495 research outputs found

    Chronic Obstructive Pulmonary Disease and Lung Cancer: A Review for Clinicians

    Full text link
    Chronic obstructive pulmonary disease (COPD) and lung cancer (LC) are common global causes of morbidity and mortality. Because both diseases share several predisposing risks, the two diseases may occur concurrently in susceptible individuals. The diagnosis of COPD has important implications for the diagnostic approach and treatment options if lesions concerning for LC are identified during screening. Importantly, the presence of COPD has significant implications on prognosis and management of patients with LC. In this monograph, we review the mechanistic linkage between LC and COPD, the impact of LC screening in patients at risk, and the implications of the presence of COPD on the approach to the diagnosis and treatment of LC. This manuscript succinctly reviews the epidemiology and common pathogenetic factors for the concurrence of COPD and LC. Importantly for the clinician, it summarizes the indications, benefits, and complications of LC screening in patients with COPD, and the assessment of risk factors for patients with COPD undergoing consideration of various treatment options for LC

    Pembrolizumab in Combination with Ipilimumab as Second-Line or Later Therapy for Advanced Non–Small-Cell Lung Cancer: KEYNOTE-021 Cohorts D and H

    Get PDF
    Objectives Combination immunotherapy may result in improved antitumor activity compared with single-agent treatment. We report results from dose-finding and dose-expansion cohorts of the phase 1/2 KEYNOTE-021 study that evaluated combination therapy with anti‒programmed death 1 (PD-1) antibody pembrolizumab plus anti‒cytotoxic T-lymphocyte antigen-4 (CTLA-4) antibody ipilimumab in patients with previously treated advanced non–small-cell lung cancer (NSCLC). Materials and Methods Eligibility criteria stipulated histologically/cytologically confirmed advanced NSCLC and treatment failure on ≥1 prior systemic therapy (platinum-based chemotherapy or targeted therapy for patients with EGFR/ALK aberrations). In the dose-finding cohort, patients initially received pembrolizumab 10 mg/kg plus ipilimumab 1 or 3 mg/kg once every 3 weeks for 4 cycles followed by pembrolizumab 10 mg/kg monotherapy for up to 2 years. Based on emerging published data, subsequent patients received pembrolizumab 2 mg/kg plus ipilimumab 1 mg/kg. Objective response rate (ORR; primary efficacy endpoint) was assessed per RECIST version 1.1 by blinded, independent central review. Phase 2 hypothesis that ORR would be greater than the 20% rate for historical controls was evaluated using the exact binomial test. Results Fifty-one patients were enrolled; 71% received ≥2 prior lines of therapy. No dose-limiting toxicities occurred at any dose level. Among patients who received pembrolizumab 2 mg/kg plus ipilimumab 1 mg/kg (n = 44), ORR was 30% (95% CI, 17%–45%), but not statistically significantly >20% (P = 0.0858). Median progression-free survival in this group was 4.1 (95% CI, 1.4–5.8) months; median overall survival was 10.9 (95% CI, 6.1–23.7) months. With pembrolizumab 2 mg/kg plus ipilimumab 1 mg/kg, incidences of treatment-related adverse events, grade 3–5 treatment-related adverse events, and immune-mediated adverse events and infusion reactions were 64%, 29% and 42%, respectively. Conclusions In patients with heavily pretreated advanced NSCLC, pembrolizumab plus ipilimumab showed evidence of antitumor activity, but was associated with meaningful toxicity

    In an in vitro model of human tuberculosis, monocyte-microglial networks regulate matrix metalloproteinase-1 and -3 gene expression and secretion via a p38 mitogen activated protein kinase-dependent pathway.

    Get PDF
    BACKGROUND: Tuberculosis (TB) of the central nervous system (CNS) is characterized by extensive tissue inflammation, driven by molecules that cleave extracellular matrix such as matrix metalloproteinase (MMP)-1 and MMP-3. However, relatively little is known about the regulation of these MMPs in the CNS. METHODS: Using a cellular model of CNS TB, we stimulated a human microglial cell line (CHME3) with conditioned medium from Mycobacterium tuberculosis-infected primary human monocytes (CoMTb). MMP-1 and MMP-3 secretion was detected using ELISAs confirmed with casein zymography or western blotting. Key results of a phospho-array profile that detects a wide range of kinase activity were confirmed with phospho-Western blotting. Chemical inhibition (SB203580) of microglial cells allowed investigation of expression and secretion of MMP-1 and MMP-3. Finally we used promoter reporter assays employing full length and MMP-3 promoter deletion constructs. Student's t-test was used for comparison of continuous variables and multiple intervention experiments were compared by one-way ANOVA with Tukey's correction for multiple pairwise comparisons. RESULTS: CoMTb up-regulated microglial MMP-1 and MMP-3 secretion in a dose- and time-dependent manner. The phospho-array profiling showed that the major increase in kinase activity due to CoMTb stimulation was in p38 mitogen activated protein kinase (MAPK), principally the α and γ subunits. p38 phosphorylation was detected at 15 minutes, with a second peak of activity at 120 minutes. High basal extracellular signal-regulated kinase activity was further increased by CoMTb. Secretion and expression of MMP-1 and MMP-3 were both p38 dependent. CoMTb stimulation of full length and MMP-3 promoter deletion constructs demonstrated up-regulation of activity in the wild type but a suppression site between -2183 and -1612 bp. CONCLUSIONS: Monocyte-microglial network-dependent MMP-1 and MMP-3 gene expression and secretion are dependent upon p38 MAPK in tuberculosis. p38 is therefore a potential target for adjuvant therapy in CNS TB

    Activity of dalotuzumab, a selective anti-IGF1R antibody, in combination with erlotinib in unselected patients with Non-small-cell lung cancer: a phase I/II randomized trial

    Get PDF
    BACKGROUND: We investigated the safety and antitumor activity of dalotuzumab, a selective anti-insulin growth factor 1 receptor monoclonal antibody (IGF1R MoAb), plus erlotinib in a sequential phase I/II trial in unselected patients with refractory advanced non-small-cell lung cancer (NSCLC).The phase I trial determined the recommended dose and safety of erlotinib plus dalotuzumab at 5 mg/kg or 10 mg/kg weekly in 20 patients. The phase II trial compared outcomes to erlotinib alone and erlotinib plus dalotuzumab at the mg/kg established in the phase I trial. RESULTS: Erlotinib at 150 mg plus dalotuzumab at 10 mg/kg was safe. The phase II trial included 37 patients in the erlotinib arm and 38 patients in the erlotinib plus dalotuzumab arm. Progression-free survival was 1.6 versus 2.5 months, overall survival was 10.2 and 6.6 months, and the objective response rate was 7.9% and 2.7%, respectively, with no significant differences between the two arms. Grade 3-5 adverse events occurred in 11 (28.9%) versus 13 (35.1%) patients, respectively. The most frequent adverse events were asthenia (36.8% vs. 37.8%), dehydration (5.3% vs. 2.7%), diarrhea (71% vs. 81.1%), hyperglycemia (13.1% vs.18.9%), and skin-related toxicities (92.1% vs. 86.4%). CONCLUSION: The addition of dalotuzumab to erlotinib did not improve efficacy outcome in patients with refractory advanced NSCLC

    First-Line Nivolumab in Stage IV or Recurrent Non-Small-Cell Lung Cancer.

    Get PDF
    Nivolumab has been associated with longer overall survival than docetaxel among patients with previously treated non-small-cell lung cancer (NSCLC). In an open-label phase 3 trial, we compared first-line nivolumab with chemotherapy in patients with programmed death ligand 1 (PD-L1)-positive NSCLC. We randomly assigned, in a 1:1 ratio, patients with untreated stage IV or recurrent NSCLC and a PD-L1 tumor-expression level of 1% or more to receive nivolumab (administered intravenously at a dose of 3 mg per kilogram of body weight once every 2 weeks) or platinum-based chemotherapy (administered once every 3 weeks for up to six cycles). Patients receiving chemotherapy could cross over to receive nivolumab at the time of disease progression. The primary end point was progression-free survival, as assessed by means of blinded independent central review, among patients with a PD-L1 expression level of 5% or more. Among the 423 patients with a PD-L1 expression level of 5% or more, the median progression-free survival was 4.2 months with nivolumab versus 5.9 months with chemotherapy (hazard ratio for disease progression or death, 1.15; 95% confidence interval [CI], 0.91 to 1.45; P=0.25), and the median overall survival was 14.4 months versus 13.2 months (hazard ratio for death, 1.02; 95% CI, 0.80 to 1.30). A total of 128 of 212 patients (60%) in the chemotherapy group received nivolumab as subsequent therapy. Treatment-related adverse events of any grade occurred in 71% of the patients who received nivolumab and in 92% of those who received chemotherapy. Treatment-related adverse events of grade 3 or 4 occurred in 18% of the patients who received nivolumab and in 51% of those who received chemotherapy. Nivolumab was not associated with significantly longer progression-free survival than chemotherapy among patients with previously untreated stage IV or recurrent NSCLC with a PD-L1 expression level of 5% or more. Overall survival was similar between groups. Nivolumab had a favorable safety profile, as compared with chemotherapy, with no new or unexpected safety signals. (Funded by Bristol-Myers Squibb and others; CheckMate 026 ClinicalTrials.gov number, NCT02041533 .)

    False-negative PD-L1 immunostaining in ethanol-fixed EBUS-TBNA specimens of non-small cell lung cancer patients

    Get PDF
    Aims Programmed death-ligand 1 (PD-L1) immunostaining is used to predict which non-small-cell lung cancer (NSCLC) patients will respond best to treatment with programmed cell death protein 1/PD-L1 inhibitors. PD-L1 immunostaining is sometimes performed on alcohol-fixed cytological specimens instead of on formalin-fixed paraffin-embedded (FFPE) biopsies or resections. We studied whether ethanol prefixation of clots from endobronchial ultrasound-guided transbronchial needle aspiration (EBUS-TBNA) results in diminished PD-L1 immunostaining as compared with formalin fixation. Methods and results FFPE cell blocks from EBUS-TBNA specimens of 54 NSCLC patients were identified. For each case, paired samples were available, consisting of clots directly immersed in formalin and clots prefixed in Fixcyt (50% ethanol). Serial sections were immunostained for PD-L1 by use of the standardised SP263 assay and the 22C3 antibody as a laboratory-developed test (LDT). PD-L1 positivity was determined with two cut-offs (1% and 50%). Concordance of PD-L1 positivity between the formalin-fixed (gold standard) and ethanol-prefixed material was assessed. When the 22C3 LDT was used, 30% and 36% of the ethanol-prefixed specimens showed false-negative results at the 1% and 50% cut-offs, respectively (kappa 0.64 and 0.68). When SP263 was used, 22% of the ethanol-prefixed specimens showed false-negative results at the 1% cut-off (kappa 0.67). At the 50% cut-off, concordance was higher (kappa 0.91), with 12% of the ethanol-prefixed specimens showing false-negative results. Conclusion Ethanol fixation of EBUS-TBNA specimens prior to formalin fixation can result in a considerable number of false-negative PD-L1 immunostaining results when a 1% cut-off is used and immunostaining is performed with SP263 or the 22C3 LDT. The same applies to use of the 50% cut-off when immunostaining is performed with the 22C3 LDT

    Immune checkpoint inhibitor PD-1 pathway is down-regulated in synovium at various stages of rheumatoid arthritis disease progression.

    Get PDF
    Immune checkpoint blockade with therapeutic anti-cytotoxic T lymphocyte-associated antigen (CTLA)-4 (Ipilimumab) and anti-programmed death (PD)-1 (Nivolumab and Pembrolizumab) antibodies alone or in combination has shown remarkable efficacy in multiple cancer types, concomitant with immune-related adverse events, including arthralgia and inflammatory arthritis (IA) in some patients. Herein, using Nivolumab (anti-PD-1 antagonist)-responsive genes along with transcriptomics of synovial tissue from multiple stages of rheumatoid arthritis (RA) disease progression, we have interrogated the activity status of PD-1 pathway during RA development. We demonstrate that the expression of PD-1 was increased in early and established RA synovial tissue compared to normal and OA synovium, whereas that of its ligands, programmed death ligand-1 (PD-L1) and PD-L2, was increased at all the stages of RA disease progression, namely arthralgia, IA/undifferentiated arthritis, early RA and established RA. Further, we show that RA patients expressed PD-1 on a majority of synovial tissue infiltrating CD4+ and CD8+ T cells. Moreover, enrichment of Nivolumab gene signature was observed in IA and RA, indicating that the PD-1 pathway was downregulated during RA disease progression. Furthermore, serum soluble (s) PD-1 levels were increased in autoantibody positive early RA patients. Interestingly, most of the early RA synovium tissue sections showed negative PD-L1 staining by immunohistochemistry. Therefore, downregulation in PD-1 inhibitory signaling in RA could be attributed to increased serum sPD-1 and decreased synovial tissue PD-L1 levels. Taken together, these data suggest that agonistic PD1 antibody-based therapeutics may show efficacy in RA treatment and interception

    Common polymorphisms within the NR4A3 locus, encoding the orphan nuclear receptor Nor-1, are associated with enhanced β-cell function in non-diabetic subjects

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Neuron-derived orphan receptor (Nor) 1, nuclear receptor (Nur) 77, and nuclear receptor-related protein (Nurr) 1 constitute the NR4A family of orphan nuclear receptors which were recently found to modulate hepatic glucose production, insulin signalling in adipocytes, and oxidative metabolism in skeletal muscle. In this study, we assessed whether common genetic variation within the <it>NR4A3 </it>locus, encoding Nor-1, contributes to the development of prediabetic phenotypes, such as glucose intolerance, insulin resistance, or β-cell dysfunction.</p> <p>Methods</p> <p>We genotyped 1495 non-diabetic subjects from Southern Germany for the five tagging single nucleotide polymorphisms (SNPs) rs7047636, rs1526267, rs2416879, rs12686676, and rs10819699 (minor allele frequencies ≥ 0.05) covering 100% of genetic variation within the <it>NR4A3 </it>locus (with D' = 1.0, r<sup>2 </sup>≥ 0.9) and assessed their association with metabolic data derived from the fasting state, an oral glucose tolerance test (OGTT), and a hyperinsulinemic-euglycemic clamp (subgroup, N = 506). SNPs that revealed consistent associations with prediabetic phenotypes were subsequently genotyped in a second cohort (METSIM Study; Finland; N = 5265) for replication.</p> <p>Results</p> <p>All five SNPs were in Hardy-Weinberg equilibrium (p ≥ 0.7, all). The minor alleles of three SNPs, i.e., rs1526267, rs12686676, and rs10819699, consistently tended to associate with higher insulin release as derived from plasma insulin at 30 min(OGTT), AUC<sub>C-peptide</sub>-to-AUC<sub>Gluc </sub>ratio and the AUC<sub>Ins30</sub>-to-AUC<sub>Gluc30 </sub>ratio with rs12686676 reaching the level of significance (p ≤ 0.03, all; additive model). The association of the SNP rs12686676 with insulin secretion was replicated in the METSIM cohort (p ≤ 0.03, additive model). There was no consistent association with glucose tolerance or insulin resistance in both study cohorts.</p> <p>Conclusion</p> <p>We conclude that common genetic variation within the <it>NR4A3 </it>locus determines insulin secretion. Thus, <it>NR4A3 </it>represents a novel candidate gene for β-cell function which was not covered by the SNP arrays of recent genome-wide association studies for type 2 diabetes mellitus.</p
    corecore