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ARTICLE OPEN

Mechanics of thermally fluctuating membranes
J. H. Los1, A. Fasolino 1 and M. I. Katsnelson1

Besides having unique electronic properties, graphene is claimed to be the strongest material in nature due to its Young modulus,
which is, per atomic layer, much larger than that of steel. This reasoning however does not take into account the peculiar properties
of graphene as a thermally fluctuating crystalline membrane, which at finite temperature, lead to a dramatic reduction of the Young
modulus for micron-sized graphene samples in comparison with atomic scale values. We show that the standard Föppl-von Karman
elasticity theory for thin plates, routinely used for the interpretation of experimental results has to be modified for graphene at
room temperature and for micron-sized samples. Based on scaling analysis and atomistic simulation, we investigate the mechanics
of graphene under transverse load up to breaking. We determine the limits of applicability of the Föppl-von Karman theory and
provide quantitative estimates for the different regimes.

npj 2D Materials and Applications  (2017) 1:9 ; doi:10.1038/s41699-017-0009-3

INTRODUCTION
Graphene is claimed to be the strongest material in nature,1, 2 with
a Young modulus which is, per atomic layer, much larger than that
of steel. In the press release of the Nobel committee (https://www.
nobelprize.org/nobel_prizes/physics/laureates/2010/advanced-
physicsprize2010.pdf), it is claimed that a hammock made of a
squared meter of one-atom-thick graphene could sustain the
weight of a 4 kg cat. More practically important are many
applications of graphene-like scaffolds3 and sensors,4 which are
crucially dependent on the mechanical strength. Meter-sized
graphene is even being considered as a material for the lightsails
in the starshot project to reach the star alpha centaury (https://
breakthroughinitiatives.org/Initiative/3). The predicted exceptional
strength of graphene however is based on the conventional
theory of thin plates,5, 6 which does not take into account that
graphene has to be treated as a thermally fluctuating crystalline
membrane.7–10 It was shown recently both experimentally11–13

and theoretically14 that thermal fluctuations lead to a dramatic
reduction of the Young modulus and increase of the bending
rigidity for micron-sized graphene samples in comparison with
atomic scale values. This makes the use of the standard Föppl-von
Karman elasticity (FvK) theory for thin plates5, 6 not directly
applicable to graphene and other single atomic layer membranes.
This fact is important because the current interpretation of
experimental results is based on the FvK theory. In particular, we
show that the FvK-derived Schwerin equation, routinely used to
derive the Young modulus from indentation experiments11 has to
be essentially modified for graphene at room temperature and for
micron-sized samples.

Elasticity of thin plates
The deflection of a thin plate under transverse point or uniform
load is normally well described by the FvK equations. These form a
set of two coupled partial differential equations reading:

κΔ2h� ∂2ϕ
∂y2

∂2h
∂x2

þ ∂2ϕ
∂x2

∂2h
∂y2

� 2
∂2ϕ
∂x∂y

∂2h
∂x∂y

� �
¼ P; ð1Þ

Δ2ϕþ Y
∂2h
∂x2

∂2h
∂y2

� ∂2h
∂x∂y

� �2
 !

¼ 0; ð2Þ

where h is the displacement in the direction perpendicular to the
plane, i.e., the deflection, ϕ is the potential for the in-plane stress
tensor, κ is the bending rigidity, Y the two-dimensional (2D) Young
modulus and P the transverse pressure.
The behavior of h as a function of P and system size L can be

obtained from a scaling analysis of the FvK equations as follows.
Equation 2 implies that ϕ/L4 ~ Yh2/L4 or ϕ ~ Yh2. Then the second
term in Eq. 1 scales as ϕh/L4 ~ Yh3/L4 and dominates over the first
term (~κh/L4) in the regime of pressures yielding h2>>κ/Y. For
graphene, with κ≃ 1.1 eV and Y≃ 19.6 eV/Å at room tempera-
ture,14, 15 this condition implies h >> 0.23 Å and is normally
fulfilled for a system of mesoscopic size (or beyond), except for
very low pressure. Hence, apart from this very low pressure
regime, the deflection behaves as:

h ’ L4P
gY

� �1=3

; ð3Þ

where g is a dimensionless number depending on the shape of
the 2D system and on the type of load, for instance uniform
pressure or point load with a tip as in nano-indentation.2 In the
latter case, the pressure P in Eq. 3 should be replaced by 4F/(πL2)
with F the force exerted by the tip. Then, Eq. 3 turns into an
equation, which is equivalent to the so-called Schwerin equation,
but without prestress. The Schwerin equation is commonly used
to determine the elastic modulus Y from nano-indentation
measurements.2, 11 From now on, we will consider a circular
drum of radius R = L/2, clamped at the edge, with h being the
midpoint deflection. In that case, the value of g for point load has
been derived from analytical solutions of the governing equations
and is given by g ¼ 16=ðπ~g3νÞ, with ~gν ’ 1:0491� 0:1462ν �
0:1583ν2 and ν the Poisson ratio.16 With ν ’ 0:26 for graphene,
one finds ~gν ’ 1:0004 and g ’ 5:087. For uniform load, a fully
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analytical solution is not available, but there are various
approximate, semi-analytical solutions. The solutions reported in
refs. 6, 16 yield gν ’ 0:7179� 0:1706ν � 0:1495ν2 ’ 0:663, which
is similar to the value obtained in ref. 17 yielding gν ’ 75ð1� ν2Þ=
ð8ð23þ 18ν � 3ν2ÞÞ ’ 0:686. It was noted,17 however, that these
expressions underestimate by 10% the values obtained from the
classical, more complex and accurate solution by Hencky18 for the
case that ν = 0.16. Here, we will use gν = 0.714 yielding g ’ 43:9.
With this larger value for gν, compatible with Hencky’s solution,
the simulation data for h vs. P yield the correct (known) value of Y,
which agrees with that obtained from a simulation with point
load. We will comment on this later on.
At low enough pressure, where h2 << κ=Y , we have a linear

regime where h ’ L4P=ðfκÞ according to the above scaling
analysis with f as another dimensionless, numerical factor. From
the work in ref. 6, 16, identifying the bending stiffness Y3Dd3=
ð12ð1� ν2ÞÞ for a thin plate with bulk Young modulus Y3D and
thickness d as κ for a membrane of atomic thickness, we can
evaluate f ’ 1024:0 and f = 256.0 for uniform and point load,
respectively.
Summing up the two terms from the scaling analysis, one finds

that h(P, L) satisfies the equation:

fκhþ gYh3 ¼ L4P; ð4Þ
in agreement with the analysis in refs. 16, 19. If we define the
cross-over pressure Pc1 as the pressure for which the linear term
equals the non-linear term in Eq. 4, which is the case when h2 = fκ/
(gY), we find that the linear regime vanishes rapidly with system

size as Pc1 ’ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðfκÞ3=ðgYÞ

q
=L4.

The above analysis is based on the assumption that the elastic
moduli κ and Y are constant, i.e., independent of the system size.
Recently it has been clearly confirmed,14 however, that the elastic
moduli of graphene are not material constants but scale as power-
laws of the system size due to strong anharmonic coupling
between in-plane modes and large out-of-plane modes, as
predicted by membrane theory.20 Besides, the moduli exhibit an
anomalously strong dependences on strain.14 Thus, generally
speaking, for a 2D thermally fluctuating solid, the above analysis is
invalid and has to be adapted. Eventually this will lead to an
anomalous deflection vs. load relation h ~ Pα with α different from
1/3 (Eq. 3), as we will show explicitly below. Besides analytical
results based on a revised scaling analysis for membranes, we also
present the results from atomistic simulations for a graphene
drum under uniform load, to validate our analytical findings.

RESULTS
Scaling theory
In order to account for the size and strain dependence of the
elastic moduli, we extend our scaling analysis by replacing these
moduli by their renormalized values κR and YR. The latter is given
by:9, 20
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Y
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� ��ηu
LG<Lσ � L

8>>>><
>>>>:

; ð5Þ

while YR/Y = 1 for L < LG or Lσ < LG with ηu ’ 0:325,14 where LG is the
so-called Ginzburg length beyond which the power-law scaling is
applicable. The length Lσ is the size beyond which anharmonicity is
suppressed due to tensile strain and is given by:21

Lσ ¼ ð2πÞ2κ
2BϵLηG

 ! 1
2�η

¼ ð2πÞ2κ
fνYϵL

η
G

 ! 1
2�η

; ð6Þ

where ϵ is the average strain and where we used the relation 2B =

Y/(1 − ν) = fνY with fν � 1=ð1� νÞ ’ 1:35 (see also Supplementary
Information S2). An equation similar to Eq. 5 applies to κR/κ, but
with −ηu replaced by η ’ 1� ηu=2 ’ 0:8375, implying that κR
increases with size, while YR decreases with size.
A theoretical estimate for LG, LtheorG ¼ 2π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
16πκ2=ð3YkBTÞ

p
,20

yields LG ~ 40 Å at room temperature, but from simulations,14 LG
turned out to be about a factor 2 smaller. Therefore, in the further
analysis, we will use LG ¼ cGLtheorG , where cG ’ 0:415 at 300 K is a
correction factor resulting from analysis of the simulation data for
YR as a function of strain reported in ref.14 (see Supplementary
Information S1).
With renormalized elastic constants, Eq. 4 still holds, but with κ

and Y replaced by κR and YR. Then, we can again determine the
cross-over pressure Pc1 imposing equality of the two terms on the
left-hand size. For small load where Lσ > L, applying the first line of
Eq. 5, one finds Pc1 � L�ð6�ηÞ=2 � L�2:58. For larger loads yielding
Lσ < L, however, Pc1 acquires a different size dependence:

Pc1 ¼
~g1κ

8�8η
8�4ηY

3η�2
8�4ηðkBTÞ

2þη
8�4η

L
14�9η
4�2η

; ð7Þ

where ð14� 9ηÞ=ð4� 2ηÞ ’ 2:78 and ~g1 ’ 0:55f ν1gν2
ðc2GgσgϵÞ�ν3 , with ν1 = (10 − 7η)/(8 − 4η), ν2 = (3η − 2)/(8 − 4η) and
ν3 = (2 + η)/(8 − 4η). The cross-over in the size dependence of Pc1
at a system size Lc1 should occur at another critical pressure, Pc2
where Lσ is equal to Lc1. Explicit expressions for Pc2 as a function of
L will be given below. For graphene, it turns out that Lc1 would be
smaller than LG, thus in a regime where renormalization does not
apply. For L > LG > Lc1, Pc2 < Pc1, implying that Lσ < L at Pc1.
Therefore, for graphene Pc1 is always given by Eq. 7, derived
from the second line of Eq. 5, and has no cross-over. Thus, with
renormalized elastic moduli, the regime where the first term in
Eq. 4 is dominant still vanishes for L→∞ but more slowly, namely
as Pc1 ~ L−2.78 instead of L−4.
A third critical pressure Pc3 is defined as the pressure for which

anharmonicity is completely suppressed, i.e., where Lσ≤ LG
yielding YR = Y. The important observation to make now is that
for pressures P within Pc2 < P < Pc3 or equivalently LG < Lσ < L, h as a
function of P obeys a power law different from that in Eq. 3, due to
the renormalization of the elastic moduli. Indeed, using Eqs. 5 and
6, YR depends on the strain ϵ as:

YRðϵÞ ’ Y
ð2πÞ2κ
fνYϵL2G

 !�μ

’ Y
16πκc2Gfνϵ

3kBT

� �μ

; ð8Þ

with μ � ð2� 2ηÞ=ð2� ηÞ ’ 0:2797. In a similar way one can
derive an expression for κRðϵÞ. Substitution of Eq. 8 with ϵ ’
gϵh2=L2 into Eq. 3 with Y replaced by YR gives a self-consistency
equation for h with solution:

h ’ kBT
κ

� � μ
3þ2μ L4þ2μP

~gY

� � 1
3þ2μ

; ð9Þ

where ð3þ 2μÞ ’ 3:56 and ~g ’ ð16πc2Gfνgϵ=3Þμg. This equation
replaces Eq. 3 for the case of a 2D solid exhibiting renormalization
of the elastic moduli according to membrane theory. One should
notice that now the relation between h and P involves, apart from
Y, also kBT/κ, which is natural as this quantity controls the strength
of anharmonic coupling. Notice that Eq. 3 is recovered from Eq. 9
for μ = 0 (i.e., for ηu = 0).
The geometrical prefactor gϵ for the strain in ϵ ¼ gϵh2=L2

depends on the shape of the deflected membrane. If we define
ϵ ¼ ffiffiffiffiffiffiffiffiffiffi

A=A0

p � 1 with A the surface area of the deflected
membrane and A0 = πL2/4 that of the flat drum, then for uniform
load, with the shape of the drum approximately being that of a
spherical cap, gϵ ¼ 2, whereas for nano-indentation, with an
approximately cone shaped membrane, gϵ ¼ 1.
To find the critical pressure Pc2, we first need to solve Lσ(h) = L

for h. Substitution of this h into Eq. 4, retaining both terms on the
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left-hand side with κ and Y replaced by κR and YR, respectively
leads to:

Pc2 ¼ g21ðkBTÞ
3η
4 κ

3�3η
2 Y

3η�2
4

L
8�3η
2

þ g22ðkBTÞ
7η�4
4 κ
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2
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12�7η
2

ð10Þ

with ð8� 3ηÞ=2 ’ 2:74, ð12� 7ηÞ=2 ’ 3:07, g21 ’ 0:1063f ðc3ηG
fνgϵÞ�1=2 and g22 ’ 12:06gðc7η�4

G f 3ν g
3
ϵÞ�1=2.

In a similar way, for deriving Pc3, we first solve Lσ(h) = LG for h
and then substitute this h into Eq. 4. In this pressure regime, the
contribution from the term with κ is very small (for L not too small)
and can be neglected. Then, we obtain:

Pc3 ¼ g3Y
L

kBT
κ

� �3=2

ð11Þ

with g3 ’ 0:0146gðc2GfνgϵÞ�3=2. If we just consider the pressure
contribution ρmg due to the mass of the carbon atoms, with ρ the
2D density of graphene and g the gravitational acceleration, it can
directly be calculated from Eq. 11 that it requires a system size of
about L = 305 km (!) to suppress anharmonicities by graphene’s
own weight.
The behavior for the various critical loads as a function of

system size is depicted in Fig. 1 on two different length scales,
corresponding to the scale used in our simulations and the typical
scale in experiments, respectively. For the latter case, we used the
parameters for point load and displayed critical forces Fci ¼
πL2Pci=4ði ¼ 1; 2; 3Þ instead of pressures.

Atomistic simulations
In order to validate the behavior derived above and in particular
Eq. 9, we have performed atomistic, Monte Carlo (MC) simulations
for a graphene drum with a diameter of L ’ 315 Å under uniform

transverse pressures over a wide range between 0 and 60 kbar.
The LCBOPII model was used for the carbon interatomic
interactions22 and the pressure was modelled by assigning a
weight M = P/(ρg) to each atom. Defining the z-direction
perpendicular to the drum, a change δz of the z-coordinate of
an atom contributes an amount Mgδz to the energy change ΔE of
the system entering the MC acceptance probability Pacc = min[1,
exp(−ΔE/kBT)] for the configurational change. The simulations
were performed at T = 300 K and the 2D density of the drum was
adjusted to the equilibrium density at 300 K, so that no prestrain
was present. For illustration, snapshots from these simulations are
shown in Fig. 2, together with snapshots from a simulation under
point load. In the latter case, only atoms in a small circular, central
region were assigned a weight M = F/(Ncg), with F the total applied
force and Nc the number of atoms in the central circle. For our
simulation, Nc = 25.
The simulation results for uniform pressure P vs. h are given in

Fig. 3. Before analyzing these data, we should realize that for the
derivation of Eq. 9, we have tacitly neglected the linear term in
Eq. 4, which is justified for system sizes commonly used in
experiments of the order of 1 μm or larger, yielding Pc1 < 0.003 bar.
The system size L≃ 315 Å used in our simulations, however,
requires to include the linear regime to cover the pressure range
smaller then Pc1 ’ 12 bar in this case. While for P < Pc2, P as a
function of h should behave as P = Ah + Bh3; for P > Pc2, the
expected behavior is P ¼ Ahð2�3ηÞ=ð2�ηÞ þ Bh3þ2μ ’ Ah�0:441 þ
Bh3:559. In order to fit our simulation data for pressures below
and above Pc2, we used the following form, which combines the
usual FvK linear term with the renormalized expressions yielding
correct asymptotic behaviour for h→ 0 and h→∞:

P ¼ Ahþ Bh3þ2μ ð12Þ
It has two fitting parameters A and B of which the latter is related
to the elastic moduli by B ¼ ðκ=kBTÞμ~gY=L4þ2μ.

Fig. 1 Calculated critical pressures Pc1, Pc2, Pc3 according to Eqs. 7,
10, 11 for uniform load (top panels) and critical forces Fc1, Fc2, Fc3 for
point load (bottom panels) as a function of system size L on two
different scales, in the absence of prestrain. The inset zoom in at
different load and/or size range

Fig. 2 Snapshots from simulations of the indentation of a graphene
drum with diameter L≃ 315 Å under uniform load (upper three
graphs) and point load (lower three graphs). In the graphs with a view
at an angle, one can see the thermal corrugation of the drum,
responsible for the anharmonic effects. The bottom graphs show
configurations just after breaking. For uniform load breaking occurs
at the drum edge at P ’ 60 kbar, while for point load it occurs
around the tip at F ’ 160 nN for the given system size
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The upper panel in Fig. 3 shows that, for pressures up to ~400
bar, the simulation data are in good agreement with Eq. 12, as
shown by the best fit (solid line), and clearly deviate from a best fit
based on P = Ah + Bh3, expected without renormalization of the
elastic constants. Instead, beyond 400 bar up to about 6000 bar
shown in the left bottom panel, the data points are best fitted by
P ¼ Ahþ Bh3 ’ Bh3, which according to our analysis should apply
for P > Pc3. This suggests that Pc3 ’ 400 bar, about a factor
2 smaller than the estimate from Eq. 11 (see also Fig. 1) but
nevertheless of the right order of magnitude. The numerical
discrepancy here might be due to the fact that cross-over regimes
are ignored in the theoretical derivations.
The best fit for pressures in the range [400–40,000] bar, beyond

Pc3, based on P = Ah + Bh3 yields B ’ 0:128, implying a (bare)
Young elastic modulus Y ¼ L4B=g ’ 299N=m. This is the value
after the mentioned adjustment of gν such that it was equal to the
Y obtained from a point load simulation at an applied force
beyond Fc3. The found value is close to the known true bare
modulus Y = 314 N/m at 300 K for LCBOPII. From the best fit at low
pressures (<Pc3) based on Eq. 12 and with κ = 1.1 eV, we obtain Y
= 307 N/m. The small difference with the value from the first
method may be due an uncertainty in the factor cg. In fact, the
above two ways to determine Y (for known κ) can alternatively be
used to determine ~g and cG (and LG) by imposing equality of Y.

DISCUSSION
A way to extract the renormalization of Y from the simulation data
is to make a fit based on Eq. 12 and then use that Bh3þ2μ ¼
YRh3=ðgL4Þ to obtain the strain dependent YR:

YRðϵÞ ¼ L4þ2μB
g

h2

L2

� �μ

¼ L4þ2μB
ggμε

ϵμ; ð13Þ

valid for ϵ<ϵc3, where ϵc3 ’ 0:005 is the strain required to suppress
anharmonicity, i.e., the strain beyond which the normal P ~ h3 is
applicable. Notice that this approach does not require knowledge

of κ nor ~g. For point load, the same approach can be used, but
with an additional factor π/(4L2) multiplying the right-hand side of
Eq. 13.
The right bottom panel of Fig. 3 shows a deviation from the P ~

h3 behavior for deflections beyond 40 Å. This deviation for large
strain can be attributed to a normal softening of the elastic moduli
due to stretching anharmonicity, as in 3D crystals. Such a
softening for graphene under large strain is in agreement with
previous observations.23 The corresponding critical pressure, Pc4,
should depend on the size as Pc4 = g4/L, with g4 ’ 25:2N=m
derived from the value Pc4 ’ 8 kbar (8 × 108 N) for L = 3.15 × 10−8

m. Indeed, assuming that this anharmonicity sets in at a fixed (size
independent) critical strain, ϵc4 ¼ gϵh2c4=L

2, the size dependence
of Pc4 follows directly from Eq. 4, neglecting the linear term,
yielding Pc4 ’ ðgY=LÞðϵc4=gϵÞ3=2, with ϵc4 ’ 0:032. Although Pc4 is
a safe lower bound for breaking, normally breaking is only
expected at significantly higher strains, where the in-plane moduli
start to vanish due to the anharmonicity of the interaction
potential. For LCBOPII, the bulk modulus vanishes at a strain value
of ~0.2, a value indeed close to the strain where breaking was
actually observed in our simulation, at a pressure Pbr ’ 50 kbar.
This value of the breaking strain is similar to that found in a
simulation study of graphene nanoribbons under uniaxial strain.24

It should be noticed, however, that a typical atomistic simulation
only covers a very small time interval, typically orders of
magnitude smaller than a second, which makes the choice of a
maximal, safe lower bound for breaking from simulations at a
given temperature not obvious and somewhat arbitrary.
Staying on the safe side by choosing the breaking pressure as

Pbr = 4Pc4 = 4g4/L, yielding Pbr ’ 32 kbar for the simulated system
size with a corresponding strain of ~0.13, a graphene drum of 1 m
in diameter gives a breaking force of Fc4 ¼ πL2Pc4=4 ’ 79:2N,
enough for an extremely heavy cat of about 8.0 kg to be safe,
treating it as a uniform load. Treating the cat as a point load,
however, and assuming that the breaking strain is equal to that for
uniform load, we have to correct g4 by a factor ~0.328 due to the
different values for g and gϵ, implying that the cat should not be
heavier than 2.65 kg, i.e., a young cat, to be safe. In reality, a cat on
a drum of this size is something between point and uniform load,
so that probably any cat should be safe on it. It is interesting to
notice, and somewhat counterintuitive, that while a drum of 1 m
cannot bear a person of 100 kg, a drum of 40 m could, due to the
fact that Fc4 grows linearly with L. A graphene drum would only
break by its own weight for a size L ¼ 4g4=ðρmgÞ ’ 13520 km!
While the relations derived above are appropriate for the

analysis of our simulations where prestress can be controlled and
taken to be zero, it should be noticed that in nano-indentation
experiments, almost unavoidably some prestress σ0 is present,
created during preparation of the drum. The implications for the
load vs. deflection expression and the various critical loads for the
case of tensile prestress, including renormalization of the elastic
moduli, are given in the Supplementary Information S3. Tensile
prestress gives rise to a contribution to the force, which is linear in
h, namely πσ0h. As this is an order L2 larger then the linear
contribution κh/L2 arising from the FvK equations, its contribution
can be significant as compared to the cubic term Yh3/L2, even for
μm-sized drums. Therefore, for the sake of accuracy in measuring
the elastic modulus and the effect of its renormalization, one
should keep the prestress as small as possible, so that the term
cubic in h, from which the elastic modulus is determined, is the
dominant term. Moreover, while Fc1 increases with system size for
tensile prestress, Fc2 and Fc3 decrease with σ0. To be able to
measure the renormalization of the elastic modulus, however, Fc3
should not be too small, leaving a sufficiently large force domain
(<Fc3) for observing renormalization.

Fig. 3 Pressure as a function of the midpoint deflection obtained
from simulations (symbols) on three different deflection ranges. The
solid line is a best fit according to Eq. 12 over the interval h∈[0, 15] Å,
while the dashed lines are best fits according P= Ah + Bh3 over the
interval h∈[0, 15] Å (upper panel) and h∈[15, 35] Å (lower panels),
respectively. These insets are the same plots in log–log scale
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CONCLUSIONS
The revised FvK theory for thermally excited membranes like
graphene that we have presented here is important for any
technological application of 2D materials involving their mechan-
ical properties. For graphene, we have discussed in a quantitative
way the behaviour under uniform and point load up to breaking.
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