79 research outputs found

    Taxus and taxol: a compilation of research findings

    Get PDF
    History of the development of taxol as a cancer-fighting drug -- Traditional uses of yews -- A history of yews in the United States / Kenneth D. Cochran -- Taxus populations and clippings yields at commercial nurseries / Robert C. Hansen, Kenneth D. Cochran, Harold M. Keener and Edward M. Croom Jr. -- Genetic resources for ornamental Taxus in the United States / Kenneth D. Cochran -- Root rot of Taxus spp. in Ohio caused by Phytophthora cinnamomi / Michael A. Ellis, Sally A. Miller, A. F. Schmitthenner and Kenneth D. Cochran -- Growth rate of container-grown Taxus x media 'Hicksii' and 'Densiformis' compared at two levels of nutrition and irrigation / Robert C. Hansen, Kenneth D. Cochran and R. Peter Fynn -- Taxus clipping harvester / Robert G. Holmes and Don Wertz -- Thin-layer drying of cultivated Taxus clippings / Robert C. Hansen, Harold M. Keener and Hala N. ElSohly -- Evaluation of bin drying of Taxus biomass / Robert C. Hansen, Ralph B. Shugert Jr., Hala N. ElSohly, Edward M. Croom Jr., Harld M. Keener -- Selecting bed depth for drying cultivated Taxus clippings / Robert C. Hansen and Harold M. Keener -- Progress report and summary: National Cancer Institute Workshop on Taxus, Taxol, and Taxotere / Robert C. Hansen, Robert G. Holmes, Ralph B. Shugert Jr., Edward M. Croom Jr., Hala N. ElSohly, Harold M. Keener and Kenneth D. Cochra

    Differential kinetic profiles and metabolism of primaquine enantiomers by human hepatocytes

    Get PDF
    BACKGROUND: The clinical utility of primaquine (PQ), used as a racemic mixture of two enantiomers, is limited due to metabolism-linked hemolytic toxicity in individuals with genetic deficiency in glucose-6-phosphate dehydrogenase. The current study investigated differential metabolism of PQ enantiomers in light of the suggestions that toxicity and efficacy might be largely enantioselective. METHODS: Stable isotope (13)C-labelled primaquine and its two enantiomers (+)-PQ, (−)-PQ were separately incubated with cryopreserved human hepatocytes. Time-tracked substrate depletion and metabolite production were monitored via UHPLC–MS/MS. RESULTS: The initial half-life of 217 and 65 min; elimination rate constants (λ) of 0.19 and 0.64 h(−1); intrinsic clearance (Cl(int)) of 2.55 and 8.49 (µL/min)/million cells, which when up-scaled yielded Cl(int) of 6.49 and 21.6 (mL/min)/kg body mass was obtained respectively for (+)- and (−)-PQ. The extrapolation of in vitro intrinsic clearance to in vivo human hepatic blood clearance, performed using the well-stirred liver model, showed that the rate of hepatic clearance of (+)-PQ was only 45 % that of (−)-PQ. Two major primary routes of metabolism were observed—oxidative deamination of the terminal amine and hydroxylations on the quinoline moiety of PQ. The major deaminated metabolite, carboxyprimaquine (CPQ) was preferentially generated from the (−)-PQ. Other deaminated metabolites including PQ terminal alcohol (m/z 261), a cyclized side chain derivative from the aldehyde (m/z 241), cyclized carboxylic acid derivative (m/z 257), a quinone-imine product of hydroxylated CPQ (m/z 289), CPQ glucuronide (m/z 451) and the glucuronide of PQ alcohol (m/z 437) were all preferentially generated from the (−)-PQ. The major quinoline oxidation product (m/z 274) was preferentially generated from (+)-PQ. In addition to the products of the two metabolic pathways, two other major metabolites were observed: a prominent glycosylated conjugate of PQ on the terminal amine (m/z 422), peaking by 30 min and preferentially generated by (+)-PQ; and the carbamoyl glucuronide of PQ (m/z 480) exclusively generated from (+)-PQ. CONCLUSION: Metabolism of PQ showed enantioselectivity. These findings may provide important information in establishing clinical differences in PQ enantiomers

    Enantioselective metabolism of primaquine by human CYP2D6

    Get PDF
    BACKGROUND: Primaquine, currently the only approved drug for the treatment and radical cure of Plasmodium vivax malaria, is still used as a racemic mixture. Clinical use of primaquine has been limited due to haemolytic toxicity in individuals with genetic deficiency in glucose-6-phosphate dehydrogenase. Earlier studies have linked its therapeutic effects to CYP2D6-generated metabolites. The aim of the current study was to investigate the differential generation of the CYP2D6 metabolites by racemic primaquine and its individual enantiomers. METHODS: Stable isotope (13)C-labelled primaquine and its two enantiomers were incubated with recombinant cytochrome-P450 supersomes containing CYP2D6 under optimized conditions. Metabolite identification and time-point quantitative analysis were performed using LC-MS/MS. UHPLC retention time, twin peaks with a mass difference of 6, MS-MS fragmentation pattern, and relative peak area with respect to parent compound were used for phenotyping and quantitative analysis of metabolites. RESULTS: The rate of metabolism of (+)-(S)-primaquine was significantly higher (50% depletion of 20 μM in 120 min) compared to (−)-(R)-primaquine (30% depletion) when incubated with CYP2D6. The estimated V(max) (μmol/min/mg) were 0.75, 0.98 and 0.42, with K(m) (μM) of 24.2, 33.1 and 21.6 for (±)-primaquine, (+)-primaquine and (−)-primaquine, respectively. Three stable mono-hydroxylated metabolites, namely, 2-, 3- and 4-hydroxyprimaquine (2-OH-PQ, 3-OH-PQ, and 4-OH-PQ), were identified and quantified. 2-OH-PQ was preferentially formed from (+)-primaquine in a ratio of 4:1 compared to (−)-primaquine. The racemic (±)-primaquine showed a pattern similar to the (−)-primaquine; 2-OH-PQ accounted for about 15–17% of total CYP2D6-mediated conversion of (+)-primaquine. In contrast, 4-OH-PQ was preferentially formed with (−)-primaquine (5:1), accounting for 22% of the total (−)-primaquine conversion. 3-OH-PQ was generated from both enantiomers and racemate. 5-hydroxyprimaquine was unstable. Its orthoquinone degradation product (twice as abundant in (+)-primaquine compared to (−)-primaquine) was identified and accounted for 18–20% of the CYP2D6-mediated conversion of (+)-primaquine. Other minor metabolites included dihydroxyprimaquine species, two quinone-imine products of dihydroxylated primaquine, and a primaquine terminal alcohol with variable generation from the individual enantiomers. CONCLUSION: The metabolism of primaquine by human CYP2D6 and the generation of its metabolites display enantio-selectivity regarding formation of hydroxylated product profiles. This may partly explain differential pharmacologic and toxicologic properties of primaquine enantiomers
    corecore