4 research outputs found

    Constructing a vulnerability knowledge graph

    Get PDF
    Attackers exploiting vulnerabilities in software can cause severe damage to affected victims. Despite continuous efforts of security experts, the number of reported vulnerabilities is increasing. As of January 2022, the National Vulnerability Database consists of more than 160 000 vulnerability records of known vulnerabilities. These vulnerability records contain data such as vulnerability classification, severity metrics, affected software products, and textual descriptions describing the vulnerability. The National Vulnerability Database provides a high-quality data source for security analysts learning about known vulnerabilities. However, maintaining this database comes at a high labor cost for the security experts involved. Knowledge graphs is a semantic technology which has the potential to aid in this task. In our work we explore how knowledge graphs are used in the broader field of cyber security. We then propose our own vulnerability knowledge graph for vulnerability assessment where we combine techniques from NLP with Knowledge graph embedding. Although future work on constructing ground truth data is necessary to evaluate and benchmark our experiments, our initial results show entity prediction results of 0.76 in Hits@10 score.M-D

    Constructing a vulnerability knowledge graph

    Get PDF
    Attackers exploiting vulnerabilities in software can cause severe damage to affected victims. Despite continuous efforts of security experts, the number of reported vulnerabilities is increasing. As of January 2022, the National Vulnerability Database consists of more than 160 000 vulnerability records of known vulnerabilities. These vulnerability records contain data such as vulnerability classification, severity metrics, affected software products, and textual descriptions describing the vulnerability. The National Vulnerability Database provides a high-quality data source for security analysts learning about known vulnerabilities. However, maintaining this database comes at a high labor cost for the security experts involved. Knowledge graphs is a semantic technology which has the potential to aid in this task. In our work we explore how knowledge graphs are used in the broader field of cyber security. We then propose our own vulnerability knowledge graph for vulnerability assessment where we combine techniques from NLP with Knowledge graph embedding. Although future work on constructing ground truth data is necessary to evaluate and benchmark our experiments, our initial results show entity prediction results of 0.76 in Hits@10 score

    Constructing a Knowledge Graph from Textual Descriptions of Software Vulnerabilities in the National Vulnerability Database

    Full text link
    Knowledge graphs have shown promise for several cybersecurity tasks, such as vulnerability assessment and threat analysis. In this work, we present a new method for constructing a vulnerability knowledge graph from information in the National Vulnerability Database (NVD). Our approach combines named entity recognition (NER), relation extraction (RE), and entity prediction using a combination of neural models, heuristic rules, and knowledge graph embeddings. We demonstrate how our method helps to fix missing entities in knowledge graphs used for cybersecurity and evaluate the performance.Comment: Accepted for publication in the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), T\'{o}rshavn, Faroe Islands, May 22nd-24th, 2023. [v2]: added funding acknowledgment
    corecore