713 research outputs found

    Comparative study of screened inter-layer interactions in the Coulomb drag effect in bilayer electron systems

    Get PDF
    Coulomb drag experiments in which the inter-layer resistivity is measured are important as they provide information on the Coulomb interactions in bilayer systems. When the layer densities are low correlation effects become significant to account for the quantitative description of experimental results. We investigate systematically various models of effective inter-layer interactions in a bilayer system and compare our results with recent experiments. In the low density regime, the correlation effects are included via the intra- and inter-layer local-field corrections. We employ several theoretical approaches to construct static local-field corrections. Our comparative study demonstrates the importance of including the correlation effects accurately in the calculation of drag resistivity. Recent experiments performed at low layer densities are adequately described by effective inter-layer interactions incorporating static correlations.Comment: Final Version. To appear in Phys. Rev.

    Theory of correlations in strongly interacting fluids of two-dimensional dipolar bosons

    Full text link
    Ground-state properties of a two-dimensional fluid of bosons with repulsive dipole-dipole interactions are studied by means of the Euler-Lagrange hypernetted-chain approximation. We present a self-consistent semi-analytical theory of the pair distribution function g(r)g(r) and ground-state energy of this system. Our approach is based on the solution of a zero-energy scattering Schr\"{o}dinger equation for the "pair amplitude" g(r)\sqrt{g(r)} with an effective potential from Jastrow-Feenberg correlations. We find excellent agreement with quantum Monte Carlo results over a wide range of coupling strength, nearly up to the critical coupling for the liquid-to-crystal quantum phase transition. We also calculate the one-body density matrix and related quantities, such as the momentum distribution function and the condensate fraction.Comment: 8 pages, 8 figures, submitte

    Ground-state and dynamical properties of two-dimensional dipolar Fermi liquids

    Get PDF
    Cataloged from PDF version of article.We study the ground-state properties of a two-dimensional spinpolarized fluid of dipolar fermions within the Euler-Lagrange Fermi-hypemetted-chain approximation. Our method is based on the solution of a scattering Schrodinger equation for the "pair amplitude" root g(r), where g(r) is the pair distribution function. A key ingredient in our theory is the effective pair potential, which includes a bosonic term from Jastrow-Feenberg correlations and a fermionic contribution from kinetic energy and exchange, which is tailored to reproduce the Hartree-Fock limit at weak coupling. Very good agreement with recent results based on quantum Monte Carlo simulations is achieved over a wide range of coupling constants up to the liquid-to-crystal quantum phase transition. Using the fluctuation-dissipation theorem and a static approximation for the effective inter-particle interactions, we calculate the dynamical density-density response function, and furthermore demonstrate that an undamped zero-sound mode exists for any value of the interaction strength, down to infinitesimally weak couplings. (C) 2013 Elsevier Inc. All rights reserved

    Finite-temperature Screening and the Specific Heat of Doped Graphene Sheets

    Full text link
    At low energies, electrons in doped graphene sheets are described by a massless Dirac fermion Hamiltonian. In this work we present a semi-analytical expression for the dynamical density-density linear-response function of noninteracting massless Dirac fermions (the so-called "Lindhard" function) at finite temperature. This result is crucial to describe finite-temperature screening of interacting massless Dirac fermions within the Random Phase Approximation. In particular, we use it to make quantitative predictions for the specific heat and the compressibility of doped graphene sheets. We find that, at low temperatures, the specific heat has the usual normal-Fermi-liquid linear-in-temperature behavior, with a slope that is solely controlled by the renormalized quasiparticle velocity.Comment: 9 pages, 5 figures, Submitted to J. Phys.

    Density-Functional Theory of Graphene Sheets

    Full text link
    We outline a Kohn-Sham-Dirac density-functional-theory (DFT) scheme for graphene sheets that treats slowly-varying inhomogeneous external potentials and electron-electron interactions on an equal footing. The theory is able to account for the the unusual property that the exchange-correlation contribution to chemical potential increases with carrier density in graphene. Consequences of this property, and advantages and disadvantages of using the DFT approach to describe it, are discussed. The approach is illustrated by solving the Kohn-Sham-Dirac equations self-consistently for a model random potential describing charged point-like impurities located close to the graphene plane. The influence of electron-electron interactions on these non-linear screening calculations is discussed at length, in the light of recent experiments reporting evidence for the presence of electron-hole puddles in nearly-neutral graphene sheets.Comment: 11 pages, 9 figures, submitted. High-quality figures can be requested to the author

    Ground state properties of a confined simple atom by C60_{60} fullerene

    Full text link
    We numerically study the ground state properties of endohedrally confined hydrogen (H) or helium (He) atom by a molecule of C60_{60}. Our study is based on Diffusion Monte Carlo method. We calculate the effects of centered and small off-centered H- or He-atom on the ground state properties of the systems and describe the variation of ground state energies due to the C60_{60} parameters and the confined atomic nuclei positions. Finally, we calculate the electron distributions in xzx-z plane in a wide range of C60_{60} parameters.Comment: 23 pages, 9 figures. To appear in J.Phys. B: Atom. Mol. Op

    Electronic Cooling via Interlayer Coulomb Coupling in Multilayer Epitaxial Graphene

    Full text link
    In van der Waals bonded or rotationally disordered multilayer stacks of two-dimensional (2D) materials, the electronic states remain tightly confined within individual 2D layers. As a result, electron-phonon interactions occur primarily within layers and interlayer electrical conductivities are low. In addition, strong covalent in-plane intralayer bonding combined with weak van der Waals interlayer bonding results in weak phonon-mediated thermal coupling between the layers. We demonstrate here, however, that Coulomb interactions between electrons in different layers of multilayer epitaxial graphene provide an important mechanism for interlayer thermal transport even though all electronic states are strongly confined within individual 2D layers. This effect is manifested in the relaxation dynamics of hot carriers in ultrafast time-resolved terahertz spectroscopy. We develop a theory of interlayer Coulomb coupling containing no free parameters that accounts for the experimentally observed trends in hot-carrier dynamics as temperature and the number of layers is varied.Comment: 54 pages, 15 figures, uses documentclass{achemso}, M.T.M. and J.R.T. contributed equally to this wor

    NARX models for simulation of the start-up operation of a single-shaft gas turbine

    Get PDF
    In this study, nonlinear autoregressive exogenous (NARX) models of a heavy-duty single-shaft gas turbine (GT) are developed and validated. The GT is a power plant gas turbine (General Electric PG 9351FA) located in Italy. The data used for model development are three time series data sets of two different maneuvers taken experimentally during the start-up procedure. The resulting NARX models are applied to three other experimental data sets and comparisons are made among four significant outputs of the models and the corresponding measured data. The results show that NARX models are capable of satisfactory prediction of the GT behavior and can capture system dynamics during start-up operation

    Salt stress effect on wheat (Triticum aestivum L.) growth and leaf ion concentrations

    Get PDF
    Abstract Crops growing in salt-affected soils may suffer from physiological drought stress, ion toxicity, and mineral deficiency which then lead to reduced growth and productivity. A pot experiment was conducted to study the effect of different salinity levels, i.e. EC e =3 dS m -1 (control), 8, 12 and 16 dS m -1 on wheat grain yield, yield components and leaf ion uptake. Desired salinity levels were obtained by mixing adequate NaCl before filling the pots. Soil water was maintained at 70% of available water holding capacity. Results revealed that Kouhdasht and Tajan showed highest and lowest grain yield and yield compomnents as compared to others. Leaf Na + and Cl -concentrations of all genotypes increased significantly with increasing soil salinity, with the highest concentrations in Tajan, followed by Rasoul, Atrak and Kouhdasht. Highest leaf K + concentration and K + : Na + ratio were observed in Kouhdasht, followed by Atrak, Rasoul and Tajan, respectively. Based on higher grain yield production, higher leaf K + concentration, K + : Na + ratio and lower leaf Na + and Cl -concentrations, Kouhdasht and Atrak were identified as the most salt-tolerant genotypes
    corecore