8,182 research outputs found

    A Bayesian adaptive marker‐stratified design for molecularly targeted agents with customized hierarchical modeling

    Get PDF
    It is well known that the treatment effect of a molecularly targeted agent (MTA) may vary dramatically, depending on each patient's biomarker profile. Therefore, for a clinical trial evaluating MTA, it is more reasonable to evaluate its treatment effect within different marker subgroups rather than evaluating the average treatment effect for the overall population. The marker‐stratified design (MSD) provides a useful tool to evaluate the subgroup treatment effects of MTAs. Under the Bayesian framework, the beta‐binomial model is conventionally used under the MSD to estimate the response rate and test the hypothesis. However, this conventional model ignores the fact that the biomarker used in the MSD is, in general, predictive only for the MTA. The response rates for the standard treatment can be approximately consistent across different subgroups stratified by the biomarker. In this paper, we proposed a Bayesian hierarchical model incorporating this biomarker information into consideration. The proposed model uses a hierarchical prior to borrow strength across different subgroups of patients receiving the standard treatment and, therefore, improve the efficiency of the design. Prior informativeness is determined by solving a “customized” equation reflecting the physician's professional opinion. We developed a Bayesian adaptive design based on the proposed hierarchical model to guide the treatment allocation and test the subgroup treatment effect as well as the predictive marker effect. Simulation studies and a real trial application demonstrate that the proposed design yields desirable operating characteristics and outperforms the existing designs

    Negative entanglement measure for bipartite separable mixed states

    Full text link
    We define a negative entanglement measure for separable states which shows that how much entanglement one should compensate the unentangled state at least for changing it into an entangled state. For two-qubit systems and some special classes of states in higher-dimensional systems, the explicit formula and the lower bounds for the negative entanglement measure have been presented, and it always vanishes for bipartite separable pure states. The negative entanglement measure can be used as a useful quantity to describe the entanglement dynamics and the quantum phase transition. In the transverse Ising model, the first derivatives of negative entanglement measure diverge on approaching the critical value of the quantum phase transition, although these two-site reduced density matrices have no entanglement at all. In the 1D Bose-Hubbard model, the NEM as a function of t/Ut/U changes from zero to negative on approaching the critical point of quantum phase transition.Comment: 6 pages, 3 figure

    Long Text Generation via Adversarial Training with Leaked Information

    Get PDF
    Automatically generating coherent and semantically meaningful text has many applications in machine translation, dialogue systems, image captioning, etc. Recently, by combining with policy gradient, Generative Adversarial Nets (GAN) that use a discriminative model to guide the training of the generative model as a reinforcement learning policy has shown promising results in text generation. However, the scalar guiding signal is only available after the entire text has been generated and lacks intermediate information about text structure during the generative process. As such, it limits its success when the length of the generated text samples is long (more than 20 words). In this paper, we propose a new framework, called LeakGAN, to address the problem for long text generation. We allow the discriminative net to leak its own high-level extracted features to the generative net to further help the guidance. The generator incorporates such informative signals into all generation steps through an additional Manager module, which takes the extracted features of current generated words and outputs a latent vector to guide the Worker module for next-word generation. Our extensive experiments on synthetic data and various real-world tasks with Turing test demonstrate that LeakGAN is highly effective in long text generation and also improves the performance in short text generation scenarios. More importantly, without any supervision, LeakGAN would be able to implicitly learn sentence structures only through the interaction between Manager and Worker.Comment: 14 pages, AAAI 201

    Computing resource allocation in three-tier IoT fog networks: a joint optimization approach combining Stackelberg game and matching

    Get PDF
    Fog computing is a promising architecture to provide economical and low latency data services for future Internet of Things (IoT)-based network systems. Fog computing relies on a set of low-power fog nodes (FNs) that are located close to the end users to offload the services originally targeting at cloud data centers. In this paper, we consider a specific fog computing network consisting of a set of data service operators (DSOs) each of which controls a set of FNs to provide the required data service to a set of data service subscribers (DSSs). How to allocate the limited computing resources of FNs to all the DSSs to achieve an optimal and stable performance is an important problem. Therefore, we propose a joint optimization framework for all FNs, DSOs, and DSSs to achieve the optimal resource allocation schemes in a distributed fashion. In the framework, we first formulate a Stackelberg game to analyze the pricing problem for the DSOs as well as the resource allocation problem for the DSSs. Under the scenarios that the DSOs can know the expected amount of resource purchased by the DSSs, a many-to-many matching game is applied to investigate the pairing problem between DSOs and FNs. Finally, within the same DSO, we apply another layer of many-to-many matching between each of the paired FNs and serving DSSs to solve the FN-DSS pairing problem. Simulation results show that our proposed framework can significantly improve the performance of the IoT-based network systems

    Product-based Neural Networks for User Response Prediction

    Full text link
    Predicting user responses, such as clicks and conversions, is of great importance and has found its usage in many Web applications including recommender systems, web search and online advertising. The data in those applications is mostly categorical and contains multiple fields; a typical representation is to transform it into a high-dimensional sparse binary feature representation via one-hot encoding. Facing with the extreme sparsity, traditional models may limit their capacity of mining shallow patterns from the data, i.e. low-order feature combinations. Deep models like deep neural networks, on the other hand, cannot be directly applied for the high-dimensional input because of the huge feature space. In this paper, we propose a Product-based Neural Networks (PNN) with an embedding layer to learn a distributed representation of the categorical data, a product layer to capture interactive patterns between inter-field categories, and further fully connected layers to explore high-order feature interactions. Our experimental results on two large-scale real-world ad click datasets demonstrate that PNNs consistently outperform the state-of-the-art models on various metrics.Comment: 6 pages, 5 figures, ICDM201
    corecore