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Scaling behavior and strain dependence of in-plane elastic properties of graphene
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Heyendaalseweg 135, 6525AJ Nijmegen, The Netherlands
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We show by atomistic simulations that, in the thermodynamic limit, the in-plane elastic moduli of
graphene at finite temperature vanish with system size L as a power law L−ηu with ηu ' 0.325, in
agreement with the membrane theory. Our simulations clearly reveal the size and strain dependence
of graphene’s elastic moduli, allowing comparison to experimental data. Although the recently
measured difference of a factor 2 between the asymptotic value of the Young modulus for tensilely
strained systems and the value from ab initio calculations remains unsolved, our results do explain
the experimentally observed increase of more than a factor 2 for a tensile strain of only a few
permille. We also discuss the scaling of the Poisson ratio, for which our simulations disagree with
the predictions of the self-consistent screening approximation.

Mechanical and structural properties of graphene form
an intriguing and highly non-trivial aspect of its physics.
The structure of a two-dimensional (2D) material em-
bedded in a 3D space gives room to special features,
related to large out-of-plane deformations, in particular
thermal ripples [1–9] and static ripples and wrinkles [10].
A crucial difference with 3D (or strictly 2D) crystals is
that, for graphene, out-of-plane atomic displacements h
and in-plane displacements u have different wavevector
dependence of the energy cost in the long wavelength
limit q → 0, namely ∝ q2 and ∝ q respectively, the
latter being the normal behavior for acoustic phonons.
Hence, at finite temperature, the long wavelength out-
of-plane fluctuations are much larger than the in-plane
ones, so that at some small wavevector q the first anhar-
monic coupling term of the form uh2 will dominate over
the “normal” harmonic terms u2, with important con-
sequences for the elastic behavior[8, 9, 11–14]. In par-
ticular, the wavevector dependence of the anharmonic
coupling strength leads to expect a power law behavior
of the size dependence of the elastic properties.

Contrary to the temperature dependence [15, 16], so
far the size dependence of the in-plane elastic moduli
of graphene has been hardly studied nor measured [17]
until recent experiments seem to indicate that such a
size dependence does exist for graphene [18, 19]. From
indentation experiments on graphene drums with sizes
of the order of 1 µm, the Young modulus Y was found
to vary between 250 N/m and 700 N/m with increasing
strain [19], the latter value being much higher than the
currently accepted value for flat sheets of ∼ 340 N/m
obtained in previous measurements [17] or ab initio cal-
culations [20].

Here we study the size dependence of the in-plane elas-
tic moduli of graphene at room temperature T=300 K by
means of atomistic Monte Carlo (MC) simulations based
on the realistic interatomic potential LCBOPII [21], as
used in previous works [2, 4, 15]. We obtain explicit ex-
pressions for the size and strain dependence of graphene’s
in-plane elastic moduli, providing a benchmark and tools

for the analysis of experiments for systems of any size.
Theoretically, the mentioned size dependence has been

studied within the continuum elastic theory of thin plates
and membranes, described by the Hamiltonian [22]:

H =
1

2

∫
dr
(
κ(∇2h)2 + λu2αα + 2µu2αβ

)
(1)

where r is the 2D position vector, κ is the bending rigid-
ity, λ and µ are Lamé coefficients, with µ the shear mod-
ulus, and

uαβ =
1

2
(∂αuβ + ∂βuα + ∂αh ∂βh) (2)

is the strain tensor.
The harmonic approximation neglects the non-linear

h2 term, decoupling the bending and stretching modes.
Then the correlation functions for out-of-plane displace-
ments, H0(q) = 〈|hq|2〉0, and for in-plane displacements,

Dαβ
u,0(q) = 〈u∗αquβq〉0, can be derived by Gaussian inte-

gration [8, 9]:

H0(q) =
kBT

κq4
(3)

and:

Dαβ
u,0(q) =

Pαβ(q)kBT

(λ+ 2µ)q2
+

(δαβ − Pαβ(q))kBT

µq2
(4)

with Pαβ(q) = qαqβ/q
2. The average height fluctuation

behaves as 〈h2〉0 =
∑

q〈|hq|2〉0 ∼ L2, implying instabil-
ity of a membrane as a flat phase.

Due to the large out-of-plane fluctuations, however, the
harmonic behavior is not valid for small q and one has
to keep the h2 term in eq. 2. Since H remains quadratic
in u, these degrees of freedom can still be integrated out.
This leads to a Hamiltonian in Fourier space which is a
function of hq only [9]:

H̃ =
1

2

∑
q

κq4|hq|2+
Y

8

∑
q,k,k′

R(q,k,k′)hkhq−khk′h−q−k′

(5)
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where Y is the 2D Young modulus and R(q,k,k′) = (q×
k)(q×k′)/q4. The anharmonic, quartic term reduces the
height fluctuations, stabilizing the flat phase, effectively
described by a renormalized bending rigidity κR(q) ∼
q−η with positive η. Hence, the height correlation H(q)
for q → 0 has the same form as H0(q) in eq. 3, but
with κ replaced by κR(q) [11]. Likewise, Dαβ

u (q) can be
described by renormalized λR(q), µR(q) ∼ qηu in eq. 4
with ηu > 0. From rotational invariance it follows that
η and ηu should satisfy the scaling relation ηu = 2 − 2η
[23].

Within the self-consistent screening approximation
(SCSA) [13], the exponent was estimated as η ' 0.821
[13]; next-order corrections reduce it slightly to η ' 0.789
[14]. A renormalization group approach gives η = 0.849
[24] and MC simulations for self-avoiding membranes
η ' 0.72 [25]. With η > 0, 〈h2〉 ∼ L2−η, is much smaller
than 〈h2〉0 ∼ L2 for large L, stabilizing the flat phase.

Although it is a priori not obvious whether the mem-
brane theory applies to an atomic-layer-thick 2D crys-
tal like graphene, atomistic MC simulations confirm the
scaling behavior of H(q) with η ' 0.85[4]. The scaling of
in-plane elastic moduli, however, has not yet been stud-
ied nor confirmed for graphene. Contrary to κR which
increases with increasing system size, making the mem-
brane more resistant against bending, λR and µR de-
crease with system size. Hence, if graphene follows the
membrane theory, the in-plane elastic moduli vanish for
large system sizes, an unthinkable situation for 3D crys-
tals!

For a 2D system, the 2D bulk modulus B, the uniaxial
modulus C11 and Y are related to λ and µ as:

B = λ+ µ , C11 = B + µ and Y =
4Bµ

B + µ
(6)

implying that B, C11 and Y scale as λ and µ. Another
relevant quantity is the 2D Poisson ratio ν:

ν =
B − µ
B + µ

(7)

The SCSA predicts a universal, negative Poisson ra-
tio ν = −1/3 for L → ∞ [13], as later confirmed by
MC simulation of self-avoiding membranes [26]. For
graphene, however, so far only positive values were re-
ported (ν = 0.15− 0.46) [15, 27, 28].

In Fig.1 we show the in-plane correlation function
Dαα
u (q) (α = x, y) calculated by NPT MC simulations

at pressure P = 0 and T = 300 K with isotropic volume
fluctuations for roughly square samples of N = 37888
atoms using periodic boundary conditions. Besides dis-
placement moves we apply also collective wave moves for
small q as in Ref. 4. For the calculation of Dαα

u (q) =

〈|uαq |2〉 = (1/N)〈|
∑N
i uiα exp (iqri,0)|2〉 with {ri,0} the

ground state positions, the in-plane displacement field
was scaled as uiα = sriα− riα,0 where s =

√
A0/A scales

the area A at T=300 K to the ground state area A0 of a
flat sample. The behavior of Dxx

u (q) for small q is consis-

0.01 0.1 1

1e-04

1e-03

1e-02

1e-01

1e+00

1e+01
~ q

-2.3

D
u
αα

(q)

q (Å
-1

)

N=37888

FIG. 1. Correlation functions Dαα
u (α = x, y) for in-plane

displacements uix (x) and uiy (+). The scaling exponent is
consistent with Dαα

u ∼ q−2−ηu with ηu = 2− 2η = 0.3, using
η ' 0.85 [24] (dashed line).

tent with a power law with exponent ηu ' 0.3, indicating
that graphene follows the membrane theory also for in-
plane correlations.

0.998 0.999 1 1.001

-0.03

-0.02

-0.01

0

0.998 0.999 1 1.001

-0.03

-0.02

-0.01

0

0.998 1

0 100 200 300

0.999

1

1.001

relative size sx

P x (
eV

/Å
2 )

s
eq

L
0
 (Å)

P 
(e

V
/Å

2 )
relative size s

24

1008 112

37888

24

112

336

37888
1008

336

a

b

FIG. 2. Pressure as a function of size in NPT simulations
(symbols) with (a) isotropic and (b) uniaxial size fluctuations
for approximately square systems with N =24, 112, 336, 1008,
4032, 12096 and 37888 atoms. The lines are best fits to eq. 11.
The inset gives the equilibrium sizes seq = s(P = 0) (symbols)
as a function of L0 and the fit (solid line) according to the
expression in Table I.

The size and strain dependence of the elastic properties
can be computed simultaneously by NPT MC simulations
for different sizes with isotropic area fluctuations at sev-
eral pressures P . The resulting average area A gives the
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equation of state (EOS), A(P ) and thus also P (A) from
which B can be calculated as:

B = −A∂P
∂A

= −s
2

∂P

∂s
(8)

where s = L/L0 is the relative linear system size with
L0 =

√
N/ρ0 the ground state system size, ρ0 '

0.3819 Å−2 being the 2D ground state atomic density of
graphene. To obtain both B and C11, we also performed
NPT simulations for uniaxial pressure Px, applying fluc-
tuations of Lx in the x-direction, while keeping Ly fixed.
Then C11 follows from:

C11 = −Lx
∂Px
∂Lx

∣∣∣∣
P

= −sx
∂Px
∂sx

∣∣∣∣
P

' −sx
∂Px
∂sx

∣∣∣∣
sy=seq

(9)

where sα = Lα/Lα,0, with Lα,0 (α = x, y) the ground
state dimensions, and where seq = s(P = 0) is the equi-
librium size obtained from the isotropic NPT simulations
at P = 0. The subscript “P” in eq. 9 indicates that
Ly should be taken equal to sy = s(P ) resulting from
isotropic NPT simulations at pressure P and that Px
should be varied around P . However, since we verified
that the dependence of ∂Px/∂sx on sy is very weak we
adopted the last approximation in eq. 9, which is exact
for P = 0.

The results are shown in Fig. 2. The inset shows that
the previously found negative thermal expansion [15] is
also size dependent, but tending to a constant for large
L0. On the basis of Fig. 2a, with the slope ∂P/∂s =
2B/s tending to a constant for large s, we propose the
phenomenological relation for B(s)

B(s) =
s (Beq/seq + CD(s− seq))

1 +D(s− seq)
(10)

whereBeq is the equilibrium value at P = 0. Substitution
of eq. 10 into eq. 8 and integration yields the EOS:

P (s) = − 2

D

(
Beq
seq
− C

)
ln (1 +D(s− seq))− 2C(s− seq)

(11)

Similarly, we write

C11(sx) =
sx

(
C11,eq/seq + C̃D̃(sx − seq)

)
1 + D̃(sx − seq)

(12)

which substituted in eq. 9 gives an equation for Px(sx)
similar to eq. 11 but with s, Beq, C and D replaced by

seq, C11,eq/2, C̃/2 and D̃. This form allows the excellent
fits shown in Fig. 2, providing Beq and C11,eq as a func-
tion of L0. In the left panels of Fig. 3 (left panels) we
show that both B and C11 vanish for large L0, decreasing
as a power law ∼ L−ηu , with ηu ' 0.325 (insets). The
right panels give the corresponding results for Y and ν at
P = 0, calculated using eqs. 6 and 7. Note that, accord-
ing to LCBOPII, the in-plane elastic moduli of graphene
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FIG. 3. Equilibrium bulk modulus Beq, uniaxial modulus
C11,eq, Young modulus Yeq and Poisson ratio ν as a function
of system size L0. The insets in log-log scale demonstrate the
power law behavior. The solid lines are fits according to the
expressions in Table I. Dashed lines in the right panels are
guides to the eye.

at T = 0 K are B = 12.69 eV/Å2 and µ = 9.26 eV/Å2,
yielding Y = 21.41 eV/Å2 = 343 N/m and ν = 0.156, in
agreement with ab initio data [20] and with the small size
limit in Fig. 3 where Y ' 314 N/m. By simulations at
1 K for N = 24 we verified that the remaining difference
is due to temperature.

Interestingly, the power law decrease of B, C11 and
Yeq as a function of L0 sets in from L0 ' 20 Å, a
value twice smaller than the Ginzburg critical value
L∗ = 2π

√
16πκ2/(3Y kBT ) ' 40 Å (using κ ' 1.1eV [2])

expected from membrane theory [11]. The Poisson ratio
ν for small sizes is close to its bare value and increases
up to 0.275 for larger L0, against the SCSA prediction
ν = −1/3. Since the scaling of B and µ is consistent with
the SCSA, it is very unlikely that ν will reach the value
-1/3 for L0 → ∞, as the outcome of eq. 7 only depends
on the prefactors.

We can also calculate Y as a function of tensile strain,
using eqs. 10 and 12 with the best fit parameters. We
should use the B(s) and C11(sx) at equal pressure by
solving Px(sx) = P (s) for sx at given s. Due to the
approximation in eq. 9, sx 6= s unless s = seq. An
approximation of sx(s) is given in Table I. The Y (s) ob-
tained from the data of Fig. 2 are shown in Fig. 4 for
different sizes. Symbols mark the results at s = seq.
Notice the strong increase of Y (s) for large sizes. For
N = 37888 (L0 ' 315 Å), Y increases from ∼ 100 N/m
at seq ' 0.9985 to 220 N/m at s = 0.9995, i.e. more than
a factor 2 for a strain ε = s− seq = 0.001 (0.1 %)! This
strong dependence is in full qualitative agreement with
the recent experimental claims [18, 19]. A quantitative
comparison will be discussed below.

Since Beq and C11,eq, as well as seq, C, D, C̃ and D̃
turn out to depend smoothly on L0, we can approximate
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10 and 12 and the expressions in Table I. The upper axis of
the inset gives the strain ε = s− seq.

seq = 0.99838 + 4.295 10−3

1+0.1814L0.94
0

, D =
592.3+1.2510−2L2

0

1+1.2510−5L2
0

,

Beq =
12.1−5.69 10−3L2

0+28.6(L0/14.14)
4L−0.325

0
1.0+(L0/14.14)4

, C = 12.1,

C11,eq =
20.35−7.597 10−3L2

0+1.47 10−4L3
0+48.1(L0/31.62)

4L−0.325
0

1.0+(L0/31.62)4
,

C̃ = 20.35, D̃ =
309.2+0.1597L2

0

1+1.4510−4L2
0

, sx(s) = 1.15(s− seq) + seq

TABLE I. Size dependent parameters for B(s) and C11(sx)
according to eqs. 10 and 12 for L0 in Å. Beq, C11,eq, C and
C̃ are in eV/Å2, other quantities are dimensionless.

all parameters by the functions of L0 given in Table I.
These expressions apply to any size and give appropriate
asymptotics with C (C̃) equal to ∂P/∂s (∂Px/∂sx) for
the smallest system (N=24).

The inset of Fig. 4 shows the resulting Y (s) for a size
L0 = 1 µm (∼ N = 3.8 × 107 atoms). At zero strain
(symbol) Y is only 30 N/m, becoming almost a factor
10 larger at 0.5 % tensile strain, where it approaches
its asymptotic value. Although the suppression of an-
harmonicity found here goes very fast as a function of
strain, it clearly deviates from membrane theory within
the SCSA, where a complete suppression of anharmonic-
ity occurs for tensile strain of 0.01 % [29], two orders of
magnitude lower than our atomistic simulations.

Finally, the size dependence of Y with tensile strain at
negative pressures is displayed in Fig. 5. Tensile stress of
0.05 N/m, corresponding to ∼0.05 % strain, suppresses
the anharmonic effects, and thus the power law decay,
for L0 > 0.25 µm. As a consequence, Y is a factor ∼ 4
larger than Yeq for a system of 1 µm. Subsequently, in-
creasing the stress by a factor 10 yields a strain of ∼0.25
% and Y ' 275 N/m. This variation of Y with strain
corresponds to recent experimental data.[19] The factor 2
difference in both lower and upper bound of Y , however,
with an experimental upper value Y =700 N/m, remains
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FIG. 5. Young modulus Y as a function of L0 for the indi-
cated values of the pressure P . The value in brackets is the
corresponding strain ε = s− seq.

unexplained and requires further investigations. We note
that our values of the bare elastic moduli agree with the
experimental phonon spectrum [30, 31] of graphite, where
anharmonic effects are suppressed by interlayer interac-
tions.

In conclusion, we have shown by atomistic simulations
that the in-plane elastic moduli of graphene vanish with
size as L−ηu0 with ηu ' 0.325, confirming that graphene
follows membrane theory within the SCSA in this re-
spect. The critical exponent ηu, together with the inde-
pendent estimate of η ' 0.85 [4], supports the scaling
relation ηu = 2 − 2η. In contrast, our results do not
support the SCSA prediction ν = −1/3 for L→∞. We
remark that ν = −1/3 in eqs. 6 and 7 leads to BR = −λR
and λR = 2BR − C11, implying that λR should be neg-
ative for stability while in Fig. 3 2BR − C11,R remains
positive for any L0. We also find that suppression of an-
harmonicity requires a tensile strain 10-50 times larger
than predicted by SCSA.

This research has received funding from the Euro-
pean Union Seventh Framework Programme under grant
agreement n604391 Graphene Flagship.
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