
A Bayesian adaptive marker-stratified design for molecularly

targeted agents with customized hierarchical modeling

Yong Zang1,2∗, Beibei Guo3, Yan Han1, Sha Cao1,2 and Chi Zhang2,4

1. Department of Biostatistics, Indiana University

2. Center for Computational Biology and Bioinformatics, Indiana University

3. Department of Experimental Statistics, Louisiana State University

4. Department of Medical and Molecular Genetics, Indiana University.

∗For correspondence: Yong Zang, Department of Biostatistics, Indiana University, 410 W

10th Street, Indianapolis, IN, 46075, US. Email: zangy@iu.edu

Abstract

It is well known that the treatment effect of a molecularly targeted agent (MTA) may vary

dramatically, depending on each patients’ biomarker profile. Therefore, for a clinical trial

evaluating MTA, it is more reasonable to evaluate its treatment effect within different marker

subgroups rather than evaluating the average treatment effect for the overall population. The

marker-stratified design (MSD) provides a useful tool to evaluate the subgroup treatment

effects of MTAs. Under the Bayesian framework, the beta-binomial model is convention-

ally used under the MSD to estimate the response rate and test the hypothesis. However,

this conventional model ignores the fact that the biomarker used in the MSD is in general

predictive only for the MTA. The response rates for the standard treatment can be ap-

proximately consistent across different subgroups stratified by the biomarker. In this paper,

we proposed a Bayesian hierarchical model incorporating this biomarker information into

the consideration. The proposed model uses a hierarchical prior to borrow strength across
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different subgroups of patients receiving the standard treatment and therefore improve the

efficiency of the design. The prior informativeness is determined by solving a “customized”

equation reflecting the physician’s professional opinion. We developed a Bayesian adaptive

design based on the proposed hierarchical model to guide the treatment allocation and test

the subgroup treatment effect as well as the predictive marker effect. Simulation studies

and a real trial application demonstrate that the proposed design yields desirable operating

characteristics and outperforms the existing designs.

KEY WORDS: Adaptive design, Bayesian method, Biomarker, Clinical trial, Hierarchical

modeling, Marker-stratified design, Molecularly targeted agents, Subgroup treatment effect.
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1 Introduction

Molecularly targeted agents (MTAs) have revolutionized the way that physicians treat pa-

tients by enabling them to select treatments tailored to patients’ specific biomarker profile1.

MTAs are expected to be more effective and less toxic than conventional chemotherapy and

radiotherapy because they block the growth of cancer cells by identifying and attacking

specific functional biomarker while sparing normal cells at the same time2. Upon their de-

velopment, MTAs have been used to treat breast cancer, multiple myeloma, prostate cancer

and other types of cancer3.

The biomarker plays a key role in the MTAs development and personalized treatment

selection. According to different functionalities in the process of treatment selection and

disease diagnosis, biomarkers can be broadly categorized as predictive or prognostic4,5. A

predictive biomarker is one that is used to foretell the differential efficacy of a particular

therapy based on the presence or absence of the biomarker, e.g., only patients whose tis-

sues highly express the biomarker are expected to respond favorably to a specific MTA. A

prognostic biomarker is one that separates a population with respect to the risk of a spe-

cific outcome, such as disease progression, in the absence of treatment or despite receiving a

non-targeted standard treatment. A typical example of the prognostic marker is the clinical

tumor stage as patients with severe stage of cancer tend to respond worse than patients with

early stage of cancer regardless of what treatment they receive. Predictive and prognostic

biomarkers have different clinical utilities and the one an MTA targets for is in general a

predictive marker. For example, the MTA tamoxifen targets for the biomarker estrogen re-

ceptor (ER), which is a predictive marker in the sense that tamoxifen is effective only for

patients with overly-expressed ER6.

Due to the biological mechanism of MTAs, the performance of such agents varies remark-

ably depending on patients’ biomarker profile. Therefore, the treatment effects of MTAs
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are generally evaluated within different subgroups stratified by patient’s predictive marker

status7. The marker-stratified design (MSD) is arguably one of the most popular biomarker-

guided clinical trial designs to evaluate the subgroup treatment effect of MTAs and has

been used to conduct a number of clinical trials8,9,10. The MSD stratifies patients into a

marker-positive subgroup and a marker-negative subgroup according to the patients’ pre-

dictive marker status, and then randomizes the patients to receive either the MTA or the

standard therapy within each subgroup. The treatment effect of the MTA can be evaluated

by comparing the responses to the different treatments within each marker subgroup11.

The premise of the MSD is that the biomarker is predictive such that there is a discrep-

ancy of the MTA treatment effect between marker-stratified subgroups. Due to the distinct

clinical function of the predictive and prognostic markers, it is reasonable to speculate that

the predictive marker used in an MSD has limited prognostic effect. In particular, the re-

sponse rates for the standard treatment between different marker-stratified subgroups are

often close to each other because the targeted biomarker is predictive for the MTA only. For

example, the epidermal growth factor receptor (EGFR) is a well known predictive marker

for non-small-cell lung cancer (NSCLC) patients12. However, recent study has revealed that

EGFR contains no prognostic marker effect for NSCLC patients receiving chemotherapy13.

As a result, the response rates for NSCLC patients receiving non-EGFR-targeted treatment

(e.g., chemotherapy) are approximately consistent regardless of patients’ EGFR biomarker

status. Therefore, a novel design which incorporates these biomarker information into the

consideration is expected to improve the efficiency of testing the subgroup treatment effect,

which is the primary objective of this paper.

Our study is motivated by a colerectal cancer trial, which is being conducted at the

Indiana University Melvin and Bren Simon Cancer Center. The biomarker used in this

trial is the KRAS gene mutation. The MTA is a novel KRAS inhibitor and the standard

treatment is radiotherapy. The trial use the MSD to evaluate the treatment effect of the

4



KRAS inhibitor compared with radiotherapy within the marker-positive and marker-negative

subgroups, which are stratified by patients’ KRAS gene expression level through RNA se-

quencing. A pilot study indicates that there is no significant difference of the tumor control

rates for patients receiving radiotherapy between marker-positive and marker-negative sub-

groups, which is also confirmed by other studies14. Therefore, how to design an efficient

marker-stratified trial by integrating this prior information is the challenge of this trial.

In this paper, we propose a Bayesian adaptive MSD to evaluate the subgroup treatment

effect of MTAs as well as the predictive marker effect. We develop a Bayesian hierarchical

model to capture the similarity of the response rates for patients receiving the standard

therapy between different marker-stratified subgroups. We use a tuning parameter within

the hierarchical model to represent our prior knowledge regarding the often limited prog-

nostic effect of the biomarker used in the MSD. The magnitude of the tuning parameter is

determined by solving a “customized” equation reflecting the reliability of the prior infor-

mation based on the physician’s experience. Therefore, by setting up an informative prior

to borrow information across different subgroups, the proposed Bayesian adaptive design

achieves higher efficiency while strengthening the individual ethics at the same time. That

is, on one hand, the proposed design yields superior power to report promising MTAs and

detect significant predictive marker effect with well-controlled type I error rates; one the

other hand, the proposed design allocates more patients to more efficacious treatment arms

using a response-adaptive randomization algorithm.

The rest of this paper is organized as follows. We propose the Bayesian hierarchical model

and introduce how to determine the tuning parameter through a “customized” equation in

Section 2. In Section 3, we propose an adaptive MSD based on the hierarchical model.

In Section 4, we carry out comprehensive simulation study to investigate the operating

characteristics of the proposed design and apply this design to the motivating colerectal

trial. We provide a discussion remark in Section 5.
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2 Hierarchical Model

Let M be the biomarker indicator with M = 1 denoting a marker-positive patient and M = 0

denoting a marker-negative patient. Let T be the treatment indicator, with T = 1 denoting

the MTA and T = 0 denoting the standard therapy. We use a binary endpoint Y to indicate

whether the patient responds favorably to the received treatment (i.e., Y = 1) or not (i.e.,

Y = 0). Let pjk = pr(Y = 1|M = j, T = k) denote the response probability for patients

with marker M = j who receive treatment T = k.

Under the MSD, we enroll patients and classify them into different subgroups based on

M . Then, within each subgroup, we randomize the patients to receive either T = 0 or

T = 1. The primary objective of the MSD is to test the treatment effects of the MTA within

marker-positive and marker-negative subgroups separately8,9,10,11. Specifically, let us define

p11 − p10 as the treatment effect of the MTA with respect to the standard therapy in the

marker-positive subgroup and p01− p00 be the counterpart in the marker-negative subgroup.

Under the Bayesian framework, we claim that the MTA is superior to the standard therapy

in subgroup j (j = 0, 1) if and only if

pr(pj1 − pj0 > δ|D) > λ1,

where pr(pj1 − pj0 > δ|D) is the posterior probability based on the observed data D, δ > 0

is the minimal meaningful margin for treatment effect and λ1 is the lower bound cutoff to

claim superiority.

Let us focus on the standard therapy arm first. According to our definition, p10 − p00

is the prognostic effect of biomarker M as it measures the marginal marker effect in the

absence of the MTA. Because M is a predictive marker under MSD, its prognostic marker

effect can be limited. If this is true, it is reasonable to assume that there is little difference
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between p10 and p00. In other words, the similarity between these two probabilities should

be high. To capture this similarity, we propose a Bayesian beta-binomial hierarchical model.

Specifically, let us define njk as the number of patients with M = j receiving treatment

T = k (j, k = 0, 1), and define Yjk as the number of patients among these njk patients who

respond favorably to the treatment (Y = 1). After denoting Binom(·) and Beta(·) be the

density functions of the binomial and beta distributions, we model the response rates p10

and p00 as

Y10 ∼ Binom(n10, p10);Y00 ∼ Binom(n00, p00)

p10 ∼ Betap10(mq,m(1− q)); p00 ∼ Betap00(mq,m(1− q))

q ∼ Betaq(α0, β0) (1)

where m, α0 and β0 are the hyperparameters. Under this parameterization, q can be viewed

as the “average” response rate for all the patients receiving the standard therapy T = 0

and m can be viewed as the prior prognostic effect which characterizes our prior knowledge

regarding the prognostic effect for biomarker M . In other words, m measures how close

p10 and p00 are. A larger m indicates less prognostic marker effect and higher correlation

between p10 and p00 a priori and therefore more information can be borrowed across different

subgroups.

We propose to customize the prior prognostic effect m according to the reliability of our

prior information regarding the magnitude of the prognostic marker effect. In particular,

we define f(p10|q,m) and f(p00|q,m) as the density functions for the prior distributions of

p10 and p00 conditional on q and m and define g(q) as the density function for the prior

distribution of q. Then, after denoting I(·) as the indicator function and τ as a pre-specified

cut-off representing the upper-bound of the prognostic marker effect, we characterize the
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reliability of the prior information using the probability

pr(|p10 − p00| ≤ τ |m) = E
{

E
(
I(|p10 − p00| < τ)|q,m

)}
= E

(∫
I(|p10−p00|<τ)

f(p10|q,m)f(p00|q,m)dp10dp00

)
=

∫
g(q)

(∫
I(|p10−p00|<τ)

f(p10|q,m)f(p00|q,m)dp10dp00

)
dq.

Here the second equation holds because p10 and p00 are conditionally independent given

the value of q and we take the expectation of
∫
I(|p10−p00|<τ) f(p10|q,m)f(p00|q,m)dp10dp00

with respect to the distribution of q. Hence, pr(|p10 − p00| ≤ τ |m) is a function of the

prior prognostic effect m. After consulting with the physicians and eliciting a value γ to

this probability, the value of m can be determined by solving the following “customized”

equation

pr(|p10 − p00| ≤ τ |m) = γ.

In addition to m, the prior distribution of q can also incorporate the physician’s pro-

fessional opinion. However, this prior information is often unavailable and a vague prior

can be specified for q (e.g., α0 = β0 = 0.5). In this article, we use an uninformative prior

for q and an informative m to reflect the setting that we have certain knowledge about the

prognostic marker effect but know little about the response rate, which is a common setting

under the MSD. Finally, after determining the prior distribution, we can sample the posterior

distribution of p10 and p00 using Gibbs sampler.

We also need the posterior distributions of p11 and p01 to test the subgroup treatment

effects p11 − p10 and p01 − p00. Due to the potential predictive effect of marker M , the

values of p11 and p01 may be remarkably different. Hence, we use a beta-binomial model to
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characterize these two probabilities as

Y11 ∼ Binom(n11, p11);Y01 ∼ Binom(n01, p01)

p11 ∼ Betap11(α11, β11); p01 ∼ Betap01(α01, β01), (2)

and the posterior distribution can be easily determined following a beta distribution.

Finally, with the posterior distributions of all the response rates at hand, we can test the

treatment effect for the MTA. As we mentioned earlier, let D denote all the observed data,

we can use the posterior probabilities pr(pj1 − pj0 > δ|D) to conduct the MSD and test the

subgroup treatment effect of the MTA with M = j for j = 0, 1, which will be illustrated in

detail in the next section. As the proposed design borrows information between p10 and p00,

which are the response probabilities of the standard therapy in the marker-positive subgroup

and marker-negative subgroup, it will yields more precise posterior estimates of both p10 and

p00 compared with the conventional MSD. Furthermore, since the marker-positive treatment

effect p11 − p10 contains p10 and the marker negative treatment effect p01 − p00 contains

p00, the proposed design should be more powerful in detecting the treatment effects in both

subgroups.

3 Adaptive Design

We propose a Bayesian adaptive MSD based on the aforementioned posterior probabilities

pr(pj1 − pj0 > δ|D) (j = 0, 1). However, in the beginning of an adaptive design, response-

adaptive randomization is difficult due to the lack of data. To alleviate this issue, we take

a two-stage randomization scheme. Patients come in cohort during the trial. In stage I,

each cohort of patients are equally randomized to receive either the standard therapy T = 0
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or the MTA T = 1 after assessing their biomarker status M with a maximum number of

cohorts N1. The objective of this stage is to collect some preliminary data for response rates

to facilitate the adaptive randomization in stage II.

The trial cannot be early terminated in stage I, however, we consider early stopping for

futility and/or superiority in stage II. Specifically, we define λl as the lower-bound cut-off of

early stopping for futility and λu as the upper-bound cut-off of early stopping for superiority

and use these two cut-offs to monitor the early-stopping of the trial during the interim

analysis. Assuming that l − 1 cohorts of patients have been enrolled in the trial, we assign

treatments to the lth cohort of patients as follows.

1. Based on the cumulated data Dl−1, we update the posterior probability pr(pj1− pj0 >

δ|Dl−1) for j = 0, 1 based on the hierarchical model (1) and beta-binomial model (2).

2. If pr(pj1− pj0 > δ|Dl−1) < λl, we claim futility of the MTA and stop enrolling patients

with M = j. Similarly, if pr(pj1−pj0 > δ|Dl−1) > λu, we claim superiority of the MTA

and stop enrolling patients with M = j. If both subgroups are early stopped, then the

whole trial is terminated.

3. If the whole trial is not terminated, we assess the biomarker statuses for the lth cohort

of patients. Then, if the subgroup M = j is not early stopped, we randomize the

patients with M = j to receive the standard therapy T = 0 or the MTA T = 1 with

respective probabilities pr(pj1 − pj0 ≤ δ|Dl−1) and pr(pj1 − pj0 > δ|Dl−1). Otherwise,

if the subgroup M = j is early stopped, the patients with M = j should drop off the

trial.

4. We collect the response outcomes for the lth cohort of patients and update the cumu-

lative date from Dl−1 to Dl.

5. We repeat steps 1-4 until the trial is terminated or the maximum number of cohorts
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N2 for stage II is reached.

If the maximum number of cohorts N2 is reached, we need to make a final treatment

recommendation at the end of the trial. For this purpose, let us define λ1 as a pre-specified

cut-off and assume that subgroup M = j is not early stopped during the trial. Then, we

claim superiority of the MTA for subgroup M = j if pr(pj1 − pj0 > δ|DN2) > λ1 and claim

futility of the MTA for subgroup M = j otherwise. As the proposed design uses hierarchical

modeling to borrow information, we refer it as HMSD hereafter.

In addition to testing the treatment effect in different subgroup, the HMSD can also

be used to detect the predictive marker effect. Following Zang et al.15, we define ζ =

(p11 − p10) − (p01 − p00) as the predictive marker effect. Then, at the end of the trial, we

claim a significant predictive marker effect if pr(ζ > δ|DN2) > λ2 and claim no predictive

marker effect otherwise where λ2 is the cut-off for predictive marker effect.

4 Simulation and Application

4.1 Simulation studies

We conduct comprehensive simulation studies to investigate the operating characteristics of

the proposed HMSD. We compare HMSD with an adaptive-randomized MSD named AMSD

and an equal-randomized MSD named EMSD. Both AMSD and EMSD ignore the possible

similarity between p00 and p10 and use the traditional beta-binomial model (2) to model

all the pjk (j, k = 0, 1). The AMSD uses the same response-adaptive scheme as HMSD to

assign patients in stage II whereas the EMSD insists on the equal randomization through

the trial. The difference between the HMSD and AMSD is that HMSD uses the customized

hierarchical model to model p00 and p10 while AMSD uses the beta-binomial model for all the
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response rates. The difference between AMSD and EMSD is that AMSD uses the reponse-

adaptive randomization in stage II while EMSD uses the equal randomization through the

trial. We customize two HMSD according to different prior information, which are referred

to as HMSD1 and HMSD2. In HMSD1 we specify pr(|p10 − p00| ≤ 0.05) = 0.95, resulting in

m = 450. In HMSD2 we are less confident about the prior information and set pr(|p10−p00| ≤

0.05) = 0.80, which yields a value of m = 125.

Table 1 shows the simulation results, including the power/type I error, the number of

patients treated with different therapies within different marker subgroups (njk), the total

number of patients treated in the trial (n), probability of early stopping for futility (ESF)

and overall response rate for the trial. We set N1 = 5, N2 = 25 and let patients come in a

cohort of size 5. The minimum meaningful marginal to claim superiority of the MTA, δ, was

set to 0.05. We also specify λl = 0.05, λu = 1 and λ1 = 0.95. That is, we allow early stopping

for futility rather than superiority, which is reasonable in practice because when a drug is

promising, for the purpose of enhancing the individual ethics of the trial, it is often preferred

to allocate more patients to that drug. For other hyperparameters in the prior distributions,

we select vague priors by specifying α0 = α01 = α11 = 0.3 and β0 = β01 = β11 = 0.7. All the

results are based on the average of 10,000 simulated trials. For the MCMC procedure, we

burn-in the first 10,00 iterations and draw the posterior samples from the successive 5,000

iterations.

In scenario 1, the response rates for both drugs between different marker subgroups

are equal (0.3). Therefore, the MTA is not promising for both subgroups and there is no

prognostic marker effect at all. All the designs under comparison control the type I errors

well around 5%. The other operating characteristics are also similar. The probabilities

of early stopping for futility range from 30% to 35% among different designs, resulting in

an average sample size around 120 for all the designs. In scenario 2, the MTA and the

standard therapy have the same response rates within the marker-negative subgroup (0.3)
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and marker-positive subgroups (0.35), with a limited prognostic marker effect of 0.05. Again,

all the designs control the type I error well. In particular, compared with scenario 1, using

HMSD in scenario 2 only slightly increases the type I error for the marker-positive subgroup,

indicating that the proposed design can bear certain amount of prognostic marker effect.

In scenario 3, the MTA is only promising for the marker-positive subgroup. All the designs

control the type I error under 5%. For the power comparison in the marker-positive subgroup,

The EMSD and AMSD yield similar power. The proposed HMSD is more powerful than

both the EMSD and AMSD. Specifically, compared with AMSD, the power of the HMSD1

and HMSD2 is remarkably 17.1% and 11.7% higher. In terms of response rate comparison,

the response-adaptive designs (AMSD and HMSD) achieve about 5% higher response rate

than the EMSD. The setting of scenario 4 is similar as scenario 3. The HMSD1 reports the

highest power and also the highest response rate, and the HMSD2 is the second best design

among the three designs (EMSD, AMSD and HMSD2).

In scenarios 5 and 6, the MTA is preferred for both subgroups. As the AMSD is more

powerful than the EMSD, we restrict our power comparison between the HMSD and AMSD.

The HMSD1 is more powerful than the AMSD under both scenarios. The power improve-

ment is about 4% in marker-negative subgroup and 21% in marker-positive subgroup under

scenario 5, and 4% in marker-negative subgroup and 11% in marker-positive subgroup un-

der scenario 6. HMSD2 is less powerful than HMSD1, but still better than the MSD. The

AMSD and HMSD yield similar response rates, which are about 5% and 3% higher than

the response rate of EMSD under scenario 5 and scenario 6, respectively. In addition, the

EMSD allocates about the same number of patients between different drugs regardless of

their different response rates. Oppositely, the AMSD and HMSD allocate more patients to

the more promising MTA rather than the standard therapy, which is more ethical because

more patients can benefit from the trial.

To sum up, the proposed HMSD can well control the type I error if there is no or limited
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prognostic marker effect. For power evaluation, the HMSD is the most powerful design

across all the scenarios and the power improvement is substantial within the marker-positive

subgroup (10% ∼ 20% ). In addition, the HMSD1 is more powerful than the HMSD2

because the former design imposes a more informative prior than the latter design. At the

meantime, the HMSD is at least as ethical as the AMSD as they yield similar response rates

and patients allocation ratios. Therefore, the HMSD outperforms the existing designs and

should be recommended in practice.

In Table 2 we report the effective sample size (ESS)16 of the proposed prior distributions

for p10 and p00 based on the simulation approximation All the ESS are below 1 for all the

scenarios considered in Table 1, which indicates a vague prior for p10 and p00. Hence, although

the proposed hierarchical model makes a strong assumption on the prognostic marker effect,

it is still non-informative for the marginal prior distribution of p10 and p00 so the data should

dominate the posterior estimate.

To demonstrate the benefit of using model (1) to detect the subgroup treatment effect,

in Table 3 we report the standard deviations of the posterior distributions of p10 and the

treatment effect p11−p10 in the marker-positive subgroup using the EMSD, AMSD, HMSD1

and HMSD2. We consider scenarios 3, 4, 5 and 6 in Table 1. The posterior distribution of p10

in EMSD and AMSD were calculated from the traditional beta-binomial model, whereas the

posterior distribution of p10 in HMSD1 and HMSD2 were calculated from the hierarchical

model (1). As we expect, using the hierarchical model (1) yields more precise posterior

estimate of p10. Consequently, the HMSD1 and HMSD2 report smaller standard deviations

of the posterior distribution of p11−p10 compared with the EMSD and AMSD. Hence, based

on Table 1 and 3 we conclude that although the prognostic effect is not directly related to the

subgroup treatment effect, incorporating the prognostic marker information into the model

can improve of the efficiency of the test in detecting the subgroup treatment effect.

All the simulated trials in Table 1 were not allowed to stop for superiority (λu = 1).
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However, by adding a stopping rule for superiority, we may expect an increased power

and a reduced sample size under the alternative hypothesis. Therefore, it is of interest to

investigate the performances of various designs with different values of λu other than 1.

Table 4 summarizes the simulation results. We consider scenarios 2, 4 and 6 in Table 1 with

λu = 1, 0.99 and 0.97 respectively. First of all, we notice that the type I error increased with

decreasing λu. However, all the designs still control the type I error around 10%, which is

in general acceptable for a phase II clinical trial. Secondly, as we expect, adding a stopping

rule for superiority can increase power and reduce the sample size at the same time. We

take HMSD1 in scenario 4 as an example. When there is no early stopping for superiority

(λu = 1), the power of HMSD1 is 82.9% and the sample size is 131.1. The power increases

to 85.5% and furthermore 91.1% and the sample size decreases remarkably to 94.3 and 85.0

when λu = 0.99 and 0.97 respectively. We also notice that the response-adaptive designs

(AMSD and HMSD) yield smaller response rate by integrating the early stopping rule for

superiority. In the aforementioned example, the response rate for the HMSD1 is 34.6% when

λu = 1, and is 5.2% and 5.7% smaller when λu = 0.99 and 0.97, respectively. A reasonable

explanation is that due to the early-stopping rule, a certain amount of patients who would

benefit from the response-adaptive scheme lose their opportunity because the trial is early

terminated, which results in a smaller response rate compared with the counterpart without

early-stopping rule under the alternative. Therefore, there is a trade-off by integrating the

early-stopping rule for superiority into the MSD. Adding this rule will result in an inflated

type I error and a decreased response rate. As a reward, the power performance can be

improved and the sample size can reduce dramatically. Also, based on the simulation results

in Table 4, the proposed HMSD still outperforms the other designs in terms of power and

response rate comparison.

As we mentioned earlier, in addition to the subgroup treatment effect, the proposed

design can also be used to detect the predictive marker effect. In Figure (1) we depict the
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power of the EMSD, AMSD, HMSD1 and HMSD2 in detecting the predictive marker effect,

which is denoted by ζ. We let (p00, p01, p10) = (0.3, 0.4, 0.3) and increase ζ from 0.1 to 0.4.

As we expect, the power of the HMSD are consistently higher than those of the EMSD and

AMSD in detecting the predictive marker effect. For example, when ζ = 0.35, the power for

EMSD and AMSD are around 60% and 50% whereas the power for HMSD is over 90%.

4.2 Trial application

We apply the proposed HMSD to the motivating colerectal cancer trial. In particular, for

the trial protocol preparation, we investigate the required sample size to achieve 80% power

and 10% type I error to detect the treatment effect of the KRAS inhibitor compared with

the standard radiotherapy for the marker-positive patients with KRAS gene mutation. The

response outcome of this phase II trial is the local tumor shrinkage, which is dichotomized

into a binary indicator. Patients come in cohort with a size of 5. We select λl = 0.05,

λ = 0.95 and consider two different values of λu as 1 and 0.99. According the simulation

results in Table 1, these sets of parameters can control the type I error well below 10%.

Based on a pilot study and after consulting with the physicians of the trial, we specify

p00 = p10 = 0.3, p01 = 0.4 and m = 450 to reflect the PI’s confidence about the similarity

between p00 and p10. The KRAS mutation rate is about 45% for colerectal cancer patients17.

Table 5 reports the empirical sample size to achieve 80% power for the EMSD, AMSD and

HMSD based on 10,000 simulations with different values of p11. The corresponding response

rate for each design is also presented. Among all the designs, the AMSD requires the largest

sample size to achieve 80% power and the HMSD is the optimal design in terms of sample

size determination. In particular, when p11 = 0.6 and λu = 1, the required sample size for

the AMSD is as large as 276. For comparison, under the same setting, the EMSD and HMSD

require 56 and 117 less patients to obtain the same power. We also notice that HMSD yields
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almost the same response rate as the AMSD, which is 8.3% higher than the EMSD. When

the early-stopping rule for superiority is added (λu = 0.99), all the designs yield significantly

lower sample size and the HMSD still obtains the minimum, which is 45 lower than the

EMSD and 101 lower than the AMSD. The results for p11 = 0.7 are similar. In general,

when comparing HMSD with EMSD, the HMSD significantly reduces the sample size and

improves the response rate. Comparing HMSD with AMSD, the sample size reduction is

even bigger and these two designs yield comparable response rates. Therefore, the PI of the

colerectal cancer trial has determined to use the HMSD for trial conduction.

4.3 Sensitivity analysis

We conduct a series of sensitivity analyses to investigate the operating characteristics of the

proposed HMSD with different sample sizes and response rates. Figure 2 depicts the power

changing with different sample size. The parameter setting is the same as scenario 4 in

Table 1 except that we let the number of cohorts in stage II (N2) increase from 1 to 25. As

shown in Figure 2, the power of the HMSD is consistently higher than that of the EMSD and

AMSD. The magnitude of the power improvement enlarges when N2 increases. Additionally,

in Figure 3 we fix N2 = 25 and let p11 increases from 0.26 to 0.50. The conclusion for Figure

3 is the same as Figure 2.

Figure 4 presents the response rates of different designs with different combinations of N2

and p11. When p11 is small (p11 = 0.3), all the designs report similar response rates. When

p11 and N2 increase, the response-adaptive designs (AMSD and HMSD) yield higher response

rate than the EMSD and the discrepancy among the response-adaptive designs is generally

negligible. Based on Figures 2 to 4, we confirm the conclusion from the simulation studies

that the proposed HMSD always yield the largest power to detect the subgroup treatment

effect while enhancing the individual ethics at the same time.
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In all the aforementioned simulation studies, we assume that the prognostic marker ef-

fect is at most limited. Although we believe that this assumption is generally reasonable

especially for the MSD with MTAs, it is still of interest to investigate the performance of the

proposed design when this assumption is violated. For this purpose, in Figure 5 we depict the

type I error rates of all the design with substantial prognostic marker effect. In particular,

we fix p00 = p01 = 0.3 and let both p10 and p11 increase from 0.35 to 0.5 with an increment of

0.05. As the proposed HMSD uses the hierarchical model (1) to borrow information between

p00 and p10, when there is a difference between these two response rates, the corresponding

posterior estimates should shrink toward the “middle” and the magnitude of the bias should

be enlarged when the discrepancy becomes bigger.

Figure 5 confirms our speculation. For the marker-positive subgroup M = 1, as p10

increases, the corresponding posterior estimate based on model (1) is more and more un-

derestimated so the null hypothesis becomes easier to be rejected. As a result, we observe

inflated type I errors from the HMSD1 and HMSD2 while the EMSD and AMSD still control

the type I error around 5%. We also notice that HMSD2 controls type I error better than

the HMSD1. That is because, the HMSD2 uses less informative hierarchical model than

the HMSD1 so the bias is also alleviated. Nevertheless, we find that even if the difference

between p00 and p10 is as large as 0.1, HMSD1 still controls a type I error rate around 10%,

which is in general acceptable for a phase II clinical trial. The reason is that the purpose of

a phase II trial is to quickly identify some positive signal of the drug and send it to a large-

scale confirmatory trial rather than rigorously controlling the type I error. The type I error

rate will be more strictly controlled in the following confirmatory phase III trial. For the

marker-negative subgroup M = 0, as p00 is overestimated and the null hypothesis becomes

harder to be rejected, the proposed HMSD controls the type I error well, just as the EMSD

and AMSD. We notice that Figure 5 shows different patterns in controlling the type I errors

between the marker positive and negative subgroups. The reason is that p10 and p00 share
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information under the proposed design. In Figure 5, p10 is substantially greater than p00.

Therefore, due to the borrowed information from p00, p10 is underestimated. Similarly, p00

is overestimated. Consequently, the difference p11 − p10 increases which results in a inflated

type I error for the marker-positive subgroup. On the other hand, the difference p01 − p00

decreases so the type I error for the marker-negative subgroup is well controlled.

5 Discussion

We are now entering the era of personalized medicine and a lot of biomarker-guided clin-

ical trial designs have been proposed in the literature. Different biomarker-guided clinical

trial designs target for different problems. First of all, the enrichment design18,19 has been

developed to detect the treatment effect of MTAs in a marker-specified subgroup. Gao et

al.20 extended the enrichment design by proposing a multistage adaptive design. The mul-

tistage adaptive design incorporates sequential interim analysis into the enrichment design

and therefore enhances the flexibility and efficiency of the trial. Moreover, after realizing

that the population heterogeneous may substantially affect the performance of the enrich-

ment trial, Gao et al.21 developed a two-stage design. The purpose of the first-stage is

to evaluate the performance of the biomarker and to conduct a sample size re-estimation.

Then, a second-stage is followed using the updated sample size to achieve desirable type

I and type II errors. Zang and Guo22 investigated similar topics and developed a optimal

two-stage enrichment design to handle the biomarker misclassification. The optimal design

can maximizes the probability of correctly classifying each patients biomarker status based

on the surrogate marker information. Secondly, the marker-strategy design randomizes pa-

tients into non-marker-based or marker-based strategy and test the predictive marker effect

by comparing the response rates between two strategies23. Zang et al.15 shown that the
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between-strategy comparison is problematic in detecting the predictive marker effect and

proposed an optimal marker-strategy design which can maximize the power of detecting the

predictive marker effect. Lastly, The marker-stratified design (MSD)8,9,10,11 is more flexible

than the other designs and can be used to test the subgroup treatment effect, predictive

marker effect as well as the prognostic marker effect.

In this paper, we propose that the biomarker used in the MSD should be predictive rather

than prognostic due to the biological mechanism of the MTA used in the trial. Based on this

observation, we extend the MSD and develop a novel hierarchical model to fit the response

rate and test the subgroup treatment effect as well as the predictive marker effect. The

proposed model uses an informative prior to borrow strength across different subgroups and

therefore provides a more accurate estimate than the conventional beta-binomial model. The

degree of the prior information is determined by solving a “customized” equation reflecting

physicians’ professional opinion. Furthermore, we provide a Bayesian adaptive MSD based

on the proposed hierarchical model to test the subgroup treatment effects of MTA as well

as the predictive marker effect. Simulation results and a real trial application show that the

proposed design outperforms the existing conventional adaptive design and equal random-

ization design. One limitation of the proposed design is that the hyperparameter m need to

be elicited prior to the trial and cannot be altered once determined. A possible extension is

to specify multiple values of m and use the model selection technique such as the Bayesian

model selection to determine the optimal value adaptively during the trial. Further research

in this area is warranted.

The proposed design is suitable for the trial scenario where there is a substantial amount

of uncertainty about the ability of the biomarker to predict the treatment effect and the

investigators are interested in testing the treatment effect for different marker-stratified sub-

groups. However, if the biomarker used in the trial has distinct predictive effect in the

sense that only the marker-positive patients can benefit from the trial. Then, it is unethical

20



to further randomize the marker-negative patients to receive the treatment. For this cir-

cumstance, the marker enrichment design which restricts the enrollment to marker-positive

patients only can be used18,19, which is beyond the scope of this paper. In addition, we note

that the proposed design makes sense if the investigator are confident that the prognostic

effect of the biomarker used in the trial is limited. If the prognostic marker effect is sub-

stantial, the traditional MSD rather than the proposed design should be used because the

proposed design can result in an inflated type I error, as shown in Figure 5. In summary, the

proposed design can be used in the biomarker-guided clinical trials to detect the subgroup

treatment effect and the predictive marker effect when the prognostic marker effect is at

most limited. However, as the proposed design pre-specifies the magnitude of the prognostic

marker effect, it cannot be used to test the prognostic marker effect.

The idea of using Bayesian model to analyze correlated proportions has been intensively

studied in the literature. For example, Altham24 compared different Bayesian models (lo-

gistic, random effect, etc.) for correlated proportions. Kateri et al.25 provided Bayes and

empirical Bayes estimates for the cell probabilities of 2× 2 contingency table as well as the

Bayes factor for testing the equality of correlated proportions. Agresti and Min26 studied the

operating characteristics of Bayesian confidence intervals for the difference of proportions in

a frequentist sense. Oleson27 proposed Bayesian credible intervals for pre-post binomial pro-

portion correct testing. In the field of adaptive clinical trial design, Thall et al.28 developed

a Bayesian logistic hierarchical model for conducting phase II clinical trial in diseases with

multiple subtypes. Yuan and Yin29 proposed a Bayesian beta-binomial hierarchical model

to evaluate the efficacy and toxicity responses for phase I/II trial with combined drugs.

However, to the best of our knowledge, little relevant research has been dedicated to the

biomarker-guided clinical trial evaluating the MTA. Hence, our work has filled the research

gap and we wish the proposed method can attract more attention to this active research

area.
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Table 1: The operating characteristics of equal-randomized MSD (EMSD), adaptive-
randomized MSD (AMSD), adaptive-randomized MSD with hierarchical modeling (HMSD1
with m = 450; HMSD2 with m = 125). The number of cohorts is N1 = 5 in stage I and
N2 = 25 in stage II. The cohort size is 5. λl = 0.05, λu = 1, λ1 = 0.95. ESF denotes the
probability of early stopping for futility.

Power(%) ESF(%)
Method M = 0 M = 1 (n00, n01, n10, n11) n M = 0 M = 1 response rate(%)

Scenario 1. (p00, p01, p10, p11) = (0.3, 0.3, 0.3, 0.3)

EMSD 1.9 1.7 (29.2,29.4,29.1,29.4) 117.1 34.7 34.7 30.0

AMSD 5.5 5.6 (29.9,30.1,29.5,30.1) 119.6 30.0 31.6 29.8

HMSD1 3.9 4.6 (31.3,27.6,31.7,27.6) 118.2 32.5 32.0 29.8

HMSD2 2.5 2.9 (32.3,27.6,33.1,27.3) 120.3 31.1 30.2 30.0

Scenario 2. (p00, p01, p10, p11) = (0.3, 0.3, 0.35, 0.35)

EMSD 2.1 1.9 (29.1,28.9,30.0,30.1) 118.1 35.5 31.0 32.4

AMSD 5.6 5.5 (30.3,29.7,30.2,30.0) 120.2 31.2 30.3 32.6

HMSD1 2.2 4.9 (31.5,24.3,31.0,29.0) 115.8 37.6 31.6 32.4

HMSD2 1.8 4.1 (33.3,24.5,32.0,29.8) 119.6 35.8 27.2 32.6

Scenario 3. (p00, p01, p10, p11) = (0.2, 0.1, 0.25, 0.5)

EMSD 0.1 55.8 (19.8,19.9,36.4,36.3) 112.4 72.5 4.2 30.2

AMSD 0.1 53.5 (27.1,15.2,16.1,56.4) 114.8 67.8 3.8 34.9

HMSD1 0.1 70.6 (25.7,13.0,14.1,58.7) 111.5 70.0 4.0 35.8

HMSD2 0.3 65.2 (28.1,13.5,15.0,58.0) 114.6 65.0 3.3 35.3

Scenario 4. (p00, p01, p10, p11) = (0.2, 0.2, 0.2, 0.5)

EMSD 1.7 73.5 (28.6,28.6,36.8,37.2) 131.2 35.9 2.1 28.5

AMSD 4.0 66.5 (30.3,27.4,14.1,59.7) 131.5 34.6 2.2 34.1

HMSD1 5.8 82.9 (30.0,27.2,12.2,61.7) 131.1 35.5 2.1 34.6

HMSD2 3.2 79.8 (31.7,25.9,13.1,60.8) 131.5 36.8 1.2 34.2

Scenario 5. (p00, p01, p10, p11) = (0.15, 0.35, 0.2, 0.4)

EMSD 44.3 41.8 (36.2,36.2,36.3,36.1) 144.8 4.3 5.0 27.5

AMSD 45.0 43.4 (18.3,53.4,18.2,53.3) 143.2 6.3 6.9 32.2

HMSD1 48.9 64.9 (19.0,52.5,15.2,56.5) 143.2 6.8 5.9 32.6

HMSD2 45.2 58.2 (19.1,52.7,16.3,56.0) 144.1 6.3 5.1 32.3

Scenario 6. (p00, p01, p10, p11) = (0.2, 0.3, 0.2, 0.4)

EMSD 12.9 40.9 (33.3,33.6,36.1,36.4) 139.4 15.6 4.4 27.5

AMSD 15.5 43.4 (25.2,41.7,18.6,52.6) 138.1 16.0 6.8 30.6

HMSD1 19.6 54.8 (25.9,41.0,18.3,52.8) 138.0 15.8 7.0 30.6

HMSD2 17.1 50.8 (26.7,41.6,18.4,54.1) 140.8 13.4 4.4 30.4
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Table 2: The effective sample size (ESS) of the adaptive-randomized MSD with hierarchical
modeling (HMSD1 with m = 450; HMSD2 with m = 125).

ESS for HMSD1 ESS for HMSD2
p10 p00 p10 p00

Sce. 1 0.983 0.998 0.975 0.987

Sce. 2 0.996 0.991 0.988 0.986

Sce. 3 0.985 0.989 0.976 0.979

Sce. 4 0.980 0.983 0.975 0.973

Sce. 5 0.989 0.991 0.980 0.979

Sce. 6 0.983 0.979 0.974 0.972

Table 3: The standard deviations (s.d.) of the posterior distributions of p10 and the subgroup
treatment effect p11 − p10 based on equal-randomized MSD (EMSD), adaptive-randomized
MSD (AMSD), adaptive-randomized MSD with hierarchical modeling (HMSD1 with m =
450; HMSD2 with m = 125).

s.d. of p10 s.d. of p11 − p10
EMSD AMSD HMSD1 HMSD2 EMSD AMSD HMSD1 HMSD2

Sce. 3 0.07 0.10 0.05 0.06 0.11 0.12 0.08 0.09

Sce. 4 0.07 0.10 0.05 0.06 0.10 0.12 0.07 0.09

Sce. 5 0.07 0.09 0.05 0.06 0.10 0.10 0.07 0.08

Sce. 6 0.07 0.09 0.06 0.06 0.11 0.11 0.09 0.10
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Table 4: The operating characteristics of equal-randomized MSD (EMSD), adaptive-
randomized MSD (AMSD), adaptive-randomized MSD with hierarchical modeling (HMSD1
with m = 450; HMSD2 with m = 125) with early stopping for futility (ESF) and superiority
(ESS).

Power(%) ESF(%) ESS(%) Resp.
λu Method M = 0 M = 1 (n00, n01, n10, n11) n M = 0 M = 1 M = 0 M = 1 rate(%)

Scenario 2. (p00, p01, p10, p11) = (0.3, 0.3, 0.35, 0.35)

1 EMSD 2.1 1.9 (29.1,28.9,30.0,30.1) 118.1 35.5 31.0 0.0 0.0 32.4

AMSD 5.6 5.5 (30.3,29.7,30.2,30.0) 120.2 31.2 30.3 0.0 0.0 32.6

HMSD1 2.2 4.9 (31.5,24.3,31.0,29.0) 115.8 37.6 31.6 0.0 0.0 32.4

HMSD2 1.8 4.1 (33.3,24.5,32.0,29.8) 119.6 35.8 27.2 0.0 0.0 32.6

0.99 EMSD 6.8 6.8 (28.3,28.5,28.2,28.2) 113.2 33.3 35.2 4.0 3.6 32.4

AMSD 7.5 7.8 (29.0,29.3,29.3,28.7) 116.3 31.0 31.5 3.7 4.3 32.2

HMSD1 5.0 8.4 (30.9,22.9,30.6,27.4) 111.8 39.1 29.9 4.4 5.9 32.7

HMSD2 4.0 8.1 (32.7,24.3,31.1,27.8) 115.9 34.1 27.2 3.2 5.6 32.7

0.97 EMSD 9.4 9.0 (26.5,26.7,27.5,27.6) 108.3 34.6 32.7 8.8 8.7 32.4

AMSD 9.7 10.5 (29.3,26.0,30.7,26.2) 112.2 32.4 29.7 9.0 9.1 32.5

HMSD1 8.7 10.5 (30.3,21.7,28.3,24.6) 104.9 38.8 31.1 8.0 13.8 32.6

HMSD2 5.9 10.9 (32.7,23.3,32.0,24.8) 112.8 34.0 26.7 5.3 11.1 32.5

Scenario 4. (p00, p01, p10, p11) = (0.2, 0.2, 0.2, 0.5)

1 EMSD 1.7 73.5 (28.6,28.6,36.8,37.2) 131.2 35.9 2.1 0.0 0.0 28.5

AMSD 4.0 66.5 (30.3,27.4,14.1,59.7) 131.5 34.6 2.2 0.0 0.0 34.1

HMSD1 5.8 82.9 (30.0,27.2,12.2,61.7) 131.1 35.5 2.1 0.0 0.0 34.6

HMSD2 3.2 79.8 (31.7,25.9,13.1,60.8) 131.5 36.8 1.2 0.0 0.0 34.2

0.99 EMSD 3.1 76.4 (28.0,28.2,24.7,24.5) 105.4 36.8 1.5 2.4 61.3 28.4

AMSD 5.8 70.1 (30.5,27.7,13.3,41.7) 113.2 33.5 2.2 1.9 41.1 29.8

HMSD1 6.1 85.5 (30.3,23.1,12.2,28.7) 94.3 38.0 2.2 5.2 71.4 29.4

HMSD2 5.5 81.8 (32.8,24.4,12.4,32.5) 102.1 32.5 1.9 4.2 64.1 29.6

0.97 EMSD 8.2 82.8 (27.3,27.4,19.0,19.0) 92.7 34.6 2.2 7.7 77.7 28.2

AMSD 8.1 74.2 (28.9,24.1,13.1,29.3) 95.4 38.4 2.1 7.3 67.0 29.0

HMSD1 9.8 91.1 (29.9,22.1,11.8,21.2) 85.0 36.1 1.4 9.6 86.2 28.9

HMSD2 9.4 88.1 (31.4,23.8,12.0,23.2) 90.4 31.7 1.9 8.7 81.9 28.5
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Table 4: continued
Power(%) ESF(%) ESS(%) Resp.

λu Method M = 0 M = 1 (n00, n01, n10, n11) n M = 0 M = 1 M = 0 M = 1 rate(%)

Scenario 6. (p00, p01, p10, p11) = (0.2, 0.3, 0.2, 0.4)

1 EMSD 12.9 40.9 (33.3,33.6,36.1,36.4) 139.4 15.6 4.4 0.0 0.0 27.5

AMSD 15.5 43.4 (25.2,41.7,18.6,52.6) 138.1 16.0 6.8 0.0 0.0 30.6

HMSD1 19.6 54.8 (25.9,41.0,18.3,52.8) 138.0 15.8 7.0 0.0 0.0 30.6

HMSD2 17.1 50.8 (26.7,41.6,18.4,54.1) 140.8 13.4 4.4 0.0 0.0 30.4

0.99 EMSD 19.9 45.9 (31.3,31.3,30.1,29.9) 122.6 12.9 5.0 12.2 31.5 27.5

AMSD 21.7 43.6 (25.3,38.7,18.9,43.4) 126.3 14.4 6.2 8.9 21.1 29.7

HMSD1 27.3 60.1 (25.0,32.5,17.4,34.7) 109.6 14.5 6.5 22.9 44.3 29.3

HMSD2 21.0 53.8 (26.8,34.4,18.2,37.7) 117.1 15.1 5.3 14.6 36.7 29.2

0.97 EMSD 26.2 55.7 (28.1,28.5,24.4,24.4) 105.4 13.6 5.3 24.2 51.8 27.4

AMSD 26.9 52.9 (24.6,32.8,17.4,32.9) 107.7 14.4 5.1 23.4 46.5 29.2

HMSD1 36.3 70.3 (24.2,26.8,16.3,25.3) 92.6 15.8 4.8 33.4 65.1 28.6

HMSD2 28.7 62.8 (25.8,30.3,17.4,28.7) 102.2 14.9 6.0 24.0 57.0 28.6
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Table 5: The sample size and response rates for the motivating colerectal cancer trial to
achieve a power of 80% for patients with KRAS mutation. (p00, p01, p10) = (0.3, 0.5, 0.3),
λl = 0.05 and λ1 = 0.95. The first 5 cohorts of patients are equally randomized to each
drug.

Design
EMSD AMSD HMSD

p11 λu Sample size Resp. rate(%) Sample size Resp. rate(%) Sample size Resp. rate(%)

0.6 1 220 42.3 276 50.6 159 50.5

0.99 140 42.2 196 48.5 95 47.9

0.7 1 103 44.8 128 51.8 74 51.2

0.99 94 43.8 94 48.8 52 48.7
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Figure 1: Powers of EMSD, AMSD, HMSD1 and HMSD2 to detect the predictive marker
effect ζ. N1 = 5, N2 = 25. λl = 0.05, λu = 1, λ2 = 0.95.
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Figure 2: Powers of EMSD, AMSD, HMSD1 and HMSD2 in marker-positive subgroup under
different cohort numbers N2 in stage II. (p00, p01, p10, p11) = (0.2, 0.2, 0.2, 0.5). λl = 0.05,
λu = 1, λ1 = 0.95.
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Figure 3: Powers of EMSD, AMSD, HMSD1 and HMSD2 in marker-positive subgroup with
different p11. (p00, p01, p10) = (0.2, 0.2, 0.2). N1 = 5, N2 = 25. λl = 0.05, λu = 1, λ1 = 0.95.
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Figure 4: Response rates of EMSD, AMSD, HMSD1 and HMSD2 with different p11 and N2.
(p00, p01, p10) = (0.2, 0.2, 0.2). λl = 0.05, λu = 1, λ1 = 0.95.
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Figure 5: Type I error rates of EMSD, AMSD, HMSD1 and HMSD2 in the presence of
prognostic marker effect. p00 = p01 = 0.3, p10 = p11, N1 = 5, N2 = 25, λl = 0.05, λu = 1,
λ1 = 0.95.
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