15 research outputs found

    Development of the Liverpool Adverse Drug Reaction Avoidability Assessment Tool

    Get PDF
    Aim To develop and test a new tool to assess the avoidability of adverse drug reactions that is suitable for use in paediatrics but which is also applicable to a variety of other settings. Methods The study involved multiple phases. Preliminary work involved using the Hallas scale and a modification of the existing Hallas scale, to assess two different sets of adverse drug reaction (ADR) case reports. Phase 1 defined, modified and refined a new tool using multidisciplinary teams. Phase 2 involved the assessment of 50 ADR case reports from a prospective study of paediatric inpatients by individual assessors. Phase 3 compared assessments with the new tool for individuals and groups in comparison to the ‘gold standard’ (the avoidability outcome set by a panel of senior investigators: an experienced clinical pharmacologist, paediatrician and pharmacist). Main Outcome Measures Inter-rater reliability (IRR), measure of disagreement and utilization of avoidability categories. Results Preliminary work—Pilot phase: results for the original Hallas cases were fair and pairwise kappa scores ranged from 0.21 to 0.36. Results for the modified Hallas cases were poor, pairwise kappa scores ranged from 0.06 to 0.16. Phase 1: on initial use of the new tool, agreement between the two multidisciplinary groups was found on 13/20 cases with a kappa score of 0.29 (95% CI -0.04 to 0.62). Phase 2: the assessment of 50 ADR case reports by six individual reviewers yielded pairwise kappa scores ranging from poor to good 0.12 to 0.75 and percentage exact agreement (%EA) ranged from 52–90%. Phase 3: Percentage exact agreement ranged from 35–70%. Overall, individuals had better agreement with the ‘gold standard’. Conclusion Avoidability assessment is feasible but needs careful attention to methods. The Liverpool ADR avoidability assessment tool showed mixed IRR. We have developed and validated a method for assessing the avoidability of ADRs that is transparent, more objective than previous methods and that can be used by individuals or groups

    Identification of molecular mechanisms for cellular drug resistance by combining drug activity and gene expression profiles

    Get PDF
    Acquired drug resistance is a major problem in cancer treatment. To explore the genes involved in chemosensitivity and resistance, 10 human tumour cell lines, including parental cells and resistant subtypes selected for resistance against doxorubicin, melphalan, teniposide and vincristine, were profiled for mRNA expression of 7400 genes using cDNA microarray technology. The drug activity of 66 cancer agents was evaluated on the cell lines, and correlations between drug activity and gene expression were calculated and ranked. Hierarchical clustering of drugs based on their drug–gene correlations yielded clusters of drugs with similar mechanism of action. Genes correlated with drug sensitivity and resistance were imported into the PathwayAssist software to identify putative molecular pathways involved. A substantial number of both proapoptotic and antiapoptotic genes such as signal transducer and activator of transcription 1, mitogen-activated protein kinase 1 and focal adhesion kinase were found to be associated to drug resistance, whereas genes linked to cell cycle control and proliferation, such as cell division cycle 25A and signal transducer of activator of transcription 5A, were associated to general drug sensitivity. The results indicate that combined information from drug activity and gene expression in a resistance-based cell line panel may provide new knowledge of the genes involved in anticancer drug resistance and become a useful tool in drug development
    corecore