144 research outputs found
Relativistic Calculation of the Meson Spectrum: a Fully Covariant Treatment Versus Standard Treatments
A large number of treatments of the meson spectrum have been tried that
consider mesons as quark - anti quark bound states. Recently, we used
relativistic quantum "constraint" mechanics to introduce a fully covariant
treatment defined by two coupled Dirac equations. For field-theoretic
interactions, this procedure functions as a "quantum mechanical transform of
Bethe-Salpeter equation". Here, we test its spectral fits against those
provided by an assortment of models: Wisconsin model, Iowa State model,
Brayshaw model, and the popular semi-relativistic treatment of Godfrey and
Isgur. We find that the fit provided by the two-body Dirac model for the entire
meson spectrum competes with the best fits to partial spectra provided by the
others and does so with the smallest number of interaction functions without
additional cutoff parameters necessary to make other approaches numerically
tractable. We discuss the distinguishing features of our model that may account
for the relative overall success of its fits. Note especially that in our
approach for QCD, the resulting pion mass and associated Goldstone behavior
depend sensitively on the preservation of relativistic couplings that are
crucial for its success when solved nonperturbatively for the analogous
two-body bound-states of QED.Comment: 75 pages, 6 figures, revised content
Does the Babcock--Leighton Mechanism Operate on the Sun?
The contribution of the Babcock-Leighton mechanism to the generation of the
Sun's poloidal magnetic field is estimated from sunspot data for three solar
cycles. Comparison of the derived quantities with the A-index of the
large-scale magnetic field suggests a positive answer to the question posed in
the title of this paper.Comment: 5 pages, 2 figures, to apper in Astronomy Letter
The phase relation between sunspot numbers and soft X-ray flares
To better understand long-term flare activity, we present a statistical study
on soft X-ray flares from May 1976 to May 2008. It is found that the smoothed
monthly peak fluxes of C-class, M-class, and X-class flares have a very
noticeable time lag of 13, 8, and 8 months in cycle 21 respectively with
respect to the smoothed monthly sunspot numbers. There is no time lag between
the sunspot numbers and M-class flares in cycle 22. However, there is a
one-month time lag for C-class flares and a one-month time lead for X-class
flares with regard to sunspot numbers in cycle 22. For cycle 23, the smoothed
monthly peak fluxes of C-class, M-class, and X-class flares have a very
noticeable time lag of one month, 5 months, and 21 months respectively with
respect to sunspot numbers. If we take the three types of flares together, the
smoothed monthly peak fluxes of soft X-ray flares have a time lag of 9 months
in cycle 21, no time lag in cycle 22 and a characteristic time lag of 5 months
in cycle 23 with respect to the smoothed monthly sunspot numbers. Furthermore,
the correlation coefficients of the smoothed monthly peak fluxes of M-class and
X-class flares and the smoothed monthly sunspot numbers are higher in cycle 22
than those in cycles 21 and 23. The correlation coefficients between the three
kinds of soft X-ray flares in cycle 22 are higher than those in cycles 21 and
23. These findings may be instructive in predicting C-class, M-class, and
X-class flares regarding sunspot numbers in the next cycle and the physical
processes of energy storage and dissipation in the corona.Comment: 8 pages, 3 figures, Accepted for publication in Astrophysics & Space
Scienc
Dressing the nucleon in a dispersion approach
We present a model for dressing the nucleon propagator and vertices. In the
model the use of a K-matrix approach (unitarity) and dispersion relations
(analyticity) are combined. The principal application of the model lies in
pion-nucleon scattering where we discuss effects of the dressing on the phase
shifts.Comment: 17 pages, using REVTeX, 6 figure
Photospheric Magnetic Field: Relationship Between North-South Asymmetry and Flux Imbalance
Photospheric magnetic fields were studied using the Kitt Peak synoptic maps
for 1976-2003. Only strong magnetic fields (B>100 G) of the equatorial region
were taken into account. The north-south asymmetry of the magnetic fluxes was
considered as well as the imbalance between positive and negative fluxes. The
north-south asymmetry displays a regular alternation of the dominant hemisphere
during the solar cycle: the northern hemisphere dominated in the ascending
phase, the southern one in the descending phase during Solar Cycles 21-23. The
sign of the imbalance did not change during the 11 years from one polar-field
reversal to the next and always coincided with the sign of the Sun's polar
magnetic field in the northern hemisphere. The dominant sign of leading
sunspots in one of the hemispheres determines the sign of the magnetic-flux
imbalance. The sign of the north-south asymmetry of the magnetic fluxes and the
sign of the imbalance of the positive and the negative fluxes are related to
the quarter of the 22-year magnetic cycle where the magnetic configuration of
the Sun remains constant (from the minimum where the sunspot sign changes
according to Hale's law to the magnetic-field reversal and from the reversal to
the minimum). The sign of the north-south asymmetry for the time interval
considered was determined by the phase of the 11-year cycle (before or after
the reversal); the sign of the imbalance of the positive and the negative
fluxes depends on both the phase of the 11-year cycle and on the parity of the
solar cycle. The results obtained demonstrate the connection of the magnetic
fields in active regions with the Sun's polar magnetic field in the northern
hemisphere.Comment: 24 pages, 12 figures, 2 table
HI in the Outskirts of Nearby Galaxies
The HI in disk galaxies frequently extends beyond the optical image, and can
trace the dark matter there. I briefly highlight the history of high spatial
resolution HI imaging, the contribution it made to the dark matter problem, and
the current tension between several dynamical methods to break the disk-halo
degeneracy. I then turn to the flaring problem, which could in principle probe
the shape of the dark halo. Instead, however, a lot of attention is now devoted
to understanding the role of gas accretion via galactic fountains. The current
cold dark matter theory has problems on galactic scales, such as
the core-cusp problem, which can be addressed with HI observations of dwarf
galaxies. For a similar range in rotation velocities, galaxies of type Sd have
thin disks, while those of type Im are much thicker. After a few comments on
modified Newtonian dynamics and on irregular galaxies, I close with statistics
on the HI extent of galaxies.Comment: 38 pages, 17 figures, invited review, book chapter in "Outskirts of
Galaxies", Eds. J. H. Knapen, J. C. Lee and A. Gil de Paz, Astrophysics and
Space Science Library, Springer, in pres
Response of Wheat Fungal Diseases to Elevated Atmospheric CO2 Level
Infection with fungal pathogens on wheat varieties with different levels of resistance was
tested at ambient (NC, 390 ppm) and elevated (EC, 750 ppm) atmospheric CO2 levels in the
phytotron. EC was found to affect many aspects of the plant-pathogen interaction. Infection
with most fungal diseases was usually found to be promoted by elevated CO2 level in susceptible
varieties. Powdery mildew, leaf rust and stem rust produced more severe symptoms on
plants of susceptible varieties, while resistant varieties were not infected even at EC. The penetration
of Fusarium head blight (FHB) into the spike was delayed by EC in Mv Mambo, while
it was unaffected in Mv Regiment and stimulated in Mv Emma. EC increased the propagation
of FHB in Mv Mambo and Mv Emma. Enhanced resistance to the spread of Fusarium within
the plant was only found in Mv Regiment, which has good resistance to penetration but poor
resistance to the spread of FHB at NC. FHB infection was more severe at EC in two varieties,
while the plants of Mv Regiment, which has the best field resistance at NC, did not exhibit a
higher infection level at EC.
The above results suggest that breeding for new resistant varieties will remain a useful
means of preventing more severe infection in a future with higher atmospheric CO2 levels
- …