266 research outputs found

    Electrostatic Electron Microscopy. I

    Full text link

    Structural Characterization of the Extracellular Domain of CASPR2 and Insights into Its Association with the Novel Ligand Contactin1

    Get PDF
    Contactin-associated protein-like 2 (CNTNAP2) encodes for CASPR2, a multidomain single transmembrane protein belonging to the neurexin superfamily that has been implicated in a broad range of human phenotypes including autism and language impairment. Using a combination of biophysical techniques, including small angle x-ray scattering, single particle electron microscopy, analytical ultracentrifugation, and bio-layer interferometry, we present novel structural and functional data that relate the architecture of the extracellular domain of CASPR2 to a previously unknown ligand, Contactin1 (CNTN1). Structurally, CASPR2 is highly glycosylated and has an overall compact architecture. Functionally, we show that CASPR2 associates with micromolar affinity with CNTN1 but, under the same conditions, it does not interact with any of the other members of the contactin family. Moreover, by using dissociated hippocampal neurons we show that microbeads loaded with CASPR2, but not with a deletion mutant, co-localize with transfected CNTN1, suggesting that CNTN1 is an endogenous ligand for CASPR2. These data provide novel insights into the structure and function of CASPR2, suggesting a complex role of CASPR2 in the nervous system

    Estudo de avaliação sensorial de pegajosidade de arroz.

    Get PDF
    O presente estudo consiste da análise estatística de 4 amostras diferentes de arroz irrigado com base em notas atribuídas por um painel sensorial treinado. Três avaliadores atribuíram notas de pegajosidade numa escala hedônica variando de 1 (muito pegajoso) a 7 (muito solto), em diferentes épocas. O objetivo deste trabalho foi verificar se os avaliadores eram consistentes em suas avaliações entre as amostras e entre seus pares

    Determining the origin of tidal oscillations in the ionospheric transition region with EISCAT radar and global simulation data

    Get PDF
    At high-latitudes, diurnal and semidiurnal variations of temperature and neutral wind velocity can originate both in the lower atmosphere (UV or infrared absorption) or in the thermosphere-ionosphere (ion convection, EUV absorption). Determining the relative impact of different forcing mechanisms gives insight to the vertical coupling in the ionosphere. We analyse measurements from the incoherent scatter radar (ISR) facility operated by the EISCAT Scientific Association. They are complemented by meteor radar data and compared to global circulation models. The amplitudes and phases of tidal oscillations are determined by an Adaptive Spectral Filter (ASF). Measurements indicate the existence of strong semidiurnal oscillations in a two-band structure at altitudes ≲ 110 km and ≳ 130 km, respectively. Analysis of several model runs with different input settings suggest the upper band to be forced in situ while the lower band corresponds to upward-propagating tides from the lower atmosphere. This indicates the existence of an unexpectedly strong, in situ forcing mechanism for semidiurnal oscillations in the high-latitude thermosphere. It is shown that the actual transition of tides in the altitude region between 90 and 150 km is more complex than described so far

    Kindlin-3 maintains marginal zone B cells but confines follicular B cell activation and differentiation

    Get PDF
    Integrin-mediated interactions between hematopoietic cells and their microenvironment are important for the development and function of immune cells. Here, the role of the integrin adaptor Kindlin-3 in B cell homeostasis is studied. Comparing the individual steps of B cell development in B cell-specific Kindlin-3 or alpha4 integrin knockout mice, we found in both conditions a phenotype of reduced late immature, mature, and recirculating B cells in the bone marrow. In the spleen, constitutive B cell-specific Kindlin-3 knockout caused a loss of marginal zone B cells and an unexpected expansion of follicular B cells. Alpha4 integrin deficiency did not induce this phenotype. In Kindlin-3 knockout B cells VLA-4 as well as LFA-1-mediated adhesion was abrogated, and short-term homing of these cells in vivo was redirected to the spleen. Upon inducible Kindlin-3 knockout, marginal zone B cells were lost due to defective retention within 2 weeks, while follicular B cell numbers were unaltered. Kindlin-3 deficient follicular B cells displayed higher IgD, CD40, CD44, CXCR5, and EBI2 levels, and elevated PI3K signaling upon CXCR5 stimulation. They also showed transcriptional signatures of spontaneous follicular B cell activation. This activation manifested in scattered germinal centers in situ, early plasmablasts differentiation, and signs of IgG class switch

    Biophysical characterisation of human LincRNA-p21 sense and antisense Alu inverted repeats

    Get PDF
    Open access article. Creative Commons Attribution-NonCommercial 4.0 International license (CC BY-NC 4.0) appliesHuman Long Intergenic Noncoding RNA-p21 (LincRNA-p21) is a regulatory noncoding RNA that plays an important role in promoting apoptosis. LincRNA-p21 is also critical in down-regulating many p53 target genes through its interaction with a p53 repressive complex. The interaction between LincRNA-p21 and the repressive complex is likely dependent on the RNA tertiary structure. Previous studies have determined the two-dimensional secondary structures of the sense and antisense human LincRNA-p21 AluSx1 IRs using SHAPE. However, there were no insights into its three-dimensional structure. Therefore, we in vitro transcribed the sense and antisense regions of LincRNA-p21 AluSx1 Inverted Repeats (IRs) and performed analytical ultracentrifugation, size exclusion chromatography, light scattering, and small angle X-ray scattering (SAXS) studies. Based on these studies, we determined low-resolution, three-dimensional structures of sense and antisense LincRNA-p21. By adapting previously known two-dimensional information, we calculated their sense and antisense high-resolution models and determined that they agree with the low-resolution structures determined using SAXS. Thus, our integrated approach provides insights into the structure of LincRNA-p21 Alu IRs. Our study also offers a viable pipeline for combining the secondary structure information with biophysical and computational studies to obtain high-resolution atomistic models for long noncoding RNAs.Ye

    Multiple Sclerosis: MicroRNA Expression Profiles Accurately Differentiate Patients with Relapsing-Remitting Disease from Healthy Controls

    Get PDF
    Multiple sclerosis (MS) is a chronic inflammatory demyelinating disease of the central nervous system, which is heterogenous with respect to clinical manifestations and response to therapy. Identification of biomarkers appears desirable for an improved diagnosis of MS as well as for monitoring of disease activity and treatment response. MicroRNAs (miRNAs) are short non-coding RNAs, which have been shown to have the potential to serve as biomarkers for different human diseases, most notably cancer. Here, we analyzed the expression profiles of 866 human miRNAs. In detail, we investigated the miRNA expression in blood cells of 20 patients with relapsing-remitting MS (RRMS) and 19 healthy controls using a human miRNA microarray and the Geniom Real Time Analyzer (GRTA) platform. We identified 165 miRNAs that were significantly up- or downregulated in patients with RRMS as compared to healthy controls. The best single miRNA marker, hsa-miR-145, allowed discriminating MS from controls with a specificity of 89.5%, a sensitivity of 90.0%, and an accuracy of 89.7%. A set of 48 miRNAs that was evaluated by radial basis function kernel support vector machines and 10-fold cross validation yielded a specificity of 95%, a sensitivity of 97.6%, and an accuracy of 96.3%. While 43 of the 165 miRNAs deregulated in patients with MS have previously been related to other human diseases, the remaining 122 miRNAs are so far exclusively associated with MS. The implications of our study are twofold. The miRNA expression profiles in blood cells may serve as a biomarker for MS, and deregulation of miRNA expression may play a role in the pathogenesis of MS

    Diagnosis of Pancreatic Ductal Adenocarcinoma and Chronic Pancreatitis by Measurement of microRNA Abundance in Blood and Tissue

    Get PDF
    A solid process for diagnosis could have a substantial impact on the successful treatment of pancreatic cancer, for which currently mortality is nearly identical to incidence. Variations in the abundance of all microRNA molecules from peripheral blood cells and pancreas tissues were analyzed on microarrays and in part validated by real-time PCR assays. In total, 245 samples from two clinical centers were studied that were obtained from patients with pancreatic ductal adenocarcinoma or chronic pancreatitis and from healthy donors. Utilizing the minimally invasive blood test, receiver operating characteristic (ROC) curves and the corresponding area under the curve (AUC) analysis demonstrated very high sensitivity and specificity of a distinction between healthy people and patients with either cancer or chronic pancreatitis; respective AUC values of 0.973 and 0.950 were obtained. Confirmative and partly even more discriminative diagnosis could be performed on tissue samples with AUC values of 1.0 and 0.937, respectively. In addition, discrimination between cancer and chronic pancreatitis was achieved (AUC = 0.875). Also, several miRNAs were identified that exhibited abundance variations in both tissue and blood samples. The results could have an immediate diagnostic value for the evaluation of tumor reoccurrence in patients, who have undergone curative surgical resection, and for people with a familial risk of pancreatic cancer

    miRNAs in lung cancer - Studying complex fingerprints in patient's blood cells by microarray experiments

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Deregulated miRNAs are found in cancer cells and recently in blood cells of cancer patients. Due to their inherent stability miRNAs may offer themselves for blood based tumor diagnosis. Here we addressed the question whether there is a sufficient number of miRNAs deregulated in blood cells of cancer patients to be able to distinguish between cancer patients and controls.</p> <p>Methods</p> <p>We synthesized 866 human miRNAs and miRNA star sequences as annotated in the Sanger miRBase onto a microarray designed by febit biomed gmbh. Using the fully automated Geniom Real Time Analyzer platform, we analyzed the miRNA expression in 17 blood cell samples of patients with non-small cell lung carcinomas (NSCLC) and in 19 blood samples of healthy controls.</p> <p>Results</p> <p>Using t-test, we detected 27 miRNAs significantly deregulated in blood cells of lung cancer patients as compared to the controls. Some of these miRNAs were validated using qRT-PCR. To estimate the value of each deregulated miRNA, we grouped all miRNAs according to their diagnostic information that was measured by Mutual Information. Using a subset of 24 miRNAs, a radial basis function Support Vector Machine allowed for discriminating between blood cellsamples of tumor patients and controls with an accuracy of 95.4% [94.9%-95.9%], a specificity of 98.1% [97.3%-98.8%], and a sensitivity of 92.5% [91.8%-92.5%].</p> <p>Conclusion</p> <p>Our findings support the idea that neoplasia may lead to a deregulation of miRNA expression in blood cells of cancer patients compared to blood cells of healthy individuals. Furthermore, we provide evidence that miRNA patterns can be used to detect human cancers from blood cells.</p
    corecore