6,051 research outputs found

    Mechanics of thermally fluctuating membranes

    Get PDF
    Besides having unique electronic properties, graphene is claimed to be the strongest material in nature. In the press release of the Nobel committee it is claimed that a hammock made of a squared meter of one-atom thick graphene could sustain the wight of a 4 kg cat. More practically important are applications of graphene like scaffolds and sensors which are crucially dependent on the mechanical strength. Meter-sized graphene is even being considered for the lightsails in the starshot project to reach the star alpha centaury. The predicted strength of graphene is based on its very large Young modulus which is, per atomic layer, much larger than that of steel. This reasoning however would apply to conventional thin plates but does not take into account the peculiar properties of graphene as a thermally fluctuating crystalline membrane. It was shown recently both experimentally and theoretically that thermal fluctuations lead to a dramatic reduction of the Young modulus and increase of the bending rigidity for micron-sized graphene samples in comparison with atomic scale values. This makes the use of the standard F\"oppl-von Karman elasticity (FvK) theory for thin plates not directly applicable to graphene and other single atomic layer membranes. This fact is important because the current interpretation of experimental results is based on the FvK theory. In particular, we show that the FvK-derived Schwerin equation, routinely used to derive the Young modulus from indentation experiments has to be essentially modified for graphene at room temperature and for micron sized samples. Based on scaling analysis and atomistic simulation we investigate the mechanics of graphene under transverse load up to breaking. We determine the limits of applicability of the FvK theory and provide quantitative estimates for the different regimes.Comment: to appear in npj 2D Materials and Application

    Scaling behavior and strain dependence of in-plane elastic properties of graphene

    Get PDF
    We show by atomistic simulations that, in the thermodynamic limit, the in-plane elastic moduli of graphene at finite temperature vanish with system size L L as a power law  L−ηu ~ L^{-\eta_u} with ηu≃0.325 \eta_u \simeq 0.325 , in agreement with the membrane theory. Our simulations clearly reveal the size and strain dependence of graphene's elastic moduli, allowing comparison to experimental data. Although the recently measured difference of a factor 2 between the asymptotic value of the Young modulus for tensilely strained systems and the value from {\it ab initio} calculations remains unsolved, our results do explain the experimentally observed increase of more than a factor 2 for a tensile strain of only a few permille. We also discuss the scaling of the Poisson ratio, for which our simulations disagree with the predictions of the self-consistent screening approximation.Comment: 5 figure

    An International Dynamic Term Structure Model with Economic Restrictions and Unspanned Risks

    Get PDF
    We construct a multi-country affine term structure model that contains unspanned macroeconomic and foreign exchange risks. The canonical version of the model is derived and is shown to be easy to estimate. We show that it is important to impose restrictions (including global asset pricing, carry trade fundamentals and maximal Sharpe ratios) on the prices of risk to obtain plausible decompositions of forward curves. The forecasts of interest rates and exchange rates from the restricted model match those from international survey data. Unspanned macroeconomic variables are important drivers of international term and foreign exchange risk premia as well as expected exchange rate changes.Asset Pricing; Exchange rates; Interest rates

    Slow energy relaxation of macromolecules and nano-clusters in solution

    Full text link
    Many systems in the realm of nanophysics from both the living and inorganic world display slow relaxation kinetics of energy fluctuations. In this paper we propose a general explanation for such phenomenon, based on the effects of interactions with the solvent. Within a simple harmonic model of the system fluctuations, we demonstrate that the inhomogeneity of coupling to the solvent of the bulk and surface atoms suffices to generate a complex spectrum of decay rates. We show for Myoglobin and for a metal nano-cluster that the result is a complex, non-exponential relaxation dynamics.Comment: 5 pages, 3 figure

    Melting temperature of graphene

    Get PDF
    We present an approach to the melting of graphene based on nucleation theory for a first order phase transition from the 2D solid to the 3D liquid via an intermediate quasi-2D liquid. The applicability of nucleation theory, supported by the results of systematic atomistic Monte Carlo simulations, provides an intrinsic definition of the melting temperature of graphene, Tm T_m , and allows us to determine it. We find Tm≃4510T_m \simeq 4510 K, about 250 K higher than that of graphite using the same interatomic interaction model. The found melting temperature is shown to be in good agreement with the asymptotic results of melting simulations for finite disks and ribbons of graphene. Our results strongly suggest that graphene is the most refractory of all known materials

    Spiral graphone and one sided fluorographene nano-ribbons

    Full text link
    The instability of a free-standing one sided hydrogenated/fluorinated graphene nano-ribbon, i.e. graphone/fluorographene, is studied using ab-initio, semiempirical and large scale molecular dynamics simulations. Free standing semi-infinite arm-chair like hydrogenated/fluorinated graphene (AC-GO/AC-GF) and boat like hydrogenated/fluorinated graphene (B-GO/B-GF) (nano-ribbons which are periodic along the zig-zag direction) are unstable and spontaneously transform into spiral structures. We find that rolled, spiral B-GO and B-GF are energetically more favorable than spiral AC-GO and AC-GF which is opposite to the double sided flat hydrogenated/fluorinated graphene, i.e. graphane/fluorographene. We found that the packed, spiral structures exhibit unexpected localized HOMO-LUMO at the edges with increasing energy gap during rolling. These rolled hydrocarbon structures are stable beyond room temperature up to at least TT=1000\,K.Comment: Phys. Rev. B 87, 075448 (2013

    The role of the Berry Phase in Dynamical Jahn-Teller Systems

    Full text link
    The presence/absence of a Berry phase depends on the topology of the manifold of dynamical Jahn-Teller potential minima. We describe in detail the relation between these topological properties and the way the lowest two adiabatic potential surfaces get locally degenerate. We illustrate our arguments through spherical generalizations of the linear T x h and H x h cases, relevant for the physics of fullerene ions. Our analysis allows us to classify all the spherical Jahn-Teller systems with respect to the Berry phase. Its absence can, but does not necessarily, lead to a nondegenerate ground state.Comment: revtex 7 pages, 2 eps figures include

    Atomistic simulations of structural and thermodynamic properties of bilayer graphene

    Full text link
    We study the structural and thermodynamic properties of bilayer graphene, a prototype two-layer membrane, by means of Monte Carlo simulations based on the empirical bond order potential LCBOPII. We present the temperature dependence of lattice parameter, bending rigidity and high temperature heat capacity as well as the correlation function of out-of-plane atomic displacements. The thermal expansion coefficient changes sign from negative to positive above ≈400\approx 400 K, which is lower than previously found for single layer graphene and close to the experimental value of bulk graphite. The bending rigidity is twice as large than for single layer graphene, making the out-of-plane fluctuations smaller. The crossover from correlated to uncorrelated out-of-plane fluctuations of the two carbon planes occurs for wavevectors shorter than ≈3\approx 3 nm−1^{-1}Comment: 6 pages, 7 figures
    • …
    corecore