3,595 research outputs found

    Improved magnesia for thermal control coatings

    Get PDF
    Formation of radiation-generated color centers using single crystals of magnesium oxide is discussed. Crystal structure of magnesium oxide is described. Chemical processes used to produce magnesium oxide with desired color center kinetics are presented. Proton irradiation of magnesium oxide crystals was conducted to determine lattice defects

    Study of color center formation in white powder compounds

    Get PDF
    White powder compounds of metal oxides for thermal protective coating of spacecraf

    Learning Design: reflections on a snapshot of the current landscape

    Get PDF
    The mounting wealth of open and readily available information and the swift evolution of social, mobile and creative technologies warrant a re-conceptualisation of the role of educators: from providers of knowledge to designers of learning. This need is being addressed by a growing trend of research in Learning Design. Responding to this trend, the Art and Science of Learning Design workshop brought together leading voices in the field and provided a forum for discussing its key issues. It focused on three thematic axes: practices and methods, tools and resources, and theoretical frameworks. This paper reviews some definitions of Learning Design and then summarises the main contributions to the workshop. Drawing upon these, we identify three key challenges for Learning Design that suggest directions for future research

    Electric circuit networks equivalent to chaotic quantum billiards

    Full text link
    We formulate two types of electric RLC resonance network equivalent to quantum billiards. In the network of inductors grounded by capacitors squared resonant frequencies are eigenvalues of the quantum billiard. In the network of capacitors grounded by inductors squared resonant frequencies are given by inverse eigen values of the billiard. In both cases local voltages play role of the wave function of the quantum billiard. However as different from quantum billiards there is a heat power because of resistance of the inductors. In the equivalent chaotic billiards we derive the distribution of the heat power which well describes numerical statistics.Comment: 9 pages, 7 figure

    Testing a goal-driven account of involuntary attentional capture by threat

    Get PDF
    Attention has long been characterised within prominent models as reflecting a competition between goal-driven and stimulus-driven processes. It remains unclear, however, how involuntary attentional capture by affective stimuli, such as threat-laden content, fits into such models. While such effects were traditionally held to reflect stimulus-driven processes, recent research has increasingly implicated a critical role of goal-driven processes. Here we test an alternative goal-driven account of involuntary attentional capture by threat, using an experimental manipulation of goal-driven attention. To this end we combined the classic ‘contingent capture’ and ‘emotion-induced blink’ (EIB) paradigms in an RSVP task with both positive or threatening target search goals. Across six experiments, positive and threat distractors were presented in peripheral, parafoveal, and central locations. Across all distractor locations, we found that involuntary attentional capture by irrelevant threatening distractors could be induced via the adoption of a search goal for a threatening category; adopting a goal for a positive category conversely led to capture only by positive stimuli. Our findings provide direct experimental evidence for a causal role of voluntary goals in involuntary capture by irrelevant threat stimuli, and hence demonstrate the plausibility of a top-down account of this phenomenon. We discuss the implications of these findings in relation to current cognitive models of attention and clinical disorders

    Impact of time-ordered measurements of the two states in a niobium superconducting qubit structure

    Full text link
    Measurements of thermal activation are made in a superconducting, niobium Persistent-Current (PC) qubit structure, which has two stable classical states of equal and opposite circulating current. The magnetization signal is read out by ramping the bias current of a DC SQUID. This ramping causes time-ordered measurements of the two states, where measurement of one state occurs before the other. This time-ordering results in an effective measurement time, which can be used to probe the thermal activation rate between the two states. Fitting the magnetization signal as a function of temperature and ramp time allows one to estimate a quality factor of 10^6 for our devices, a value favorable for the observation of long quantum coherence times at lower temperatures.Comment: 14 pages, 4 figure

    Gamow Shell Model Description of Neutron-Rich Nuclei

    Get PDF
    This work presents the first continuum shell-model study of weakly bound neutron-rich nuclei involving multiconfiguration mixing. For the single-particle basis, the complex-energy Berggren ensemble representing the bound single-particle states, narrow resonances, and the non-resonant continuum background is taken. Our shell-model Hamiltonian consists of a one-body finite potential and a zero-range residual two-body interaction. The systems with two valence neutrons are considered. The Gamow shell model, which is a straightforward extension of the traditional shell model, is shown to be an excellent tool for the microscopic description of weakly bound systems. It is demonstrated that the residual interaction coupling to the particle continuum is important; in some cases, it can give rise to the binding of a nucleus.Comment: 4 pages, More realistic s.p. energies used than in the precedent versio
    corecore