42 research outputs found

    Anomalous roughness with system size dependent local roughness exponent

    Full text link
    We note that in a system far from equilibrium the interface roughening may depend on the system size which plays the role of control parameter. To detect the size effect on the interface roughness, we study the scaling properties of rough interfaces formed in paper combustion experiments. Using paper sheets of different width \lambda L, we found that the turbulent flame fronts display anomalous multi-scaling characterized by non universal global roughness exponent \alpha and the system size dependent spectrum of local roughness exponents,\xi_q, whereas the burning fronts possess conventional multi-affine scaling. The structure factor of turbulent flame fronts also exhibit unconventional scaling dependence on \lambda These results are expected to apply to a broad range of far from equilibrium systems, when the kinetic energy fluctuations exceed a certain critical value.Comment: 33 pages, 16 figure

    Computational Structure Prediction for Antibody-Antigen Complexes From Hydrogen-Deuterium Exchange Mass Spectrometry: Challenges and Outlook

    Get PDF
    Although computational structure prediction has had great successes in recent years, it regularly fails to predict the interactions of large protein complexes with residue-level accuracy, or even the correct orientation of the protein partners. The performance of computational docking can be notably enhanced by incorporating experimental data from structural biology techniques. A rapid method to probe protein-protein interactions is hydrogen-deuterium exchange mass spectrometry (HDX-MS). HDX-MS has been increasingly used for epitope-mapping of antibodies (Abs) to their respective antigens (Ags) in the past few years. In this paper, we review the current state of HDX-MS in studying protein interactions, specifically Ab-Ag interactions, and how it has been used to inform computational structure prediction calculations. Particularly, we address the limitations of HDX-MS in epitope mapping and techniques and protocols applied to overcome these barriers. Furthermore, we explore computational methods that leverage HDX-MS to aid structure prediction, including the computational simulation of HDX-MS data and the combination of HDX-MS and protein docking. We point out challenges in interpreting and incorporating HDX-MS data into Ab-Ag complex docking and highlight the opportunities they provide to build towards a more optimized hybrid method, allowing for more reliable, high throughput epitope identification

    Time-Resolved Fluorescence Studies Of Photosystem I Antennae

    No full text

    Bound Acceptors of Photosystem I

    No full text
    corecore