503 research outputs found
A meta-analysis of genome-wide association studies of growth differentiation Factor-15 concentration in blood
Blood levels of growth differentiation factor-15 (GDF-15), also known as macrophage inhibitory cytokine-1 (MIC-1), have been associated with various pathological processes and diseases, including cardiovascular disease and cancer. Prior studies suggest genetic factors play a role in regulating blood MIC-1/GDF-15 concentration. In the current study, we conducted the largest genome-wide association study (GWAS) to date using a sample of ∼5,400 community-based Caucasian participants, to determine the genetic variants associated with MIC-1/GDF-15 blood concentration. Conditional and joint (COJO), gene-based association, and gene-set enrichment analyses were also carried out to identify novel loci, genes, and pathways. Consistent with prior results, a locus on chromosome 19, which includes nine single nucleotide polymorphisms (SNPs) (top SNP, rs888663, p = 1.690 × 10-35), was significantly associated with blood MIC-1/GDF-15 concentration, and explained 21.47% of its variance. COJO analysis showed evidence for two independent signals within this locus. Gene-based analysis confirmed the chromosome 19 locus association and in addition, a putative locus on chromosome 1. Gene-set enrichment analyses showed that the“COPI-mediated anterograde transport” gene-set was associated with MIC-1/GDF15 blood concentration with marginal significance after FDR correction (p = 0.067). In conclusion, a locus on chromosome 19 was associated with MIC-1/GDF-15 blood concentration with genome-wide significance, with evidence for a new locus (chromosome 1). Future studies using independent cohorts are needed to confirm the observed associations especially for the chromosomes 1 locus, and to further investigate and identify the causal SNPs that contribute to MIC-1/GDF-15 levels
A multilocus assay reveals high nucleotide diversity and limited differentiation among Scandinavian willow grouse (Lagopus lagopus)
<p>Abstract</p> <p>Background</p> <p>There is so far very little data on autosomal nucleotide diversity in birds, except for data from the domesticated chicken and some passerines species. Estimates of nucleotide diversity reported so far in birds have been high (~10<sup>-3</sup>) and a likely explanation for this is the generally higher effective population sizes compared to mammals. In this study, the level of nucleotide diversity has been examined in the willow grouse, a non-domesticated bird species from the order Galliformes, which also holds the chicken. The willow grouse (<it>Lagopus lagopus</it>) has an almost circumpolar distribution but is absent from Greenland and the north Atlantic islands. It primarily inhabits tundra, forest edge habitats and sub-alpine vegetation. Willow grouse are hunted throughout its range, and regionally it is a game bird of great cultural and economical importance.</p> <p>Results</p> <p>We sequenced 18 autosomal protein coding loci from approximately 15–18 individuals per population. We found a total of 127 SNP's, which corresponds to 1 SNP every 51 bp. 26 SNP's were amino acid replacement substitutions. Total nucleotide diversity (<it>π</it><sub><it>t</it></sub>) was between 1.30 × 10<sup>-4 </sup>and 7.66 × 10<sup>-3 </sup>(average <it>π</it><sub><it>t </it></sub>= 2.72 × 10<sup>-3 </sup>± 2.06 × 10<sup>-3</sup>) and silent nucleotide diversity varied between 4.20 × 10<sup>-4</sup>and 2.76 × 10<sup>-2 </sup>(average <it>π</it><sub><it>S </it></sub>= 9.22 × 10<sup>-3 </sup>± 7.43 × 10<sup>-4</sup>). The synonymous diversity is approximately 20 times higher than in humans and two times higher than in chicken. Non-synonymous diversity was on average 18 times lower than the synonymous diversity and varied between 0 and 4.90 × 10<sup>-3 </sup>(average <it>π</it><sub><it>a </it></sub>= 5.08 × 10<sup>-4 </sup>± 7.43 × 10<sup>3</sup>), which suggest that purifying selection is strong in these genes. <it>F</it><sub>ST </sub>values based on synonymous SNP's varied between -5.60 × 10<sup>-4 </sup>and 0.20 among loci and revealed low levels of differentiation among the four localities, with an overall value of <it>F</it><sub>ST </sub>= 0.03 (95% CI: 0.006 – 0.057) over 60 unlinked loci. Non-synonymous SNP's gave similar results. Low levels of linkage disequilibrium were observed within genes, with an average r<sup>2 </sup>= 0.084 ± 0.110, which is expected for a large outbred population with no population differentiation. The mean per site per generation recombination parameter (ρ) was comparably high (0.028 ± 0.018), indicating high recombination rates in these genes.</p> <p>Conclusion</p> <p>We found unusually high levels of nucleotide diversity in the Scandinavian willow grouse as well as very little population structure among localities with up to 1647 km distance. There are also low levels of linkage disequilibrium within the genes and the population recombination rate is high, which is indicative of an old panmictic population, where recombination has had time to break up any haplotype blocks. The non-synonymous nucleotide diversity is low compared with the silent, which is in agreement with effective purifying selection, possibly due to the large effective population size.</p
New genetic loci implicated in fasting glucose homeostasis and their impact on type 2 diabetes risk.
Levels of circulating glucose are tightly regulated. To identify new loci influencing glycemic traits, we performed meta-analyses of 21 genome-wide association studies informative for fasting glucose, fasting insulin and indices of beta-cell function (HOMA-B) and insulin resistance (HOMA-IR) in up to 46,186 nondiabetic participants. Follow-up of 25 loci in up to 76,558 additional subjects identified 16 loci associated with fasting glucose and HOMA-B and two loci associated with fasting insulin and HOMA-IR. These include nine loci newly associated with fasting glucose (in or near ADCY5, MADD, ADRA2A, CRY2, FADS1, GLIS3, SLC2A2, PROX1 and C2CD4B) and one influencing fasting insulin and HOMA-IR (near IGF1). We also demonstrated association of ADCY5, PROX1, GCK, GCKR and DGKB-TMEM195 with type 2 diabetes. Within these loci, likely biological candidate genes influence signal transduction, cell proliferation, development, glucose-sensing and circadian regulation. Our results demonstrate that genetic studies of glycemic traits can identify type 2 diabetes risk loci, as well as loci containing gene variants that are associated with a modest elevation in glucose levels but are not associated with overt diabetes
Hundreds of variants clustered in genomic loci and biological pathways affect human height
Most common human traits and diseases have a polygenic pattern of inheritance: DNA sequence variants at many genetic loci influence the phenotype. Genome-wide association (GWA) studies have identified more than 600 variants associated with human traits, but these typically explain small fractions of phenotypic variation, raising questions about the use of further studies. Here, using 183,727 individuals, we show that hundreds of genetic variants, in at least 180 loci, influence adult height, a highly heritable and classic polygenic trait. The large number of loci reveals patterns with important implications for genetic studies of common human diseases and traits. First, the 180 loci are not random, but instead are enriched for genes that are connected in biological pathways (P = 0.016) and that underlie skeletal growth defects (P < 0.001). Second, the likely causal gene is often located near the most strongly associated variant: in 13 of 21 loci containing a known skeletal growth gene, that gene was closest to the associated variant. Third, at least 19 loci have multiple independently associated variants, suggesting that allelic heterogeneity is a frequent feature of polygenic traits, that comprehensive explorations of already-discovered loci should discover additional variants and that an appreciable fraction of associated loci may have been identified. Fourth, associated variants are enriched for likely functional effects on genes, being over-represented among variants that alter amino-acid structure of proteins and expression levels of nearby genes. Our data explain approximately 10% of the phenotypic variation in height, and we estimate that unidentified common variants of similar effect sizes would increase this figure to approximately 16% of phenotypic variation (approximately 20% of heritable variation). Although additional approaches are needed to dissect the genetic architecture of polygenic human traits fully, our findings indicate that GWA studies can identify large numbers of loci that implicate biologically relevant genes and pathways.
A multi-omics study of circulating phospholipid markers of blood pressure
High-throughput techniques allow us to measure a wide-range of phospholipids which can provide insight into the mechanisms of hypertension. We aimed to conduct an in-depth multi-omics study of various phospholipids with systolic blood pressure (SBP) and diastolic blood pressure (DBP). The associations of blood pressure and 151 plasma phospholipids measured by electrospray ionization tandem mass spectrometry were performed by linear regression in five European cohorts (n = 2786 in discovery and n = 1185 in replication). We further explored the blood pressure-related phospholipids in Erasmus Rucphen Family (ERF) study by associating them with multiple cardiometabolic traits (linear regression) and predicting incident hypertension (Cox regression). Mendelian Randomization (MR) and phenome-wide association study (Phewas) were also explored to further investigate these association results. We identified six phosphatidylethanolamines (PE 38:3, PE 38:4, PE 38:6, PE 40:4, PE 40:5 and PE 40:6) and two phosphatidylcholines (PC 32:1 and PC 40:5) which together predicted incident hypertension with an area under the ROC curve (AUC) of 0.61. The identified eight phospholipids are strongly associated with triglycerides, obesity related traits (e.g. waist, waist-hip ratio, total fat percentage, body mass index, lipid-lowering medication, and leptin), diabetes related traits (e.g. glucose, insulin resistance and insulin) and prevalent type 2 diabetes. The genetic determinants of these phospholipids also associated with many lipoproteins, heart rate, pulse rate and blood cell counts. No significant association was identified by bi-directional MR approach. We identified eight blood pressure-related circulating phospholipids that have a predictive value for incident hypertension. Our cross-omics analyses show that phospholipid metabolites in the circulation may yield insight into blood pressure regulation and raise a number of testable hypothesis for future research.Diabetes mellitus: pathophysiological changes and therap
Type distribution, viral load and integration status of high-risk human papillomaviruses in pre-stages of cervical cancer (CIN)
A series of 176 archival cervical intraepithelial neoplasia (CIN) was analysed for the presence, viral load and integration status of ‘high-risk' types of human papillomavirus (HR-HPV). The samples were assayed using newly developed methods based on real-time PCR. Two methods for the extraction of DNA from the paraffin-embedded biopsies were compared: a protocol based on the MagNA pure system (Roche) and a Qiagen spin column kit (Qiagen). It was possible to amplify 94% (166) of the samples. Of these, 36, 63 and 80% of the CIN I, II and III cases contained HR-HPV. HPV 16 was the most prevalent, and was found in 20, 28 and 46% of the CIN I, II and III cases, respectively. The second most frequent HR-HPV was type 33 group, and in CIN II it was as prevalent as HPV 16. The median number of copies of HR-HPV per cell was not significantly different in the CIN I, II and III cases, but there was a wide range of viral load values over several magnitudes, regardless of the grade of CIN. All samples were found to contain integrated forms of HPV 16, frequently mixed with an episomal form
Rare tandem repeat expansions associate with genes involved in synaptic and neuronal signaling functions in schizophrenia
Tandem repeat expansions (TREs) are associated with over 60 monogenic disorders and have recently been implicated in complex disorders such as cancer and autism spectrum disorder. The role of TREs in schizophrenia is now emerging. In this study, we have performed a genome-wide investigation of TREs in schizophrenia. Using genome sequence data from 1154 Swedish schizophrenia cases and 934 ancestry-matched population controls, we have detected genome-wide rare (<0.1% population frequency) TREs that have motifs with a length of 2–20 base pairs. We find that the proportion of individuals carrying rare TREs is significantly higher in the schizophrenia group. There is a significantly higher burden of rare TREs in schizophrenia cases than in controls in genic regions, particularly in postsynaptic genes, in genes overlapping brain expression quantitative trait loci, and in brain-expressed genes that are differentially expressed between schizophrenia cases and controls. We demonstrate that TRE-associated genes are more constrained and primarily impact synaptic and neuronal signaling functions. These results have been replicated in an independent Canadian sample that consisted of 252 schizophrenia cases of European ancestry and 222 ancestry-matched controls. Our results support the involvement of rare TREs in schizophrenia etiology
- …