Recognition 

 

Optical character recognition (OCR) is applied to each text block to recognize the 

electronic content. To achieve this, the OCR modules provided in the Scansoft Omnipage 

Capture SDK package are used. The OCR modules generally work well. However, the 
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error rate of the character recognition process heavily depends on the quality of the input 

image. Since the OCR accuracy is not the main focus of our work here, such errors are 

manually corrected.  

 

4.4 Experiments and Discussions 

 

4.4.1 Test Data Set 

200 chart images were collected to form a dataset for training and testing the graphics 

recognition module in the system. Most of the images are scanned black-and-white 

images, while the rest are color images downloaded from the web. Out of these 200 

imaged infographics, there are 80 2D bar charts, 60 2D line charts, and 60 pie charts that 

are 2D or 3D. Beside the images, multi-leveled ground truth information is also available 

for performance evaluation, including vector level information of straight lines, circular 

and elliptic arcs as well as semantic level information such as graphical symbols and text 

blocks etc. The extraction of such ground truth information will be presented in Chapter 7. 

 

4.4.2 Experiment for Vectorization 

The DSCC-based vectorization function was applied to the images in the dataset to 

extract straight line segments, circular arcs and elliptic arcs from them. For straight line 

segments, the attributes stored are the starting point, the ending point and the thickness of 

the line. For circular arcs, the attributes stored are the starting point, the ending point, the 

center point, the radius of the circle and the thickness of the arc. For elliptic arcs, the 

attributes stored are the starting point, the ending point, the center of the ellipse, the 
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maximum and minimum radii of the ellipse and the thickness of the arc.  

 
Table 4.1. Performance of vectorization 

Category Correct 
% 

Broken 
% 

Incorrect 
% 

Straight 
line 84.72 6.94 8.34 Bar chart 
Arc - - - 

Straight 
line 83.45 15.11 1.44 Pie chart 
Arc 82 13.72 4.28 

Straight 
line 93.06 3.57 3.37 Line 

chart Arc - - - 
 

To evaluate the vector information obtained, we compare the extracted vectors with 

the vectors provided in the ground truth data. For comparison purpose, the overlapping 

segment s is calculated between an extracted vector vd and the corresponding vector in 

the ground truth vg [16]. Coverage(s, vi) is calculated as the length of s divided by the 

length of vi, where vi is either vd or vg. If both Coverage(s, vd) and Coverage(s, vg) are ≥ 

90%, then the extracted vector is deemed correct. If Coverage(s, vd) is greater than 90% 

but Coverage(s, vg) is not, then vd is treated as a broken subpart of vg. If both Coverage(s, 

vd) and Coverage(s, vg) are below 90%, then vd is considered to be incorrect. The results 

are summarized in Table 4.1. 

From the table, we can see that the DSCC based vectorization works reasonably well. 

The relatively higher percentage of wrong segments for bar chart type is due to the 

existence of some scanned bar chart images that are noisier than others. For pie charts, 

more broken vectors occur due to the fact that arcs are more prone to being broken into 

small pieces than straight lines during DSCC construction. To reduce the number of 

broken vectors, more lenient rules for combination can be specified. 
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4.4.3 Experiment for Coordinate Line Detection 

To evaluate the performance of our coordinate line detection method, we adopt the same 

metrics used by Zhou et al. [3]. Precision is defined as the proportion of detected axes 

that is actually correct. Recall measures the proportion of correctly detected axes over 

existing axes in the chart images. For comparison purpose, the same set of testing data in 

[3] was used. As all the images in the original dataset have coordinate lines, 100 more 

images that are pie charts and other types of line drawings that do not have coordinate 

lines were added to measure the methods’ ability to handle false positives. 34 of the new 

images have rectangular frames. The newest version of Zhou’s of method stated in [3] 

and our own method were both applied to the testing images. Then precision and recall 

were calculated respectively. Table 4.2 summarized the precision and recall of our 

method (denoted as “proposed”) and Zhou’s method (denoted as “Zhou”).  

 

Table 4.2. Testing results of coordinate line detection methods 

Detected axes Correct axes Precision (%) Recall (%)    Category 

 

Method 
X-axis Y-axis X-axis Y-axis X-axis Y-axis X-axis Y-axis 

Zhou 496 501 462 467 93.14 93.21 93.71 94.73 

Proposed 478 478 473 469 98.95 98.12 95.95 95.13 

 

From the table, we can see that the recall of our method is slightly better than that of 

Zhou’s method. This is because both methods perform similar geometric analysis on 

straight lines in the images. The difference is that Zhou et al. used Hough transform to 
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obtain line information while we use vectorization to get lines in vector format. The 

DSCC based vectorization method is able to join line segments with small gaps in 

between, while Zhou’s method does not perform this task. The precision of our method is 

about 5% higher than that of Zhou’s method. This is expected because the 34 new images 

added to the testing data cause more false positives for Zhou’s method. On the other hand, 

our method perfectly avoids such false positives by taking into consideration of text 

blocks during candidate selection.  

 

Figure 4.13. Example of broken axis lines 

 

 

 

 

 

 

 

 

 

 

There are still some erroneous results given by our method. There are two causes. Firstly, 

some coordinate lines are not properly labeled. There are a few coordinate lines without 

any text label. This violates the design principles summarized in Chapter 3. Secondly, the 

quality of some chart images is very poor, causing a coordinate line broken into small line 

segments with very large gaps in between. The vectorization method fails to detect the 
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complete line. This is a case of error propagation. One example is shown in Figure 4.13. 

It is noted that other straight line detection methods such as the Hough Transform also 

have problem dealing with broken lines.  

 

4.4.4 Experiment for Chart Type Recognition 

The performance of chart type recognition was evaluated by the result of the model 

matching. During model matching, all graphical symbols constructed were compared 

against those in the domain knowledge for each chart type and the similarity between the 

given image and every known chart type was calculated. The chart type returning the 

highest similarity value was deemed to be the type of the given image. Each of the 200 

chart images was processed by the system and was assigned a type. The number of 

images whose type was correctly recognized is shown in Table 4.3.  Most of the errors are 

due to the failure to recognize certain graphical symbols (such as the coordinate lines) or 

the failure to satisfy certain global constraints (such as the summation of angles equals to 

2π).  

Table 4.3. Performance of chart type recognition 
 

Chart type Number of 
images 

Correctly 
Recognized Accuracy (%) 

2D bar 80 75 93.75 
2D pie 48 44 89.58 
3D pie 12 10 83.33 
Line 60 51 85.00 

Overall 200 180 90.00 

 

 

 

 

From the table, we can see that the accuracy of chart type recognition is correlated to 

the regularity of each chart type. The method works the best for 2D bar charts because 

such charts only contain straight lines and data components are regular rectangles. On the 
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other hand, the recognition accuracy of 3D pie chart is lower than that of the 2D pie 

charts in the table, due to the fact that circular arcs are more accurately constructed than 

elliptic arcs because the former are symmetric and requires fewer parameters to specify 

while the latter are non-symmetric and requires more parameters to specify. The accuracy 

of line chart type recognition is lower than that of the 2D bar charts and 2D pie charts. 

This is because line charts do not have unique data components. The existence of grid 

lines sometimes fools the system to mistakenly treat a line chart as a bar chart, such as the 

one in Figure 4.14. 

 

Figure 4.14. Example of a line chart mistakenly treated as bar chart 
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Figure 4.15. Sample 2D bar chart with skew angle 

 

 

 

 

 

 

 

 

 

 

 

Some of the chart images are skewed with significant angle, such as the example 

shown in Figure 4.15. As the graphical symbol construction and the text grouping 

methods are all rotation invariant, the existence of skew angle does not affect the 

recognition of axis lines, data components and text blocks. Thus the type of the chart can 

still be correctly recognized. The boxes in Figure 4.15 represents text blocks formed. 

 

4.4.5 Experiment for Data Component Recognition 

The performance of data component recognition is also measured. The ground truth data 

for the 200 testing images specifies the number of bars for bar charts and the number of 

wedges for 2D pie charts and 3D pie charts. For each chart image in the dataset, data 

components were constructed from the vectorized lines and arcs after coordinate line 
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detection, regardless of the chart type which was still unknown during graphical symbol 

construction. After all the images are processed, the total number of data components for 

each kind was calculated. The performance metrics are recall and precision. Precision is 

the number of correctly detected data components divided by the total number of data 

components detected. Recall is the number of correctly detected data components divided 

by the number of data components in the ground truth. The results are summarized in 

Table 4.4. 

Table 4.4 Performance of data component recognition 

 In the ground 
truth 

Detected Correctly 
detected 

Precision 
(%) 

Recall 
(%) 

Bars 1719 1521 1512 99.41 87.96 
2D Wedges 351 328 322 98.17 91.74 
3D wedges 50 41 41 95.56 82.0 

 
 

A common cause of missing data components is due to the poor image quality, which 

affects the results of vectorization as well. If a straight line or an arc is broken into more 

than one segment with large gap in between, then the data component this line or arc 

belongs to cannot be properly constructed. This is again a side effect of error propagation. 

Besides this, many missing bars are due to occlusion. This happens when a bar chart 

contains more than one data series and the bars in one data series is occluded by the bars 

in another data series. Such occlusion violates the constraints used for bar construction. 

An example is shown in Figure 4.16. Recognition of occluded graphical symbol presents 

a challenging problem. One possible solution is to generate hypotheses based on the 

portion of the graphical symbol that is visible with a probability that it matches some 

defined symbols in the domain knowledge. 
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Figure 4.16. Sample 2D bar chart with bar occlusion  

Another cause of missing bars is the failure of coordinate line detection. Some false 

positives of bars occur in line charts where grid lines are wrongly treated as bars with the 

same height. In some extreme cases, the arc of a wedge is so short that it is recognized as 

a straight line segment by the program. This happens for both 2D and 3D wedges. False 

positives of 2D wedges are the 3D wedges whose two straight sides have similar length 

and the major and minor radii are similar as well. Such wedges also lower the recall of 

3D wedge recognition.    

 

 

 

 

 

 

 

Figure 4.17. Sample pie chart with very small percentage  

There are extreme cases where the percentage of a category is very small. In this case, 

the corresponding wedge in the pie is so narrow that it is hardly recognizable. For 
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example, category “Emergency” in Figure 4.17 only has 0.2% and the appearance of the 

wedge in the pie is actually two straight lines touching each other, to form a straight line 

that is thicker than others. The system fails to detect the wedge in this extreme case.  

 

4.4.6. Experiment for Learning Based Data Component Recognition and Chart 

Classification 

To test the ability of the system to handle new types of chart, 10 doughnut chart images 

were added into the dataset. The experiment was carried out in 20 test runs. During each 

test run, a number of images were randomly chosen from each chart type to form the set 

of training images Itrain and the remaining images became the testing images Itest. During 

training process, one chart type was learnt at a time and the CF values were stored. 

During matching, formula (4.12) was applied and the chart type returning the highest 

similarity value was assign to the testing image. Due to the space limit, only the average 

accuracy of chart classification for the 20 runs is presented in Table 4.5. In each test run, 

the accuracy is calculated as the percentage of testing images that were correctly 

classified.  

 

Table 4.5. Summary of classification results 

No. of Itrain per 
run Type No. of Itest 

per run 
Average 

Accuracy (%)
2D bar 77 88.81 
2D pie 45 89.33 
3D pie 9 91.11 
Line 57 14.04 

3 

Doughnut 7 100 
2D bar 75 95.00 
2D pie 43 89.19 
3D pie 7 95.71 
Line 55 3.91 

5 

Doughnut 5 100 
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From Table 4.5, we can see that the accuracy of chart image classification is 

reasonably good for all chart types except line chart. This is because of the assumption 

we made in the introduction section that data are represented using shapes, which is not 

true for line chart where data are actually represented using x-y plots. Although some 

shapes appear occasionally, none of them is closely correlated to the type. The correlation 

factor of most shapes for line chart is zero, and as a result, the similarity value calculated 

is also zero, causing the system to fail to recognize the correct type for line chart images. 

When all the similarity values are too low for an input image, the type of the image will 

be “unidentified”. 

During the training process, the system also identified the shapes with the highest CF 

value. These shapes are the best candidates to be the representation of data component for 

each chart type, and they are summarized in Table 4.6. The first three values in the feature 

vector show the number of edges for each edge type. For example, a data component in 

2D bar chart has 4 straight line edges, 0 circular arc edges and 0 elliptic arc edges; while 

a data component in 2D pie chart has 2 straight line edges and 1 circular arc edge. The 

fourth value in the feature vector is a sequence among edges reflecting how the edges are 

ordered (denoting a straight line as 1, a circular arc as 2 and an elliptic arc as 3). Rotation 

is taken care of here, thus the order 131 is the same as 311. The last two values in the 

feature vector show the number of parallel edges and number of symmetric axes. 
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Table 4.6. Data component identified for chart types 
Chart type Feature vector Sample shape

2D bar <4,0,0, 1111, 2, 2>
 

2D pie <2,1,0, 121, 0, 1>
 

3D pie <2,0,1, 131, 0, 0>
 

Doughnut <2,2,0, 1212, 1, 1>
 

 

Another output of the system is the degree of neighborhood among shapes, calculated 

by formula (4.13). One restriction is that the shapes to be considered must have non-zero 

CF value, meaning that they must appear in all positive examples. With this restriction, 

we only found one combination of shapes whose DoN > 0 for all test runs: <2,0,1, 131, 0, 

0> and <2,0,2, 1331, 2, 0>. This is a typical combination of shapes in 3D pie charts, such 

as shape no.1 and no. 5, or shape no. 3 and no. 7 in Figure 4.10(b). For the 2D charts, no 

common combination of shapes was found. This is expected, since data are represented 

using single shape in these 2D charts. 
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Chapter 5 

Chart Interpretation 

 

Through a perceptual test, Zhou et al. claimed that graphical information and textual 

information can be processed comparatively independently at the intermediate vision 

level, which focuses on chart recognition [3]. However, textual information and graphical 

information are both essential for capturing higher level information. With either one 

missing, the interpretation of a chart is not achievable. 

 

 

Figure 5.1. A perceptual test on a chart conducted by Zhou et al. (a) A testing 
chart image. (b) An image without the stage area of the testing image. All the ten 
subjects can categorize image (b) as a chart without the knowledge of image (a) 
within 2 seconds. (Reproduced from [3]) 
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Let us illustrate the issue by looking at the example given by Zhou et al. in Figure 5.1. 

Although by removing the graphical part of the bar chart in Figure 5.1(a), all subjects can 

still correctly categorize Figure 5.1(b) as a chart, it is impossible for subjects to reveal the 

semantic information in the chart. The textual part only presents a sequence of 

percentages, a sequence of labels and two legends. On the other hand, the graphical part 

only contains a horizontal line at the bottom, a vertical line on the left, and a sequence of 

rectangles attached to the horizontal line. What would the scale of each axis be? What is 

the label of each bar? What is the value represented by each bar? The answers to these 

questions all remain unknown until the textual and graphical information contained in the 

images are connected with each other.  

Text components are grouped into blocks and then are recognized making the use of 

OCR. On the other hand, the graphical components are segmented and form high level 

symbols, as illustrated in the previous chapter. The association of text and graphics 

examines both structural and semantic correspondence between these two types of 

information and it allows us to capture the semantic meaning carried by chart images in a 

more complete way. The combined information is then used to perform chart image 

interpretation. The result is saved in both XML format and plain text format, to be used 

by different applications later. 

 

5.1 Text/Graphics Association 

 

As Tombre et al. already pointed out, associating textual information with graphics is an 

important step in the semantic labeling of graphics [32]. However in the past, although 
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research activities on both graphics recognition and text recognition were continuously 

growing, very few of them actually did attempt to associate the two kinds of information 

together. Kasturi et al. developed a system to interpret various components in a line 

drawing, including text strings [33]. However the text components were not recognized. 

Joseph and Pridmore presented an experimental system for mechanical engineering 

drawing interpretation [34]. Like Kasturi’s, the system had no provision for the text 

recognition. Lamiroy et al. have conducted experiments to analyze the role of the text 

components in cutaway diagrams [35, 36]. The result reported was limited to identifying 

the relationship among drawings, their indices and the legends. Furthermore, in their 

work the graphics layer is completely discarded so the text and graphics association was 

still in preliminary stage. Thus our work is undoubtedly a novel attempt in the document 

image analysis research area. 

It is worth to note that there are works on auto-annotation, which also involves 

associating text with images, such as [37-39]. The text used either comes from the text 

accompanying the image [40, 41], or are automatically assigned after image 

categorization. In the auto-annotation works, text can be used to describe the 

characteristic of an object (unary constraint), or the spatial relationship among objects or 

parts of an object (binary constraint), or even the whole picture. It is also possible to use 

the text contained in the image directly, such as text in video frames but this requires text 

segmentation and OCR process to obtain the textual information [42-45]. Text/graphics 

association for chart image recognition is similar to text/graphics association for auto-

annotation in the sense that both works involve finding the correspondence between 

textual information and image information. In auto-annotation work, the image 
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information can be feature information from the whole image, region information or 

object information. In our case, image information mainly refers to graphical symbols 

constructed. The two works are different from each other from the following aspects: 

 In most auto-annotation works, the electronic text that is machine readable is required. 

In our case, however, text is presented as a part of the image, i.e. it is in the raster 

format. Text blocks need to be extracted and recognized before being associated with 

graphics. 

 In document image analysis task, besides the actual content of the text, the role of the 

text is also important because it allows the system to provide syntactic information of 

the document. This also applies to chart recognition. In chart recognition, the logical 

role of each text block needs to be determined further. This is, however, untouched in 

auto-annotation works because the role of the text is indexing and is describing the 

image after the association task. 

 In auto-annotation works, after being associated together, textual information is used 

for indexing and retrieval. In our case, the textual information is further used to get the 

semantic information of the chart image, such as calculation of the data values etc.  

The differences discussed above are summarized in Table 5.1. 

 
Table 5.1. Differences between auto-annotation and chart recognition 

 
 Auto-annotation Chart recognition 

Source of text Mainly outside image Inside image 
Format of text Electronic Image 

OCR May be needed Necessary 
Logical role of text Not required Required 

Further manipulation of text Maybe Yes 
 

5.1.1 Problem Formulation 
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The task of associating text blocks with graphical symbols is modeled as a problem of 

classifying text blocks into different roles in a given chart. In other words, we need to 

find out which text block corresponds to which graphical symbol and what kind of role 

does the text block play in the chart. After going through a collection of charts, we have 

identified 11 text roles in charts in total, which are summarized in Table 5.2. As one can 

see from the table, most text blocks are attached with certain graphical symbols, such as 

the x-axis label etc., while some text blocks play a global role, such as the title of the 

whole chart etc.  

Table 5.2. Major roles of text in charts 
 

Block label Role in charts Type of role 
CTTL Title of the chart Descriptive 
XTTL Title of x-axis Descriptive 
XLAB Label along x-axis Implicative 
XUNT Unit of x-axis Implicative 
YTTL Title of y-axis Descriptive 
YLAB Label along y-axis Implicative 
YUNT Unit of y-axis Implicative 
DVAL Data value Descriptive 
DLAB Data label Descriptive 
LGND Legend name Descriptive 
OTHR Other description Descriptive 

 
 

Furthermore, the 11 roles of text are the delineated into two major types, as shown in 

the last column in Table 1. First of all, a text block can be used to describe a graphical 

symbol or the whole chart. Such text blocks are called descriptive blocks. An example is 

the data label DLAB, which describes each data entry plotted in the chart. On the other 

hand, some text blocks do not provide any description. Rather, they join with the 

graphical symbols to imply information that is not directly presented. Such text blocks 

are called implicative blocks. One example is the labels along y-axis YLAB, which 
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normally are numbers. The numbers themselves do not carry semantic meaning, but are 

used to specify the range of data values.  

 

5.1.2 The Proposed Solution 

The existing approaches to assign labels to text blocks are mostly based on locational 

features [3, 88]. The location based rules assumes that certain type of text is always 

placed in certain location in a chart respectively. For example, the labels along x-axis are 

always below the x-axis line. However the assumption is quite fragile. First of all, the 

way text is placed in a chart can be customized. For example, the legends can appear 

within the plot area or outside the plot area. Secondly, some chart types do not have 

strictly structured layout. For example, a pie chart can have a number of wedges and the 

labels for the wedges are placed around them. It is infeasible to say that data labels must 

appear in certain location in this case. Thus rule based approaches are unsuitable, unless 

all situations can be exhaustively enumerated. 

A better alternative is to train the system to learning how to assign labels to text block 

automatically. In this way, the rules can be obtained through training with realistic 

examples. Even if the rules do not cover some incoming new cases, the system can still 

be re-trained to update the rules automatically.  

Based on the information about the text blocks and graphical symbols, five features 

are defined for training the association rules. Three of these features capture explicit 

locational relationship between text blocks and graphical symbols, one feature makes use 

of the implicit characteristics of a text block itself, and the last one represents the global 

positional information. We hypothesize that the text block and graphical symbol to be 
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associated together are nearest neighbor of each other. This hypothesis is based on the 

argument raised by Larkin and Simon [46] stating that information in diagrammatic 

representation is organized by location. This hypothesis can significantly reduce the 

amount of information to be processed by the classifier since only the nearest symbol is 

examined. The details of the features are as below.  

• Distance between a text block and the nearest graphical symbol. The value of this 

feature is real. The distance between a text block Ti and a graphical symbol Gj is 

defined as: 

                                                                                                     (5.1) 
jki EDD

where Eil is one of the four edges of the bounding box of Ti, and Ejk is one of the edges 

of graphical symbol Gj. Every graphical symbol Gj can be treated as a composition of 

edges. Function D(Eil, Ejk) is a basic geometric function that calculates the shortest 

distance between two edges. There is a special case where the text box is inside the 

graphical symbol (a 2D shape in this case), and the distance is set to zero. This is 

detected by checking whether the center of bounding box is inside Gj. By calculating 

the distance between a text block and all existing graphical symbols, the symbol that is 

nearest to the text block is identified. Only the distance between the text block to the 

nearest graphical symbol is stored. 

If we directly use absolute distance as the value of this feature, then it may be affected 

by the size of the image because larger images tend to result in longer distances. To 

remove this effect, we normalize the coordinates of every point P(x, y) by dividing x by 

image width W and dividing y by image height H. After normalization, both x and y 

falls into the interval [0, 1), and the distance calculated is independent of the image size. 

jjkiililj GETEEGT ∀= ),,min), ∈ ,(( ∀ ∈
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• Type of the graphical symbol that is nearest to a given text block. This feature is 

nominal. Although the set of graphical symbols depends on the type of charts, there are 

some commonly used symbols. These symbols form the universal set of graphical 

symbols and each element in the set is given a label.  For example, graphical symbols 

may be labeled as “X-AXIS”, “Y-AXIS”, “BAR”, “WEDGE” etc. The value of this 

feature is actually determined together with the first feature. Sometimes a text box is 

inside a graphical symbol, then that symbol is treated as the nearest to the text box. 

• Relative position between a text block and a graphical symbol. This feature is 

nominal. If we use the center C of a graphical symbol as the reference point, the angle 

between the center of the text bounding box and the center of the symbol can be any 

value from [0, 2π). In our work, we quantize the angles into 8 intervals. Then the 

relative position between a text box and a graphical symbol can be represented as one 

of the 8 labels (T = top, B = bottom, L = left, R = right, TL = top-left, TR = top-right, 

BL = bottom-left, BR = bottom-right). Again this feature is only calculated between the 

text block and its nearest neighbor. If the text box is inside the graphical symbol, then 

the relative position is NIL. 

• String checks. We also use a string parser to check if a given text string can be 

interpreted as an integer or a floating point number. The purpose is to find out whether 

the text indeed directly represents values. The parser is written as a Boolean function 

isNumber() which returns true when the text string can be parsed to integer or floating 

point number, and false otherwise. This feature is calculated implicitly for any given 

text block. 

• Centricity of a text block. This feature is calculated to measure how close a text block 
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is to a bisector of the whole image. It is a global feature and its value is real. The value 

is normalized onto the interval [0, 1], where 0 means the text block lies on the bisector 

and 1 means the text block is farthest from the bisector. The calculations are performed 

for both the horizontal and vertical bisectors, so there are actually two values. These 

two values are further stored separately in the format of a feature vector. This feature is 

useful to classify text blocks with global roles, such as chart title etc.   

The next step is to use a machine learning algorithm to learn a set of association rules 

based upon the training examples. A set of training images are collected from the internet 

or scanned documents. Text blocks were extracted from these images and were manually 

assigned a block label. Every labeled text block forms a training example. The feature 

vector contains value of the five features defined and the correct class that the text block 

belongs to, for example <0.047420, Y_AXIS, L, true, 0.23, 0.78, YLAB>. The learning 

algorithm used by our system is C4.5 [47], a decision tree learner used in many machine 

learning tasks. C4.5 is the extension of the ID3 algorithm and it allows continuous 

attributes such as the distance feature used in our work.  

During actual classification, the same set of features is calculated from the text blocks 

extracted from testing images. The trained classification rules are then applied to assign 

the corresponding label to each text block. Figure 5.2 shows an example of association 

results. As the association is a two-way process, the content of a text block is also 

attached to the corresponding graphical symbol, for future interpretation purpose. 
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Figure 5.2. Example of text/graphics association 

 

 

 

 

 

 

 

5.2 Extraction of Tabular Data 

 

To achieve some high-level understanding, the textual and graphical information are 

combined together to further imply information that is not directly presented. One such 

information is the data values, as chart is a visualization tool to present tabular data. The 

core information of the tabular data consists of data label plus data value. After 

associating text with graphics, the system further performs interpretation to obtain both 

the data label and the data value. There are two rules for finding the data labels. 

Rule 1: If the data label directly appears as a DLAB text block in the chart, then it is 

directly associated with the corresponding graphical symbol representing the data 

component using our method.  

Rule 2: If no text block is classified as data label, then labels attached to the axis are 

aligned with data components in the x-y axis area to assign the data label. The 

alignment rule is based on the relative position between axis labels and data 

components. 
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To obtain the value for each data entry, similar rules are applied: 

Rule 1: If the data value appears as a DVAL text block, then it is directly associated with 

a data component using our method and the value is immediately available. 

Rule 2: If no text block is classified as its data value, then the value needs to be 

calculated. The calculation depends on the domain knowledge of each chart type 

about which attribute of a data component should be looked at. For example, in bar 

charts we look at the height of each bar shape but in pie charts we look at the angle 

of each wedge instead. Without the domain knowledge, the calculation cannot be 

carried out. The type of the value (integer or float) calculated should agree with the 

type of the axis label, if there is any. 

Note that the calculation in Rule 2 is based on the assumption that the scale of the 

axis line is linear. However for some data plots, non-linear scale has been applied to the 

axes. In this case, direct calculation of data value based on the scale labels and visual 

attribute returns incorrect result. This case cannot be handled in the current version of the 

system, and it is worth to explore further in the future. 

 

5.3 The Generation of Chart Description 

 

Following the interpretation step, descriptions of the chart are generated. To facilitate 

other applications that may require different representations of information, the system 

generates two different types of description: an XML format description and a natural 

language description.  
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Figure 5.3. Sample illustrations of XML description generation 

<?xml version="1.0"?><!--Chart_description.xml--> 
<?xml-stylesheet type="text/xsl" href="Chart.xsl"?> 
<!DOCTYPE Chart [ 
<!ELEMENT chart (type, title, x_axis, y_axis, data_set )>  
<!ELEMENT type ( #PCDATA ) > 
<!ELEMENT title ( #PCDATA ) >  
<!ELEMENT x_axis (axis_title, labels, unit)>  
<!ELEMENT y_axis (axis_title, labels, unit)>  
<!ELEMENT x_axis_title ( #PCDATA )>       
<!ELEMENT y_axis_title ( #PCDATA )>       
<!ELEMENT labels ( label+ )>        
<!ELEMENT label ( #PCDATA )>  
<!ELEMENT unit ( #PCDATA )>          
<!ELEMENT data_set ( data+ )>                
<!ELEMENT data (label, value )>      
<!ELEMENT value ( #PCDATA )>  ]> 
<chart> 
<type>2D Bar Chart</type> 
<title>Free-swimming males</title> 
<x_axis><axis_title>Time of day</axis_title> 
<labels><label>5</label> 
                …… 
              <label>1930</label></labels></x_axis> 
<y_axis><axis_title>Rate of foraging</axis_title> 
<labels><label>0</label> 
                …… 
               <label>8</label></labels></y_axis> 
<data_set> 
<data><label>5 to 7</label><value>2.32</value></data> 
<data><label>7 to 9</label><value>8.36</value></data>                 
                 ……   
<data><label>17 to 1930</label><value>3.86</value></data>               
</data_set></chart> 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

5.3.1 The Generation of XML Description 

The XML format description is used to represent the information contained in the given 

chart image in a tabular form. The hierarchical XML format is defined as follows. 

At the top level, the tag <chart> is used. It contains the following parts: 

• <type>: the type of the chart.  

• <title>: the title of the chart if it exists.  
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• <x_axis> and <y_axis>: the existence of x-y axes depends on the type of the chart. If 

they do exist, <axis_title> shows title of each axis. <labels> contains a set of <label> 

attached to each axis. <unit> specifies the unit used by each axis. 

• <data_set>, the tabular data obtained from the chart image. Each data entry has a 

<label> and a <value>. 

Figure 5.3 shows part of the XML format description generated for a 2D bar chart 

image. The XML description presents the chart information in a tabular form, which 

makes it convenient for some applications such as the query processing and the re-

construction of the chart etc.  Note that the DTD part of the XML file is independent of 

the chart types, thus some fields that are invalid for some chart types have been given a 

value of “NIL” during generation. 

 

5.3.2 The Generation of Natural Language Description 

Some applications, on the other hand, works the best on text in its natural language 

format. An example is the question answering that is continuously being explored in the 

information retrieval (IR) and information extraction (IE) research community. To be able 

to apply existing question answering techniques, it is required that the result of chart 

interpretation should be presented in a natural language form as well. In other words, the 

description should consist of a set of natural language (NL) sentences. To do so, a set of 

templates is defined. The templates are type independent, and they cover all the 

components in the original chart. Figure 5.4(a) lists some of the templates defined. The 

detailed labels and values used to fill in the templates are obtained through the 

text/graphics association process and the interpretation process. After all the sentences are 
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generated, they are combined to form a single paragraph, such as the one in Figure 5.4(b).  

 
• Figure <f_no> contains a <c_type> chart with the title 

<c_title>.  
• The data contained are <x_title> versus <y_title>.  
• Data entry <d_label> has a value of <d_value> <y_unit>. 

(a) Sample templates for NL sentence generation 

Figure 1 contains a line chart with no title. The title of the x-axis is 
year. Data entry 1982 has a value of 1080 fatalities. Data entry 
1983 has a value of 1156 fatalities. Data entry 1984 has a value of 
1250 fatalities. Data entry 1985 has a value of 1181 fatalities. Data 
entry 1986 has a value of 1163 fatalities. Data entry 1987 has a 
value of 1393 fatalities. Data 1988 has value of 1590 fatalities. 

(b) Sample NL sentences generation for the same chart 

Figure 5.4. Illustrations of NL description generation 

 

 

 

 

 

 

 

 

5.4 Experiments and Discussions 

 

The same set of 200 chart images used in the experiments in Chapter 4 has been used to 

test the performance of chart interpretation module. As the evaluation of the output of the 

description generation part is very subjective, quantitative performance evaluation was 

only carried out for the text/graphics association step. 

 

5.4.1 Experiment for Text/graphics Association 

To evaluate the performance of the text/graphics association module in the system, all the 

text blocks in the chart images in the dataset were manually assigned the correct block 

label beforehand. Such assignment was included in the ground truth data. There are 1222 
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text blocks in the bar charts, 789 text blocks in the line charts and 246 text blocks in the 

pie charts. All images were passed to the system for extracting text blocks and graphical 

symbols automatically. Then a feature vector was calculated for each text block identified 

by the system and used for training and testing. 10-fold cross validation was used to 

measure the accuracy of the classifier trained by the C4.5 decision tree learner. The 

precision and recall of each of the 11 text block classes for each chart type has been 

shown in Table 5.3. “Precision” is defined as the number of text blocks correctly assigned 

a label divided by the total number of text blocks as assigned the same label. On the other 

hand, “recall” is defined as the number of text blocks correctly assigned a label divided 

by the number of text blocks having the same label in the ground truth.  

Table 5.3. Text block classification results 

 Bar chart Pie chart Line chart 

Block label Precision 
(%) Recall (%) Precision 

(%) 
Recall 

(%) 
Precision 

(%) 
Recall 

(%) 
CTTL 53.6 93.8 100 83.33 70 87.5 
XTTL 65.2 78.9 - - 84.2 84.2 
XLAB 96.4 98.3 - - 91.1 95.9 
XUNT - - - - - - 
YTTL 61.5 72.7 - - - - 
YLAB 100 95.5 - - 95.1 94.5 
YUNT 85.7 75.0 - - - - 
DVAL - - - - - - 
DLAB - - 79.1 95.6 - - 
LGND 93.3 77.8 85.5 59.4 - - 
OTHR 33.3 9.1 - - - - 

 

5.4.2 Discussions 

From the table we can see that some text class do not appear in the images of a particular 

chart type. For example, pie charts in the current dataset mainly have three types of text: 

chart title (CTTL), data labels (DLAB) and legends (LGND). Some text class never 
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appears in some chart types. Text classes related to coordinate lines will not appear in 

charts without coordinate lines. However, as the dataset is not general enough, some 

possible situations are not covered here. For example, data values may be specifically 

marked in bar charts.  

Since this is the first attempt to our knowledge for the text/graphics association 

problem in this domain, there is no comparative study available in order to judge whether 

the precision and recall achieved are good or not. We can only say that for most classes, 

the precision and recall are at a reasonable level. The poor precision and recall of the 

class OTHR for bar charts is due to the common confusion among chart titles, axis titles 

and other text descriptions. In many situations, all the descriptions about the chart are 

placed right below the chart title, sometimes near the title of the Y-axis. Thus it is very 

easy to treat such descriptions as the chart title of axis title. On the other hand, if the title 

of an axis is close to the top or bottom of the image and is near the center, the axis title 

may also be mistakenly treated as the chart title. Such confusion is very difficult to avoid, 

even for human beings in some cases. Take Figure 5.5 as an example, the string “Number 

of oocytes, %” is placed on top of the y-axis and towards the center of the chart. It is 

treated as chart title instead of the title of the y-axis by the system.  

Figure 5.5. Confusion between axis title and chart title 
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Figure 5.6. Sample pie chart with many wedges 

 

 

 

 

 

 

 

 

In some cases, there are so many data entries in a pie chart that the wedges become 

crowded and there is not enough space to place the labels near the corresponding wedges. 

The solution during generation is to add extension lines to the wedges that link them to 

their labels. This case is not dealt with by the proposed text/graphics association method 

as extension lines are not recognized by the graphical symbol construction step. If the 

extension lines are included in the set of graphical symbols to be recognized, however, 

the method is still applicable in this situation. 

 

 

SCIENTIFIC CHART IMAGE RECOGNITION AND INTERPRETATION                                      WEIHUA HUANG 



APPLICATIONS 86

 

Chapter 6 

Applications 

 

There is a Chinese proverb “a picture is worth a thousand words.” It accurately reflects 

the fact that pictures carry significant amount of information. This is also true for charts 

that are visual tools to present trends or patterns in data in a graphical way. However in 

the past, the lack of recognition tools for charts in the imaged form became an obstacle to 

information retrieval and extraction. Chart recognition and interpretation methods in this 

dissertation extract both syntactic information and semantic information from scientific 

chart images, which has been previously missing for some existing applications, such as 

the document analysis systems and the information extraction systems. Thus the 

supplementary information extracted from charts surely helps to improve the 

performance of these systems. In this chapter, two applications are discussed as case 

studies to illustrate how the output mentioned in the previous chapters can be used by 

these applications to enhance their performance.  

 

6.1 Case Study One: Supplement to OCR System 

 

Traditional OCR systems focus on segmenting and recognizing the text from input 

document images [48-50]. There are mainly two parts of output generated by a traditional 

OCR system: the recognized text in the electronic form and the layout information of the 
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original document. For other objects in the document, such as figures and other drawings, 

the OCR system simply segments them out from the original document page. Thus in the 

output of existing OCR systems, the figures and drawings remain as images. This makes 

sense when there is no good technique to correctly recognize these figures and drawings, 

thus the safe way is to keep them untouched and leave it for the end user to manually 

recognize them.  

 
Traditional 

OCR 

Chart 
Recognizer 

Scanned 
document 

image 

Segmentation 
Document 

Reproduction 

Imaged text 

Imaged charts 

Layout 
information 

Electronic 
text 

chart 
description 

Figure 6.1. Augmentation of the proposed system with traditional OCR system. 
 

 

 

 

 

 

 

Although our system does not aim to provide a general solution to recognize all the 

objects left out by existing OCR systems, it can be integrated with an OCR system to 

recognize the charts in the documents. Furthermore, the information carried by the XML 

description can be used to easily re-construct the same chart image in an electronic form. 

The re-constructed chart image, together with the electronic text and the layout 

information, can be used to reproduce the original document in a more complete form, 

following the steps in Figure 6.1. 

A key step for the augmentation of the chart recognition with OCR is to find the 

location in a document page where the re-constructed chart image to be inserted. This is 

important because one of the desired features of an OCR system is that both structural 
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layout and logical layout of the original document should be preserved as much as 

possible. To handle this issue, there are two ways to do it. Typical OCR techniques define 

a document element as either a text paragraph or a figure, and determine the reading 

order among these elements [51]. If such a reading order is available, then the elements 

before and after a chart image are known. The chart image is re-constructed and placed 

between the two elements. Otherwise, the system makes use of the figure caption below 

(or above in some cases) the chart image and searches for its first appearance in the text. 

The paragraph containing such a figure caption is considered as the element before the 

chart image, and the following paragraph will be treated as the element after the chart 

image.  

Let us use an example to illustrate the steps. A sample document image is shown in 

Figure 6.2. The image is a scanned journal page selected from the University of 

Washington document image database I. The bounding box indicates the chart area 

detected using figure segmentation method. The chart in the bounding box is fed into the 

chart recognition and interpretation system, while the remaining part of the image is fed 

into an OCR system for recognition. The OCR system used here is the Omnipage 

Scansoft SDK version 12.0, which is a commercial OCR development kit. It is a typical 

OCR system that allows both the zoning information and the recognized text in electronic 

form to be extracted. As page segmentation is performed before text recognition, the 

process is controlled in a way such that the text recognition result from each zone is 

stored separately and is indicated by the zone identifier automatically assigned using a 

three-digit number. The zoning information returned by the OCR system is shown in 

Figure 6.3. The recognized text for the first two zones is shown in Figure 6.4. The output 
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of chart recognition and interpretation is shown in Figure 6.5. 

Based on the zoning information, the reading order can be determined and it specifies 

that the chart image is the second element in the page, after the figure caption and before 

any other text in the page. Thus in the reproduced document, the information captured 

from the chart image is placed immediately after the figure caption (ZONE_ID = 000), 

followed by other text. Note that there are two kinds of chart descriptions available: the 

XML format description and the natural language description. The choice of the format 

depends on how the document is to be re-constructed. If the re-constructed document is 

plain text, then the NL description is chosen. On the other hand, if the re-constructed 

document needs to contain figures and drawings, then the XML description can be used 

to generate charts to be placed in the same page.  
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Figure 6.2. A sample scanned document containing a line chart. The 
boxed area is the chart area identified by the system.  
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ZONE_ID       = 000 
CORNER_ONE_RC = 668 616 
CORNER_TWO_RC = 1812 756 
  
ZONE_ID       = 001 
CORNER_ONE_RC = 676 772 
CORNER_TWO_RC = 1848 1924 
  
ZONE_ID       = 002 
CORNER_ONE_RC = 372 2012 
CORNER_TWO_RC = 1228 2856 
  
ZONE_ID       = 003 
CORNER_ONE_RC = 364 2864 
CORNER_TWO_RC = 1228 2900 
  

… … … … 

Figure 6.3. Zoning information returned by OCR system 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

ZONE_ID = 000   
 
FIGURE 1 
FATALITIES ON RURAL INTERSTATES, 38 STATES THAT INCREASED SPEED 
LIMITS IN 1987, POSTIMPLEMENTATION MONTHS 

ZONE_ID = 002   
 
of rural interstate segments that subsequently remained posted at 55 
mph. In addition, FARS coding does not allow for separation of 
noninterstate highway mileage posted at 65 mph under the 
Congressional demonstration project from other rural noninterstate 
mileage; consequently, some of the fatalities on comparison roads 
actually occurred under a 65 mph speed limit. This of course makes 
any estimated effect of the 65 mph speed limit conservative. In 
addition, the phenomenon of speed adaptation suggests that higher 
speeds on rural interstates will spill over to other roads (Casey & 
Lund, 1987, 1988). To the extent that higher speeds do result in more 
fatalities, these factors would cause an underestimate of the true 
effect of higher speed limits on rural interstates. 

Figure 6.4. Text recognized by OCR system 
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Figure 6.5. Result of chart recognition and interpretation 

<chart> 
<type>2D Line Chart</type> 
<title>-</title> 
<x_axis><axis_title>Year</axis_title> 
               <labels><label>1982</label> 
                 …… 
                <label>1988</label></labels></x_axis> 
<y_axis><axis_title>-</axis_title> 
               <axis_unit>fatalities</axis_unit> 
               <labels><label>0</label> 
                 …… 
                <label>1600</label></labels></y_axis> 
<data_set> 
<data><label>1982</label><value>1080</value></data> 
<data><label>1983</label><value>1156</value></data>                 
                 ……   
<data><label>1988</label><value>1590</value></data>               
</data_set> 

(a) the XML description for the chart in Figure 6.2 

Figure 1 contains a line chart with no title. The title of the x-axis is year. Data 
entry 1982 has a value of 1080 fatalities. Data entry 1983 has a value of 1156 
fatalities. Data entry 1984 has a value of 1250 fatalities. Data entry 1985 has a 
value of 1181 fatalities. Data entry 1986 has a value of 1163 fatalities. Data entry 
1987 has a value of 1393 fatalities. Data 1988 has value of 1590 fatalities. 

(b) NL sentences generation for the chart in Figure 6.2 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

6.2 Case Study Two: Enriching Information for A Question Answering 

System 

 

Question answering techniques in the current literature mainly focus on text-based 

documents, by extracting sentence level answers to factoid questions [52] or definitional 

questions [53, 54]. For a review of the question answering systems, please refer to [55]. 

In recent years, information retrieval research community has given more and more 
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attention to retrieving information from non-text sources such as images or videos. Thus 

the question answering techniques is also expected to be extended to make use of non-

text sources. Charts are a good example of such non-text sources.  

For documents containing charts, the information carried by the charts may not be 

fully reflected in the text. Thus for questions related to the chart images, traditional 

question answering methods are not able to return an answer. In this situation, the result 

obtained by our system becomes very helpful because it brings additional information 

from the chart images.  

Table 6.1. Set of basic queries to the chart images 

Query Type Return Type Description 
Max. Value or label Maximum among all existing values. 
Min. Value or label Minimum among all values. 
Avg. Value or label Average value of all values selected. 

Between Value or label
Between two values directly specified 
by user, or between two components 
specified by user using their labels. 

Greater than Value or label

Data components whose value is 
greater than the value directly specified 

by user or the value of the data 
component specified by user. 

Less than Value or label

Data components whose value is less 
than the value directly specified by 

user or the value of the data component 
specified by user. 

Equal to Value or label

Data components whose value is equal 
to the value directly specified by user 

or the value of the data component 
specified by user. 

Difference 
between Value The absolute difference between the 

values of two data components 
 
 

6.2.1 Answering Query-like Questions 

One type of questions purely refers to the chart images, and the answer cannot be 

obtained in a straightforward way. For example for the chart image in Figure 6.2, 
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questions like “From when to when does the number of fatalities decrease?” or “What is 

the maximum number of fatalities among all years?” can be asked. There is no 

immediate information in the text that provides answers to these questions. These 

questions are actually data queries, except that the questions are in natural language form. 

Processing query-like questions is different from the two kinds of QA problems 

mentioned. It requires two major steps: translating a natural language question to query, 

and processing the query to generate the answer.  

A method for translating natural language sentences to structured queries was 

presented in [56]. As natural language processing is not the focus of this dissertation, a 

simplified translation method is used here as an illustration. The method is based on 

keyword matching in the given question sentence to generate the most likely query. A 

vocabulary of frequently used keywords is built for this purpose, containing keywords 

such as “which”, “where”, “maximum”, “minimum”, “between” etc. As the questions on 

a chart can be treated as domain specific in the sense that the number of abstract classes 

in a chart is limited, the method works well to some extent. For example, “What is the 

maximum number of fatalities among all years?” is translated into the query “Select 

D_value Max”. 

For query processing, a set of basic queries that are frequently raised by users is 

defined, which are shown in Table 6.1. More complicated queries can be handled by 

transforming them into a combination of basic queries. Some examples are shown in 

Figure 6.6. 

 

 

SCIENTIFIC CHART IMAGE RECOGNITION AND INTERPRETATION                                      WEIHUA HUANG 



APPLICATIONS 95

 

(a) A sample line chart (b) Result of recognition and 
interpretation 

(c) Answering difference query 

(d) Answering min. query that returns a label 

(e) Answering max. query that returns a value 

Figure 6.6. Examples of answering query like questions 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

6.2.2 Answering Natural Language Questions 

Based on our survey among a group of human testers, some questions related to the chart 
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images are factoid questions, which try to find out facts from the chart images. For 

example for the chart image in Figure 6.2, a question asked is “How many fatalities were 

there in the year 1984?” For this type of questions, the original sentences in the text do 

not contain the require information. However, the natural language description as 

generated by our system indeed does reveal such information. Thus it can be used to find 

out the answer. To facilitate the question answering process, the NL description is 

inserted into the document as an additional part of the text. The insertion point is 

determined based on the idea described in the previous section. As the NL description 

contains natural language sentences, it can be handled by most traditional QA techniques.  

 

6.2.3 Experiments on A Question Answering System 

We have conducted a small experiment to test how much the system output helps with the 

question answering process. Ten scanned document pages have been selected from the 

University of Washington document database I as the testing images. Human testers were 

asked to give 5 factoid questions and 5 query-like questions for each document page. To 

involve the NL description of chart images in the question answer process, one of the 5 

factoid questions was required to be related to the chart image. We used the question 

answering system developed by Cui et al. [53] to process both the questions and the 

documents to find out the answer to each question. Cui’s work uses probabilistic lexico-

syntactic pattern matching, also known as soft pattern matching, and the result is a ranked 

list of sentences. In our experiment, only the sentence at the top of the ranked list (i.e. 

with the highest matching score) was considered as the correct answer. On the other hand, 

the query-like questions were also parsed using the simplified query translation method 
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and the resulting queries were processed by the system to generate answers. The 

performance evaluation of the question answering is shown in Table 6.2.  

Table 6.2. Comparison of question answering performance  
with and without information provided by chart recognition 

Correctness 
Type of question No. of 

questions Without chart 
information 

With chart 
information 

Factoid 50 38 (76%) 45 (92%) 
Query-like 50 - 42 (84%) 

 

From the table, it can be seen that the original textual information is insufficient to 

handle all the factoid questions related to the charts, as expected. With the NL description 

added, the performance of the question answering system is improved. The query-like 

questions are handled equally well, with most of the errors due to the failure to parse a 

sentence into the correct query.  
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Chapter 7 

Generation of Ground Truthed Dataset  

 

 

The construction of ground truth and performance evaluation has been recognized as an 

important factor in advancing research in various fields. George Nagy addressed the 

importance of "application-oriented benchmarking" in each research area in document 

image recognition [57]. Ground truth datasets that are both well established and publicly 

accessible are needed to evaluate and to compare the performance of different image 

recognition and analysis systems. As research on scientific chart recognition and 

understanding is a relatively young field, there is no well established public dataset with 

ground truth that is specifically established for the purpose of evaluating chart 

recognition systems. With the creation of such a dataset, more attention can be drawn 

from researchers that might be interested in this relatively new area. The dataset should 

have the following desired features: 

• The dataset should contain sufficient number of chart images, in order to facilitate the 

testing of the efficiency of a system working on a large scale of images. 
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• The dataset should include both synthetic images and real-life images. Synthetic 

images are easier to generate to a large scale, while the real-life images are essential to 

present real-life effects. 

• The chart images in the dataset should cover most commonly used chart types in order 

to maintain a good variety set of the test images. 

• The ground truth data should contain details in multiple aspects, so that the dataset can 

be used to evaluate recognition systems in various prospects of real life encounters. 

 

7.1. Automatic Ground Truthing versus Semi-automatic Ground 

Truthing 

 

Based on whether human effort is involved, ground truthing tools mainly fall into two 

categories: automatic and semi-automatic. Most ground truthing systems reported in the 

literature are semi-automatic. A semi-automatic ground truthing system either involves 

human correction following automatic processing steps [58-60], or consists of a mixture 

of auto-processing steps and human inputs [61, 62]. The semi-automatic approach has 

certain advantages. First of all, a semi-automatic system can extract ground truth data 

from a wide range of images with complex layout and varying types, as long as the basic 

processing functions are available to support the extraction. Secondly, a semi-automatic 

system is good to extract ground truth from real life images, as human inputs or 
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corrections can overcome the error raised from noise and distortions. As a result, the 

images in a dataset ground truthed with a semi-automatic system have a good variety of 

types and contain real life noise and distortions. On the other hand, there are also 

drawbacks of the semi-automatic approach. Firstly, the process is not very efficient as it 

involves human effort during the process. As a result, it will be either very time 

consuming or very labour intensive to form a large data collection. Secondly, human 

verification and correction at low-level still leave certain chance to introduce inaccurate 

ground truth data. For example, the start point and end point of the vectorized lines may 

be a few pixels from the true end-points. Although the error is insignificant for most of 

the time, it is undesired as what we are looking for is ground “truth”. 

On the other hand, there are also fully automatic ground truthing systems, such as [63, 

64]. An automatic ground truthing system usually makes the use of existing 

document/graphics generation packages to create datasets and captures intermediate 

results as the ground truth. Through literature review, we found out that automatic ground 

truthing is used when the targeted ground truth data only require high level details, such 

as the number of cells in a table or the font type of the text string. If low-level details are 

to be included, such as the boundary lines of a cell in a table or the bounding box of a 

character, then the semi-automatic approach seems to be a better choice unless such 

details are directly available. A typical automatic ground truthing system is 

computationally efficient and thus has been good for generation of dataset with a large 

scale. Furthermore, the ground truth data obtained through automatic process are highly 
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accurate. But the automatic approach also has some drawbacks. Firstly, the amount of 

ground truth data that can be automatically obtained is restricted, and the low-level 

details may not be accessible. Secondly, if the system relies on a certain graphics 

generation package, then the dataset created only reflects the characteristics of that 

package, resulting in lack of variety in the dataset created. Last but not least, the system 

produces synthetic images which do not contain real-life noises and effects. To alleviate 

this drawback, a degradation module such as [65] is needed to improve the situation by 

introducing deformations, distortions and noise to the images produced. 

Based on the above observations, we adopt both approaches for generating the public 

ground truthed chart image dataset. While the automatic approach is used to generate 

synthetic images with ground truth, the semi-automatic approach is used for extracting 

ground truth from real-life images. In the following sections, we are going to summarize 

the two systems developed by us for creating ground truthed chart image dataset. The 

final dataset will also be described. 

 

7.2. Ground Truth of Scientific Chart Images 

 

The ground truth data for scientific chart image has been in their existence on four levels: 

pixel level, vector level, text level and chart level. The term “level” is used here to 

indicate different information granularity of the ground truth data. The order of 
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granularity among various kinds of information in the chart image is shown as the 

following hierarchy:  

Pixel  <  vector and text  <  chart component 

In the following subsections, we will discuss their significance, essential attributes 

and the availability of ground truth data at each of the four levels.  

 

7.2.1 Pixel level ground truth 

Pixel level ground truth is useful especially for the evaluation of graphics recognition 

system. It can be used to evaluate the processing capability (robustness) of image analysis 

algorithms [66]. The ground truth is basically the original clean image, and the actual 

image for testing is the degraded image. For synthetic images, a clean version is available 

and the pixel values can be used as pixel level ground truth data. However, the images 

collected from web or scanned in already contain noise and distortions, thus the original 

pixel values are not available. As the availability of ground truth for this level is not 

guaranteed, our system will not include it in the final output, though the image used for 

ground truth generation is still included. 

 

7.2.2 Vector level ground truth 

Vector level ground truth is the line information in the images, or more precisely the 

attribute values of the straight line segments and arcs that form the lines. The essential 

attributes of the straight line segments and arcs are the endpoints and the line width. So 
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far as the arcs are concerned, the position of the center and the radius are also needed. 

Using these attribute values, the performance of vectorization algorithms can then be 

assessed. For both synthetic and real chart images, the vector level ground truth data can 

be obtained. During image synthesis, the vector information used for drawing the image 

is stored directly. When a real-life image is processed, fully automatic extraction of line 

information is possible using vectorization algorithms. However, human effort is needed 

here to manually correct the results to produce the ground truth. Since higher level 

symbols (in our case the chart components) are constructed from lines and arcs, vector 

level ground truth data not only serve as a standard to evaluate line detection algorithms, 

but also help to generate higher level ground truth data. 

 

7.2.3 Text level ground truth 

We have adopted the traditional representation of text level ground truth data, which 

consists of text zoning information and the electronic text content. A text zone is 

represented by a rectangular box, and it is also an indication of the text location. In our 

system, we treat each phrase as a whole block and locate the bounding box for it. There 

are two reasons for doing so. Firstly, human effort can be reduced by avoiding specifying 

the bounding boxes for each individual word during ground truthing. Secondly, the 

assignment of logical role to a text block is only meaningful at the phrase level. Take the 

chart title as an example. A typical chart title may contain multiple words and the group 

of words has only one logical role in the chart image. If the text zones are to be used to 
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measure the segmentation capability of OCR systems, then one of the obvious adjustment 

here is to apply an automatic text segmentation algorithm (such as the x-y cut algorithm) 

to further locate the bounding box for each word in a text block.  

 

Chart

Axis LegendData segment

Title Label Range

Name Value

Name Indicator 

Figure 7.1. Essential components in a chart image 
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7.2.4 Chart level ground truth 

A chart image has various components and features, but only a subset of them are 

essential for the revealing of the semantic information in the chart. They are summarized 

in Figure 7.1. 

The title of a chart may not always be available. If it is available, then it does provide 

contextual information about the chart, together with other textual information in the 

same chart. The axes only exist for some chart types, such as bar chart or line chart etc. 

Besides the position of each axis, axis title, labels along the axis and the axis range are 

also important for capturing complete axis information. If there are more than one data 
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series presented in the chart, then the legend information is used to distinguish among 

data series. Legend information includes legend name and legend indicator. Data 

segments represent data value in different forms for different chart types. For example, 

there are bars in bar chart, pies in pie chart etc. So in the ground truth data, we not only 

present the name and value of each data segment, but also specify its form. In case there 

are more than one data series, the category each data segment belongs to is also recored. 

 

7.3. The Semi-automatic Approach 

 

To obtain ground truth from real-life images, a semi-automatic system has been 

developed. The system does most of the job automatically while user interactions are 

required during the ground truth generation process. Since a typical chart image contains 

both text and graphics, we generate ground truth data for both kinds of information so 

that they can be used for evaluating both text recognition and graphics recognition. 

Furthermore, since the ultimate goal of chart image recognition is to understand the 

logical role of the chart components and to extract the data values carried by the chart, 

ground truth for chart components and data values are also generated.  

Figure 7.2 shows the major hierarchical tasks in the proposed system. Pre-processing 

is performed to the input image first, including text/graphics separation, edge detection, 

vectorization and text grouping. Then ground truth data from text level and vector level 

are generated in two different modules. In the next step, data from text level and vector 
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level are combined to generate chart level ground truth. Dashed arrows in the figure 

indicate that user interaction is required in the modules. Finally, the ground truth data 

generated for one chart image are stored into an XML document.      

 Input image 

Preprocessing 

Text level generation Vector level generation 

User 

Vector level 

ground truth 

Chart level 

ground truth 

Text level  
ground truth 

Chart level generation 

XML generator 

System 

XML  

document 

Figure 7.2. Major hierarchical tasks in a semi-automatic system 

 

 

 

 

 

 

 

 

 

 

 

 

7.3.1 System preprocessing 

There are several steps in the preprocessing stage: 

 Text/graphics separation. Textual information and graphical information are separated 

in this step using connected component filtering. A series of thresholds are applied to 

differentiate text components from graphical components. Most of the text 

SCIENTIFIC CHART IMAGE RECOGNITION AND INTERPRETATION                   WEIHUA HUANG 



GENERATION OF GROUND TRUTHED DATASET 107

components can be separated from graphics successfully. Characters touching graphics 

cannot be separated in this case, but the problem can be partially solved later by 

finding user specified text regions. The text components are binarized and stored in a 

separate text image, which will be passed as input to text blocks construction step. The 

graphical components are kept in the original image and will be further analyzed to 

find the line information. 

 Edge detection. Since all vectorization methods require a binary image, an edge map is 

constructed in this step. To effectively identify the edges, the system needs to be given 

the maximum allowed edge thickness. Edge detection is done by calculating intensity 

differential among neighboring pixels, followed by gap filling between left edge and 

right edge. 

 Text block construction. Text block construction is based on the method described in 

[67] to the text components found previously. The system automatically calculates the 

text block candidates, after which the user can then refine the result by deciding 

whether to further split a block or merge some blocks. 

 Vectorization. The purpose of vectorization is to detect line information, or more 

precisely information of the straight lines and arcs. Here we use the DSCC based 

vectorization methods introduced in Chapter 4 to construct straight lines and arcs 

respectively. The results are stored in vector form. The vector of straight line contains 

starting point, ending point and line width. The content of the vector of arc is similar, 

except that the arc centre is also stored. 
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 Locating feature points. The feature points include endpoints of straight line segments 

and arcs, touching points of two lines, cross points and corner points, as illustrated in 

Figure 7.3(a) to (d). The point sets are calculated by the system automatically, and will 

be used as a basis for adjusting the user specified points. If there is more than one 

feature point near the user selected location, then the nearest feature point will be 

chosen as the final point. 

 End points Cross point Touching 

point 

Corner point 

Figure 7.3(a)-(d). Illustration of the set of feature points. 
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7.3.2 Vector level ground truth generation 

As the vectors of straight lines and arcs are already available, the task of the user is to 

verify the correctness and accuracy of the vectorization result. The vectors are drawn on 

the original image and the user can manually adjust the endpoints of a vector if it is too 

long, too short or outside the original line. After the user verifies and corrects all the 

vectors, the information stored in the vectors is then saved as the vector level ground truth 

data. Furthermore, the vector information is also passed on for chart level ground truth 

generation. 
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7.3.3 Text level ground truth generation 

User adjustment can be performed similarly to text block candidates automatically 

identified by the system, by refining the boundaries of each candidate. If the text block 

candidate contains multiple text blocks, the user can manually specify the cutting point. 

On the other hand, if several text block candidates belong to the same text block, the user 

can also group them and form a larger block. For electronic text, current system relies on 

manual input to guarantee the correctness of the text content. The main reason is that 

currently we have not built an OCR module in our system. However, this is not an 

expensive approach since usually the amount of text in a chart image is not large. To 

further improve the efficiency of our system, we can add the OCR module into the system, 

as part of the future work. 

After all text blocks are fixed and their contents are input, the information is the saved 

as text level ground truth. The information will also be used when chart level ground truth 

is generated. 

 

7.3.4 Chart level ground truth generation 

As we mentioned before, chart level ground truth contains the information of a set of 

essential chart components. Obtaining such information may not be straightforward. 

Unless the process of chart image generation can be reversed, then the system has to rely 

on heuristic rules and user interaction to identify the exact position and attributes of the 

chart components and obtain their values. 
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To find out the graphical chart components, the user just needs to indicate the rough 

position of the critical points for each component, and then the system will automatically 

find the precise position by finding the best feature point within a predefined range. If the 

feature point provided by the system is wrong, the user can still manually adjust the 

position of the point. 

To find the textual chart components, the user needs to manually specify the 

correspondence between a text block and its logical role. It is difficult to automate this 

step, because the text/graphics correspondence is still being studied and no general 

solution is found yet.   

To obtain the data values, one way is to generate chart images based on synthetic data. 

In this way, the original data values are available for comparison with the extracted data 

values. For scanned chart images, the original data values may not be available, thus they 

need to be calculated based on the information available in the images. There are two 

cases: if the data values exist in the image in the format of text objects, then the user can 

input them into the system. If the data values are not directly given, then the system will 

calculate them and the user needs to verify and make any corrections if there is a large 

error.   

 

 

 

 

SCIENTIFIC CHART IMAGE RECOGNITION AND INTERPRETATION                   WEIHUA HUANG 



GENERATION OF GROUND TRUTHED DATASET 111

 

Figure 7.4. A snapshot of the system interface. 

 

 

 

 

 

 

 

 

Figure 7.4. shows a snapshot of the system interface. The input image is placed at the 

center of the image panel, surrounded by dash boundaries. The tool panels are on the left 

of the window. The green dots in the input image indicate the feature points used to 

specify the x-y axis and the bar components. The red dot is the origin of the coordinate 

system. The snapshot also shows the bounding boxes of all text blocks. The content and 

logic role of each text block can be specified in the tool panel.  

 

7.4. The Automatic Approach 

 

An automatic system has been developed to synthesize chart images and generate ground 

truth data during the process of image synthesis. The major steps in the automatic system 

are shown in Figure 7.5. 
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Figure 7.5. Automatic ground truthing scheme 

 

 

 

 

7.4.1 Chart Generation 

Randomly generated tabula data (label plus value) is used as the basis for chart 

generation. The data is passed into a chart generator to create a chart of a certain type 

chosen by the user. The current version of the system generates four common types of 

chart: 2D bar chart, 3D bar chart, 2D pie chart and 3D pie chart. Each chart type consists 

of a set of essential components, which can be further decomposed into text entities and 

regular graphical entities. Each graphical entity is represented as a combination of 

graphical primitives following geometric constraints. To draw a generated chart as an 

image, the drawing functions in the Windows GDI+ library are called to draw the 

graphical primitives such as line segments and arcs. The thickness of a line or an arc can 

be specified by user. GDI+ library also provides functions to render text strings in an 

image and estimate the bounding box of each text string. Figure 7.6 illustrates how a 

chart is decomposed and converted into an image. The existence of axis is type-dependent. 

If a chart type does not require an axis, such as a pie chart, then the system does not 

include it. As drawing 3D charts is more complicated than drawing 2D charts, in our 
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approach the following steps are carried out: 

GDI+ drawing 

functions 

GDI+ text rendering 

functions 

Chart object 

Title and 

descriptions 

Data 

components 

Axis 

Axis 

line 

Axis 

labels 

Graphical 

symbols 

Data 

labels 

Chart image 

Graphical 

primitives 

Figure 7.6. Drawing chart image using GDI+ functions 

Step 1: Draw a 2D version of the chart. 

Step 2: Construct 3D chart based on the 2D version, using geometric transformations. To 

draw a 3D bar chart from its 2D version, translation is applied on the point sets to 

create the cubical effects. To draw a 3D pie chart from the 2D version, perspective 

distortion and translation are both applied to covert a circular arc into elliptic arc. 
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7.4.2 The Degradation Module 

For each chart generated, a clean synthetic image is created through rasterization. The 

degradation module is applied on the clean image to add less-than-ideal effects to 

simulate real-life image quality. Our degradation module is based on the degradation 

model proposed by Baird [65]. The original model listed 10 parameters. Considering the 

problem domain we are dealing with, we only adopt a subset of them. As listed in Table 

7.1, the parameters included in our degradation module are used to perform the following 

tasks: rotation (skew angle), shearing, edge distortion, Gaussian noise and motion blur. 

 

Table 7.1. Overview of the parameters in the degradation module 

Parameter Data Type Range Meaning 
β Real (-π, π) Skew angle, measured in degrees 
λ Real [-1, 1] Horizontal shearing factor 
L Integer [0, 10] Degree of edge distortion 
v Integer [0, 5] Radius of motion blur 
θ Real (-π, π) Angle of motion blur, measured in degrees 
σ Real [0, 50] Degree of Gaussian noise 

 

1. Rotation. Rotation is a deformation operation. The whole chart is rotated to add a 

skew angle to the image. For each pixel (x, y) in the image plane, if the skew angle is 

β, then the new pixel location (x', y') in vector form can be calculated as: 
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2. Shearing. Shearing is a common deformation type that changes the shape of a 

geometric object. The shearing process requires one parameter, the shearing factor λ 

= cot α, and a pixel (x, y) will be mapped to the new location: 
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3. Edge distortion. In real-life, distortions are very likely to occur along the edges of 

lines or regions, mainly due to the reproduction process such as scanning or faxing 

etc. In order to simulate edge distortion, we adopt a convolution method based on 

[68], with the modification that besides pixel-adding in the original method, 

pixel-reduction is also performed. Here pixel-adding means a pixel change from 

fore-ground color to background color and pixel-reduction means the opposite. A 

parameter L here is used to controls the degree of edge distortion. 

4. Motion blur. Motion blur most often occurs during a camera-based capturing 

process. The modelling of motion blur is based on [69]. Let f(x, y) be the input image, 

and H(x, y) be the blurring function. With two parameters v = the level of motion 

blur and θ = the angle of the motion blur, the blurred image g(x, y) is generated as: 

        (7.3) ∑ ∑
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5. Gaussian noise. Gaussian noise models the thermal noise in electronic imaging 

systems. To generate Gaussian noise, the crucial step is to obtain a Gaussian (normal) 

distribution, a random variant with its probability density function as: 

   2

2

2

2
1)( σ

πσ

x

eXp
−

=          (7.5) 

Here we use an algorithm called ran0 [70] to realize the polar method [71] for 

obtaining a standard normal variable X0. To add Gaussian noise, each pixel Gij in the 

original image is added with a value σX0. σ is a parameter that controls the level of 

noise. 

 

7.4.3 Generating Ground Truth Data 

The initial tabular data become the semantic level ground truth. The vector information of 

the lines recorded during drawing process becomes the vector level ground truth. The text 

strings and their bounding boxes form the text level ground truth. The chart entities 

created during chart generation are recorded to form another part of the chart level 

ground truth. An additional part of the ground truth includes in this synthesis process the 

parameters used by the degradation module. This part of information, however, was not 

obtainable using the semi-automatic approach. 

 

7.5. The Ground Truth Dataset 
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7.5.1 Dataset Description 

The final dataset contains two subsets from the two works we have done: a collection of 

real-life images and a collection of synthetic images. For the real-life collection, 200 

images were collected and the corresponding ground truth data were extracted using the 

semi-automatic system. In the synthetic collection produced using the automatic system, 

400 clean images were created for each of the four chart types. For a clean image, one of 

the eight different combinations of degradation effects was added to create a noisy 

version. Examples of synthetic image and degraded images are shown in Figure 7.7. Thus 

the synthetic collection contains 1600 clean chart images and 1600 degraded images, with 

ground truth data in XML format. By combining the two collections, the final dataset is 

formed, with a total of 3400 chart images and their corresponding ground truth data. 

Some statistics about the complete dataset are shown in Table 7.2. 

 

Table 7.2. The final data set 

 Real Synthetic 
Char Type Scanned Downloaded Total Clean Noisy Total 
Bar chart 61 19 80 800 800 1600 
Pie chart - 60 60 800 800 1600 

Line chart 14 46 60 - - - 
Total 75 125 200 1600 1600 3200 
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(a) Clean synthetic image 

(c) With horizontal shearing and edge distortion 

(b) With edge distortion 

(d) With edge distortion, Motion blur and 

Gaussian noise 

Figure 7.7. Sample synthetic image and degradation effects 

 

7.5.2 Discussions 

Using the semi-automatic system, since the original input image is noisy, the lines in the 

image have distorted edges, which may cause trouble in finding the correct line width. In 

the vectorization step, the system calculates the width of a line by taking the average 

width of all small segments in the line. To guarantee the accuracy of the line width 
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detected, the user needs to manually verify it and adjust the line width to its most suitable 

value if necessary.  

We must point out that there are some special characters in the XML specification 

that cannot be displayed properly, such as “&” and “<” and “>”. Thus to guarantee the 

completeness of information in the text level ground truth data, we changed these special 

characters to “and”, “less_than” and “greater_than”. But then the character set does not 

match the original set, so we also include a plain text version of the ground truth so that 

all characters are available, including the special characters. 

One of our assumptions is that the lines in the chart components are solid lines. 

Although in most cases the assumption is valid, there are some exceptions. For example, 

dash line may be used to connect the data points in a line chart. And sometimes the axes 

also appear as dashed lines. Thus to overcome this weakness, a dashed line detection 

algorithm should be implemented and added to the vectorization process. 

In automatic ground truth generation, there is a trade off between the complexity of 

the implementation and the level of details to be kept in the ground truth data. If only 

tabular data are required, then the generation process is very simple: use a graphical 

package to create electronic charts and then convert it into image format. However, the 

ground truth will only be useful when evaluating a chart interpretation system that returns 

tabular data. Besides the tabular data itself, other metrics are also relevant and important 

to the performance evaluation of a system that deals with chart images, including the 

accuracy of graphical symbol construction, the accuracy of text segmentation and 
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recognition etc. Thus to provide measurement for these metrics, the ground truth should 

be more enriched to include low-level information about graphical symbols, text 

bounding boxes and text strings, etc. As mentioned in Section 7.1, the low-level 

information is not directly obtainable from commercial graphical packages. Thus to 

obtain such information, we chose to implement our own functions for drawing and 

recording. 

The accuracy of the automatically generated ground truth data is relatively higher than 

those generated using the semi-automatic system. However, some ground truth data may 

still be slightly erroneous. More specifically, the bounding box returned by the GDI+ 

function Graphics.MeasureString() does not reflect the true bounding box of a text string, 

due to the limitation of the way GDI+ computes the width of the text using hinting and 

anti-aliasing. The bounding box returned by the current implementation is a bit wider 

than the truth bounding box. The problem may be solved in the new version of the system, 

using alternative ways of measuring the width of text strings. 

The current version of the automatic system only takes the major chart components 

into consideration, including: chart axes, data components, titles and labels etc. Although 

these are the essential components for interpreting a chart, there are other important 

components to be included. For example, legends are very important in a chart with 

multiple data series. Grid lines may also be included because they are very often used in 

real-life charts. Besides, the random text generation unit in the current system only 
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generates very simple text strings such as numeric strings etc. Random alphabetic labels 

or even sentence based descriptions should be generated. The points mentioned above 

will be covered as our future work. 

 

7.5.3 Distribution of the Dataset 

The dataset is distributed online. A website has been built up to store the dataset with 

ground truth data under the main website of the Center for Information Mining and 

Extraction (CHIME), which is publicly accessible for free through the URL: 

http://www.comp.nus.edu.sg/labs/chime/da/chart_dataset/dataset.html

The website provides a brief introduction of the dataset, including the number of images 

in each individual portion of the dataset, the links to the actual images and ground truth 

data, and relevant papers and other external materials. Figure 7.8 shows the main 

composition of the website distributing the dataset. We believe that by making this 

dataset freely accessible to the public, research activities in this area can be promoted in 

the near future. 
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Figure 7.8. Structure of the website containing the dataset 

  



CONCLUSION AND FUTURE DIRECTIONS 123

 

Chapter 8 

Conclusion and Future Directions 

 

8.1 Summary of Contributions 

 

In this dissertation, we have investigated a relatively new research problem of scientific 

chart image recognition and interpretation. We summarized important design principles in 

chart generation, which are fundamental guidelines for designing a general paradigm for 

recognizing and interpreting chart images. We further examined detailed problems and 

solutions from three aspects, namely, the chart classification and recognition, chart 

interpretation and its applications, and ground truth dataset generation. Corresponding to 

the objectives and targets listed in Chapter 1, our contributions in these three aspects are 

summarized as follows.  

• Chart classification and recognition: Both graphics recognition and text recognition 

have been investigated. For graphics recognition, we proposed a vectorization method 

for extracting graphical primitives based on edge information. The graphical primitives 

are straight lines, circular arcs and elliptic arcs. To extract chart components, we 

proposed a novel approach for coordinate line detection in chart images based on both 

textual and graphical information. The method outperforms existing methods in 

reducing false positives. We applied domain knowledge to build hierarchical chart 
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models for both chart type recognition and chart component recognition. Chart model 

for four commonly used chart types were specified: 2D bar chart, 2D pie chart, 3D pie 

chart and line chart. We also investigated machine learning based approach in chart 

classification using graphical symbols. The work on vectorization has been published 

in [76]. The work on model based chart recognition was reported in [72, 75]. The work 

on learning based chart classification was published in [78]. 

• Chart interpretation: We proposed a machine learning based method for associating 

text blocks and graphical symbols in a chart image for capturing a chart’s structural 

information and complete semantic information. Before our work, there was no 

existing method to achieve the association of text and graphics in images. We studied 

the interpretation of different chart types and the extraction of tabular data using the 

combined textual and graphical information. The result of chart interpretation is stored 

in both XML format and natural language format for different applications to use. We 

further explored how chart interpretation can be applied on existing techniques. Two 

techniques were investigated: optical character recognition (OCR) and question 

answering (QA). Experiments show that our system provides enriched information to 

these techniques and improves their performance. The work of chart interpretation and 

its applications was published in [73, 75]. 

• Generation of ground truth dataset: We defined multi-level ground truth data in the 

context of chart image recognition and interpretation. The ground truth format at each 

level was specified. We proposed a semi-automatic ground truthing system for 
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extraction of ground truth data from real-life chart images. We also designed and 

implemented an automatic system for synthesizing a large number of chart images and 

generating corresponding ground truth data. The generated dataset with ground truth 

data are made publicly available for other researchers. The semi-automatic ground 

truthing system was reported in [74]. The automatic system for chart synthesis and 

ground truthing generation was reported in [77]. 

Comparing to the previous works, especially Zhou’s work [3], this dissertation 

achieves the following breakthroughs and improvements. 

• Broadening chart types to be recognized and interpreted. In Zhou’s work, most 

methods are developed specifically for bar charts only, except for the coordinate line 

detection that works for all 2D and 3D chart types with coordinate lines. In this 

dissertation, more commonly used chart types are handled, including bar chart, pie 

chart and line chart. Furthermore, the features, methods and domain knowledge are 

designed to be type independent and general enough to handle multiple chart types.    

• Enriching the types of text labels in the charts to be handled. In Zhou’s work, only 

axis labels, axis titles and figure titles are defined for the text blocks in the charts. A 

new method is introduced here to train the system to learn to assign text labels based on 

a new set of features that tightly relates text blocks and graphical symbols with more 

complete label classes defined. Hence our works are much more general. 

• Enriching knowledge sources for chart recognition as well as interpretation. When 

the number of chart types increases, the domain knowledge that specifies the chart 
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models is expanded accordingly. This includes expanding the set of graphical symbols 

to be constructed, the set of text labels to specified, and various spatial and syntactic 

constraints to be added. The enriched information is introduced into the chart models 

defined. 

• Tighter integration of text and graphics information for complete interpretation 

of an input chart. In Zhou’s work, the integration of text and graphics is limited and 

the two types of information are almost processed independently. In this dissertation, 

the integration is achieved on both syntactic level and semantic level, to recognize the 

logical roles of the text blocks, and to perform complete interpretation of the chart 

content. Such integration also helps with detection of graphical entities such as the 

coordinate lines. 

 

8.2 Limitations of the Current System 

 

Within the time frame given, major aspects in chart image recognition and interpretation 

were covered in the dissertation. However the current system still has a number of 

limitations. This section summarizes all the limitations of the system, although some of 

them were already mentioned in the previous chapters. 

 Inability to handle dashed lines or dotted lines. The vectorization method used at 

the moment only handles solid lines and curves. Thus graphical symbols consist of 

dashed lines or dotted lines are not recognized. 
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 Inability to handle 3-dimensional charts. Although 3D pie chart is one of the chart 

types included in the dataset, it is just a simple case of 3-dimensional charts. When 

data is plotted in a 3-dimensional chart, the graphical representation is much more 

complex.  

 Inability to handle charts that do not use shapes or lines to represent data. Some 

charts use dot plots, or color-coding to represent data. Such representations are not 

considered in the current system. 

 Inability to perform more advanced data calculation. The system performs direct 

calculation of data values assuming linear scale is adopted by the axis. If data value 

is plotted based on a non-linear scale, then the value calculated by the system is 

incorrect. 

 Limited preprocessing steps. In real life, a scanned image may contain shading 

effect and noise. The current system does not include shading removal and noise 

removal in the preprocessing part. Instead it assumes such operations are carried out 

before the image is input to the system. 

 

8.3 Future Directions 

 

To further improve the system to overcome the limitations mentioned, and to increase the 

generality and robustness of the system, the following issues can be further explored in 

the near future. 
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• Exploration into more complex graphical symbols and a larger variety of chart 

types. To recognize graphical symbols with dashed lines or dotted lines, dashed line 

detection method should be added into the vectorization process. At the moment, the 

domain knowledge in the system allows it to recognize and interpret 2D bar chart, 2D 

line chart, 2D pie chart and 3D pie chart. It does not handle other types of charts such 

as radar charts, area charts etc. Handling of 3-dimensional charts is also quite limited. 

By adding corresponding symbols and constraints into the domain knowledge, the 

system can be expanded to handle new chart types. To handle 3D charts, more 

advanced graphical symbol construction methods need to be used and geometric 

constraints in the 3D space are to be applied.  

• More intelligent interpretation for data recovery. The solution of the problem of 

non-linear data calculation requires the detection of the scale type of the axis lines, 

which is again the result of integrating text with graphics. Scale type becomes a new 

type of text label associated with an axis line, besides axis title, axis label and axis unit 

etc.  

• More interactive text recognition and graphics recognition. The association of 

textual information with graphical information certainly builds up a link between the 

two kinds of information. However, such linkage is only available after the recognition 

of each kind of information is done. Can the text blocks and graphical symbols be 

associated before text recognition and graphical recognition? Can the recognition result 

of one type of information helps to improve the recognition rate of the other type of 
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information? These are questions to be answered in the future.  

• Avoiding error propagation. It is mentioned in several places that error propagation is 

a significant factor that affects the performance of the steps in the system. For an image 

of poor quality, vectorization returns imperfect graphical primitives, which further 

affects the result of graphical symbol construction. If some graphical symbols are not 

properly constructed or even become missing, both chart recognition and chart 

interpretation are also affected. Error propagation is the result of the sequential steps in 

the design of current chart recognition and interpretation paradigm. Using domain 

knowledge as reinforcement or using a probabilistic model can be expected to reduce 

such effect. 

• Involvement of more image processing techniques. As mentioned, the current 

preprocessing steps are quite simple. If we expect to build a more integrated system, 

then some more image processing steps need to be added in, such as noise removal, 

shading detection and correction.  
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Appendix A 

Multiple Instance Learning 

 

The multiple-instance learning model was formalized by Dietterich et al. in 1997 [79]. 

The authors also developed algorithms for dealing with the drug activity prediction 

problem using the model. This work was followed by Long and Tan [80] who gave a 

high-degree polynomial PAC bound for the number of examples needed to learn in the 

multiple-instance learning model. Then Auer proposed a more efficient algorithm [81], 

and Blum and Kalai showed that learning from multiple-instance examples is reducible to 

PAC-learning with two sided noise and to the Statistical Query model [82]. Maron and 

P’erez proposed a framework called “Diverse Density” for solving multiple instance 

learning problems in various domains [83-85].  

 

A.1 Motivation and Problem Formulation 

 

One of the drawbacks of applying the supervised learning model is that it is not always 

possible for a teacher to provide labeled examples for training. Multiple-instance learning 

provides a new way of modeling the teacher’s weakness. Instead of receiving a set of 

instances which are labeled positive or negative, the learner receives a set of bags that are 

labeled as positive or negative. Each bag contains many instances. A bag is labeled 
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negative if all the instances in it are negative. On the other hand, a bag is labeled positive 

if there is at least one instance in it which is positive. From a collection of labeled bags, 

the learner tries to induce a concept that will label individual instances correctly. This 

problem is harder than even noisy supervised learning since the ratio of negative to 

positive instances in a positively-labeled bag (the noise ratio) can be arbitrarily high. In 

the next section, the Diverse Density framework proposed by Maron and P’erez for 

solving multiple instance learning [83] is summarized for reference purpose. 

 

A.2 The Maximum Diverse Density Algorithm 

 

In this section, a probabilistic measure of Diverse Density is derived. A positive bags is 

denoted as , the j+
iB th point in that bag as , and the value of the k+

ijB th feature as . 

Likewise, represents a negative point. Assuming for now that the true concept is a 

single point t, we can find it by maximizing  over all points 

x in feature space. If we use Bayes’ rule and an uninformative prior over the concept 

location, this is equivalent to maximizing the likelihood . 

By making the additional assumption that the bags are conditionally independent given 

the target concept t, the best hypothesis is . 

Using Bayes’ rule once more (and again assuming a uniform prior over concept location), 

this is equivalent to: 

+
ijkB

−
ijB

),,,|Pr( 11
−−++= mn BBBBtx KK

)|,,,Pr( 11 txBBBB mn =−−++ KK

)|Pr()|Pr(maxarg txBtxB iiiix =Π=Π −+
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)|Pr()|Pr(maxarg −+ =Π=Π iiiix BtxBtx     (A.1) 

This is a general definition of maximum Diverse Density, but we need to define the 

terms in the products to instantiate it. One possibility is a noisy-or model: the probability 

that not all points missed the target is 

and likewise 

. The causal probability of an individual instance on 

a potential target is modeled as related to the distance between them, namely, 

))|Pr(1(1),,|Pr()|Pr( 21
++++ =−Π−==== ijjiii BtxBBtxBtx K

))|Pr(1()|Pr( −− =−Π== ijji BtxBtx

)exp()|Pr(
2

xBBtx ijij −−== . Intuitively, if one of the instances in a positive bag is 

close to x, then is high. Likewise, if every positive bag has an instance 

close to x and no negative bags are close to x, then x will have high Diverse Density. 

Diverse Density at an intersection of n bags is exponentially higher than it is at an 

intersection of n – 1 bags, yet all it takes is one well placed negative instance to drive the 

Diverse Density down. 

)|Pr( += iBtx

The Euclidean distance metric used to measure “closeness” depends on the features 

that describe the instances. It is likely that some of the features are irrelevant, or that 

some should be weighted to be more important than others. Luckily, we can use the same 

framework to find not only the best location in feature space, but also the best weighting 

of the features. Once again, we find the best scaling of the individual features by finding 

the scalings that maximize Diverse Density. The algorithm returns both a location x and a 

scaling vector s, where ∑ −=−
k kijkkij xBsxB 222

)( .  

SCIENTIFIC CHART IMAGE RECOGNITION AND INTERPRETATION                   WEIHUA HUANG 



APPENDIX A: MULTIPLE INSTANCE LEARNING 133

Note that the assumption that all bags intersect at a single point is not necessary. We 

can assume more complicated concepts, such as for example a disjunctive concept ta∨ tb. 

In this case, we maximize over a pair of locations xa and xb, and define 

))|Pr(),|(Pr(max)|Pr( , ijbbijaaxxijbbaa BtxBtxBtxtx
ba

====∨= . 

 

 

 

 

 

 

 

 

 

 

 

Figure A.1. Negative and positive bags drawn from the same distribution, but 
labeled according to their intersection with the middle square. Negative 
instances are dots, positive are numbers. The square contains at least one 
instance from every positive bag and no negatives. 

 

To further illustrate the concept of Diverse Density, an artificial data set is created. In the 

data set, there are 5 positive and 5 negative bags, each with 50 instances. Each instance 

was chosen uniformly at randomly from a [0, 100] ×[0, 100] ∈R2 domain, and the 

concept was a 5×5 square in the middle of the domain. A bag was labeled positive if at 

least one of its instances fell within the square, and negative if none did, as shown in 
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Figure A.1. The square in the middle contains at least one instance from every positive 

bag and no negative instances. This is a difficult data set because both positive and 

negative bags are drawn from the same distribution. They only differ in a small area of 

the domain. 

 

(a) Surface using regular density (b) Surface using Diverse Density 

Figure A.2. Density surfaces over the example data of Figure A.1 

 

 

 

 

 

 

 

 

Using regular density (adding up the contribution of every positive bag and 

subtracting negative bags; this is roughly what a supervised learning algorithm such as 

nearest neighbor performs), we can plot the density surface across the domain. Figure 

A.2(a) shows this surface for the data set in Figure 2, and it is clear that finding the peak 

(a candidate hypothesis) is difficult. However, when we plot the Diverse Density surface 

(using the noisy-or model) in Figure A.2(b), it is easy to pick out the global maximum 

which is within the desired concept. The other major peaks in Figure A.2(b) are the result 

of a chance concentration of instances from different bags. With a bit more bad luck, one 
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of those peaks could have eclipsed the one in the middle. However, the chance of this 

decreases as the number of bags (training examples) increases. 

One remaining issue is how to find the maximum Diverse Density. In general, we are 

searching for an arbitrary density landscape and the number of local maxima and size of 

the search space could prohibit any efficient exploration. In the current situation, gradient 

ascent with multiple starting points has been used. This has worked out successfully in 

every test case because we know what starting points to use. The maximum Diverse 

Density peak is made of contributions from some set of positive points. If we start an 

ascent from every positive point, one of them is likely to be closest to the maximum, 

contribute the most to it and have a climb directly to it. While this heuristic is sensible for 

maximizing with respect to location, maximizing with respect to scaling of feature 

weights may still lead to local maxima. 

Please refer to [83] for more detailed discussions on multiple instance learning and its 

applications.  
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