152 research outputs found
Distribution of sound pressure around a singing cricket: radiation pattern and asymmetry in the sound field
Male field crickets generate calls to attract distant females through tegminal stridulation: the
rubbing together of the overlying right wing which bears a file of cuticular teeth against the
underlying left wing which carries a sclerotised scraper. During stridulation, specialised areas of
membrane on both wings are set into oscillating vibrations to produce acoustic radiation. The
location of females is unknown to the calling males and thus increasing effective signal range in all
directions will maximise transmission effectiveness. However, producing an omnidirectional sound
field of high sound pressure levels may be problematic due to the mechanical asymmetry found in
this sound generation system. Mechanical asymmetry occurs by the right wing coming to partially
cover the left wing during the closing stroke phase of stridulation. As such, it is hypothesised that the
sound field on the left-wing side of the animal will contain lower sound pressure components than
on the right-wing side as a result of this coverage. This hypothesis was tested using a novel method
to accurately record a high resolution, three dimensional mapping of sound pressure levels around
restrained Gryllus bimaculatus field crickets singing under pharmacological stimulation. The results
indicate that a bilateral asymmetry is present across individuals, with greater amplitude components
present in the right wing side of the animal. Individual variation in sound pressure to either the right
or left-wing side is also observed. However, statistically significant differences in bilateral sound field
asymmetry as presented here may not affect signalling in the field
Digging the optimum pit: Antlions, spirals and spontaneous stratification
Most animal traps are constructed from self-secreted silk, so antlions are rare among trap builders because they use only materials found in the environment. We show how antlions exploit the properties of the substrate to produce very effective structures in the minimum amount of time. Our modelling demonstrates how antlions: (i) exploit self-stratification in granular media differentially to expose deleterious large grains at the bottom of the construction trench where they can be ejected preferentially, and (ii) minimize completion time by spiral rather than central digging. Both phenomena are confirmed by our experiments. Spiral digging saves time because it enables the antlion to eject material initially from the periphery of the pit where it is less likely to topple back into the centre. As a result, antlions can produce their pitsβlined almost exclusively with small slippery grains to maximize powerful avalanches and hence prey captureβmuch more quickly than if they simply dig at the pitβs centre. Our demonstration, for the first time to our knowledge, of an animal using self-stratification in granular media exemplifies the sophistication of extended phenotypes even if they are only formed from material found in the animalβs environment
Jumping without Using Legs: The Jump of the Click-Beetles (Elateridae) Is Morphologically Constrained
To return to their feet, inverted click-beetles (Elateridae) jump without using their legs. When a beetle is resting on its dorsal side, a hinge mechanism is locked to store elastic energy in the body and releases it abruptly to launch the beetle into the air. While the functional morphology of the jumping mechanism is well known, the level of control that the beetle has over this jumping technique and the mechanical constraints governing the jumps are not entirely clear. Here we show that while body rotations in air are highly variable, the jumps are morphologically constrained to a constant βtakeoffβ angle (79.9°±1.56Β°, nβ=β9 beetles) that directs 98% of the jumping force vertically against gravity. A physical-mathematical model of the jumping action, combined with measurements from live beetle, imply that the beetle may control the speed at takeoff but not the jumping angle. In addition, the model shows that very subtle changes in the exact point of contact with the ground can explain the vigorous rotations of the body seen while the beetle is airborne. These findings suggest that the evolution of this unique non-legged jumping mechanism resulted in a jumping technique that is capable of launching the body high into the air but it is too constrained and unstable to allow control of body orientation at landing
Engineering the locusts: Hind leg modelling towards the design of a bio-inspired space hopper
The mechanical operation of a biologically inspired robot hopper is presented. This design is based on the hind leg dynamics and jumping gait of a desert locust (Schistocerca gregaria). The biological mechanism is represented as a lumped mass system. This emulates the muscle activation sequence and gait responsible for the long, coordinated jump of locusts, whilst providing an engineering equivalent for the design of a biological inspired hopper for planetary exploration. Despite the crude simplification, performance compares well against biological data found in the literature and scaling towards size more typical of robotic realisation are considered from an engineering point of view. This aspect makes an important contribution to knowledge as it quantifies the balance between biological similarity and efficiency of the biomimetic hopping mechanism. Further, this work provides useful information towards the biomimetic design of a hopper vehicle whilst the analysis uncover the range maximisation conditions for powered flight at constant thrust by analytic means. The proposed design bridges concepts looking at the gait dynamics and designs oriented to extended, full powered trajectories
Resilin and chitinous cuticle form a composite structure for energy storage in jumping by froghopper insects
RIGHTS : This article is licensed under the BioMed Central licence at http://www.biomedcentral.com/about/license which is similar to the 'Creative Commons Attribution Licence'. In brief you may : copy, distribute, and display the work; make derivative works; or make commercial use of the work - under the following conditions: the original author must be given credit; for any reuse or distribution, it must be made clear to others what the license terms of this work are.Abstract Background Many insects jump by storing and releasing energy in elastic structures within their bodies. This allows them to release large amounts of energy in a very short time to jump at very high speeds. The fastest of the insect jumpers, the froghopper, uses a catapult-like elastic mechanism to achieve their jumping prowess in which energy, generated by the slow contraction of muscles, is released suddenly to power rapid and synchronous movements of the hind legs. How is this energy stored? Results The hind coxae of the froghopper are linked to the hinges of the ipsilateral hind wings by pleural arches, complex bow-shaped internal skeletal structures. They are built of chitinous cuticle and the rubber-like protein, resilin, which fluoresces bright blue when illuminated with ultra-violet light. The ventral and posterior end of this fluorescent region forms the thoracic part of the pivot with a hind coxa. No other structures in the thorax or hind legs show this blue fluorescence and it is not found in larvae which do not jump. Stimulating one trochanteral depressor muscle in a pattern that simulates its normal action, results in a distortion and forward movement of the posterior part of a pleural arch by 40 μm, but in natural jumping, the movement is at least 100 μm. Conclusion Calculations showed that the resilin itself could only store 1% to 2% of the energy required for jumping. The stiffer cuticular parts of the pleural arches could, however, easily meet all the energy storage needs. The composite structure therefore, combines the stiffness of the chitinous cuticle with the elasticity of resilin. Muscle contractions bend the chitinous cuticle with little deformation and therefore, store the energy needed for jumping, while the resilin rapidly returns its stored energy and thus restores the body to its original shape after a jump and allows repeated jumping
The effects of temperature and body mass on jump performance of the locust Locusta migratoria
Locusts jump by rapidly releasing energy from cuticular springs built into the hind femur that deform when the femur muscle contracts. This study is the first to examine the effect of temperature on jump energy at each life stage of any orthopteran. Ballistics and high-speed cinematography were used to quantify the energy, distance, and take-off angle of the jump at 15, 25, and 35Β°C in the locust Locusta migratoria. Allometric analysis across the five juvenile stages at 35Β°C reveals that jump distance (D; m) scales with body mass (M; g) according to the power equation D = 0.35M0.17Β±0.08 (95% CI), jump take-off angle (A; degrees) scales as A = 52.5M0.00Β±0.06, and jump energy (E; mJ per jump) scales as E = 1.91M1.14Β±0.09. Temperature has no significant effect on the exponent of these relationships, and only a modest effect on the elevation, with an overall Q10 of 1.08 for jump distance and 1.09 for jump energy. On average, adults jump 87% farther and with 74% more energy than predicted based on juvenile scaling data. The positive allometric scaling of jump distance and jump energy across the juvenile life stages is likely facilitated by the concomitant relative increase in the total length (Lf+t; mm) of the femur and tibia of the hind leg, Lf+t = 34.9M0.37Β±0.02. The weak temperature-dependence of jump performance can be traced to the maximum tension of the hind femur muscle and the energy storage capacity of the femur's cuticular springs. The disproportionately greater jump energy and jump distance of adults is associated with relatively longer (12%) legs and a relatively larger (11%) femur muscle cross-sectional area, which could allow more strain loading into the femur's cuticular springs. Augmented jump performance in volant adult locusts achieves the take-off velocity required to initiate flight.Edward P. Snelling, Christie L. Becker, Roger S. Seymou
So Small, So Loud: Extremely High Sound Pressure Level from a Pygmy Aquatic Insect (Corixidae, Micronectinae)
To communicate at long range, animals have to produce intense but intelligible signals. This task might be difficult to achieve due to mechanical constraints, in particular relating to body size. Whilst the acoustic behaviour of large marine and terrestrial animals has been thoroughly studied, very little is known about the sound produced by small arthropods living in freshwater habitats. Here we analyse for the first time the calling song produced by the male of a small insect, the water boatman Micronecta scholtzi. The song is made of three distinct parts differing in their temporal and amplitude parameters, but not in their frequency content. Sound is produced at 78.9 (63.6β82.2) SPL rms re 2.10β5 Pa with a peak at 99.2 (85.7β104.6) SPL re 2.10β5 Pa estimated at a distance of one metre. This energy output is significant considering the small size of the insect. When scaled to body length and compared to 227 other acoustic species, the acoustic energy produced by M. scholtzi appears as an extreme value, outperforming marine and terrestrial mammal vocalisations. Such an extreme display may be interpreted as an exaggerated secondary sexual trait resulting from a runaway sexual selection without predation pressure
Antibody Labelling of Resilin in Energy Stores for Jumping in Plant Sucking Insects
The rubbery protein resilin appears to form an integral part of the energy storage structures that enable many insects to jump by using a catapult mechanism. In plant sucking bugs that jump (Hemiptera, Auchenorrhyncha), the energy generated by the slow contractions of huge thoracic jumping muscles is stored by bending composite bow-shaped parts of the internal thoracic skeleton. Sudden recoil of these bows powers the rapid and simultaneous movements of both hind legs that in turn propel a jump. Until now, identification of resilin at these storage sites has depended exclusively upon characteristics that may not be specific: its fluorescence when illuminated with specific wavelengths of ultraviolet (UV) light and extinction of that fluorescence at low pH. To consolidate identification we have labelled the cuticular structures involved with an antibody raised against a product of the Drosophila CG15920 gene. This encodes pro-resilin, the first exon of which was expressed in E. coli and used to raise the antibody. We show that in frozen sections from two species, the antibody labels precisely those parts of the metathoracic energy stores that fluoresce under UV illumination. The presence of resilin in these insects is thus now further supported by a molecular criterion that is immunohistochemically specific
- β¦