1,969 research outputs found
Inducible transgenic expression in the short‐lived fish Nothobranchius furzeri
Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/98378/1/jfb12099.pd
Investigation of DC-8 nacelle modifications to reduce fan-compressor noise in airport communities. Part 2 - Design studies and duct-lining investigations, May 1967 - October 1969
Modifications to reduce fan-compressor noise level of DC-8 aircraft - Part
Posterior interosseous nerve palsy secondary to pigmented villonodular synovitis of the elbow: Case report and review of literature
SummaryLocal tumor compression is the main mechanical cause of posterior interosseous nerve (PIN) palsy. The reported cases of these tumors do not include that of pigmented villonodular synovitis (PVNS). Here, we report a case of a 53-year-old male with a 9-year history of painless swelling in his left elbow and a few months of progressive weakness in his left hand. Imaging identified the mass, and histological examination of the biopsy specimens revealed PVNS. The mass was compressing the nerve at the arcade of Frohse, and we performed a complete resection of the mass. Following removal of the mass, the patient regained complete function in his left upper extremity, and no local recurrence has been detected after 2 postoperative years. The possibility of PVNS should be considered in the differential diagnosis of PIN palsy
Semaphorin 3A regulates alveolar bone remodeling on orthodontic tooth movement
Semaphorin 3A (Sema3A) promotes osteoblast differentiation and inhibits osteoclast differentiation. In the present study, we observed the regulation of alveolar bone remodeling by Sema3A during orthodontic tooth movement (OTM). Four inflammatory cytokines (IL-1β, IL-6, TNFα, and INF-γ) involved in OTM were applied to osteoblasts in vitro, and Sema3A expression was determined by reverse-transcription quantitative polymerase chain reaction (RT-qPCR). In vivo, springs were attached to the maxillary first molars of C56BL/6J mice (OTM model) and the localization of Sema3A was confirmed by immunofluorescent. Recombinant Sema3A (rSema3A) was locally injected into the OTM model. Inflammatory cytokine localization in the OTM model was confirmed by immunohistochemistry. In vivo, more Sema3A was observed on the tension side in the OTM group. Injection of rSema3A into the OTM model increased mineralization on the tension side and decreased the number of osteoclasts on the compression side. In vitro, IL-1β significantly increased Sema3A mRNA levels. Immunohistochemistry for IL-1β in vivo showed more concentrated staining in the periodontal ligament on the tension side than on the compression side. In summary, our findings revealed the distribution of Sema3A in the periodontal ligament and demonstrated that rSema3A administration promotes bone formation and inhibits bone resorption during OTM
Distillation of Liquid Xenon to Remove Krypton
A high performance distillation system to remove krypton from xenon was
constructed, and a purity level of Kr/Xe = was
achieved. This development is crucial in facilitating high sensitivity low
background experiments such as the search for dark matter in the universe.Comment: 15 pages, 11 figure
Quantitative non-canonical amino acid tagging based proteomics identifies distinct patterns of protein synthesis rapidly induced by hypertrophic agents in cardiomyocytes, revealing new aspects of metabolic remodeling
Cardiomyocytes undergo growth and remodeling in response to specific pathological or physiological conditions. Pathological myocardial growth is a risk factor for cardiac failure to which faster protein synthesis is a major driving element. We aimed to quantify the rapid effects of different pro-hypertrophic stimuli on the synthesis of specific proteins in ARVC and to determine whether such effects are due to alterations on mRNA abundance or the translation of specific mRNAs. Cardiomyocytes have very low rates of protein synthesis, posing a challenging problem in terms of studying changes in the synthesis of specific proteins, which also applies to other non-dividing primary cells. To address this, an optimized QuaNCAT LC/MS method was used to selectively quantify newly synthesized proteins in such cells. The study showed both classical (phenylephrine; PE) and more recent (insulin) pathological cardiac hypertrophic agents increased the synthesis of proteins involved in glycolysis, the Krebs cycle / beta-oxidation, and sarcomeric components. However, insulin increased synthesis of many metabolic enzymes to a greater extent than PE. Using a novel validation method, we confirmed that synthesis of selected candidates is indeed up-regulated by PE and insulin. Synthesis of all proteins studied was upregulated by signaling through mTORC1 without changes in their mRNA levels, showing the key importance of translational control in the rapid effects of hypertrophic stimuli. Expression of PKM2 was upregulated in rat hearts following TAC. This isoform possesses specific regulatory properties that may be involved in metabolic remodeling and as a novel candidate biomarker. Levels of translation factor eEF1 also increased during TAC, likely contributing to faster cell mass accumulation. Interestingly, PKM2 and eEF1 were not up-regulated in pregnancy or exercise induced CH, suggesting them as pathological CH specific markers. The study methods may be of utility to the examination of protein synthesis in primary cells
Dual mechanism of brain injury and novel treatment strategy in maple syrup urine disease
Maple syrup urine disease (MSUD) is an inherited disorder of branched-chain amino acid metabolism presenting with lifethreatening cerebral oedema and dysmyelination in affected individuals. Treatment requires life-long dietary restriction and monitoring of branched-chain amino acids to avoid brain injury. Despite careful management, children commonly suffer metabolic decompensation in the context of catabolic stress associated with non-specific illness. The mechanisms underlying this decompensation and brain injury are poorly understood. Using recently developed mouse models of classic and intermediate maple syrup urine disease, we assessed biochemical, behavioural and neuropathological changes that occurred during encephalopathy in these mice. Here, we show that rapid brain leucine accumulation displaces other essential amino acids resulting in neurotransmitter depletion and disruption of normal brain growth and development. A novel approach of administering norleucine to heterozygous mothers of classic maple syrup urine disease pups reduced branched-chain amino acid accumulation in milk as well as blood and brain of these pups to enhance survival. Similarly, norleucine substantially delayed encephalopathy in intermediate maple syrup urine disease mice placed on a high protein diet that mimics the catabolic stress shown to cause encephalopathy in human maple syrup urine disease. Current findings suggest two converging mechanisms of brain injury in maple syrup urine disease including: (i) neurotransmitter deficiencies and growth restriction associated with branchedchain amino acid accumulation and (ii) energy deprivation through Krebs cycle disruption associated with branched-chain ketoacid accumulation. Both classic and intermediate models appear to be useful to study the mechanism of brain injury and potential treatment strategies for maple syrup urine disease. Norleucine should be further tested as a potential treatment to prevent encephalopathy in children with maple syrup urine disease during catabolic stress
- …