799 research outputs found
Joint association between ambient air pollutant mixture and pediatric asthma exacerbations
Background: Exposure to air pollutants is known to exacerbate asthma, with prior studies focused on associations between single pollutant exposure and asthma exacerbations. As air pollutants often exist as a complex mixture, there is a gap in understanding the association between complex air pollutant mixtures and asthma exacerbations. We evaluated the association between the air pollutant mixture (52 pollutants) and pediatric asthma exacerbations.
Method: This study focused on children (age ≤ 19 years) who lived in Douglas County, Nebraska, during 2016–2019. A seasonal- scale joint association between the outdoor air pollutant mixture adjusting for potential confounders (temperature, precipitation, wind speed, and wind direction) in relation to pediatric asthma exacerbation-related emergency department (ED) visits was evaluated using the generalized weighted quantile sum (qWQS) regression with repeated holdout validation.
Results: We observed associations between air pollutant mixture and pediatric asthma exacerbations during spring (lagged by 5 days), summer (lag 0–5 days), and fall (lag 1–3 days) seasons. The estimate of the joint outdoor air pollutant mixture effect was higher during the summer season (adjusted-βWQS = 1.11, 95% confidence interval [CI]: 0.66, 1.55), followed by spring (adjusted-βWQS = 0.40, 95% CI: 0.16, 0.62) and fall (adjusted-βWQS = 0.20, 95% CI: 0.06, 0.33) seasons. Among the air pollutants, PM2.5, pollen, and mold contributed higher weight to the air pollutant mixture.
Conclusion: There were associations between outdoor air pollutant mixture and pediatric asthma exacerbations during the spring, summer, and fall seasons. Among the 52 outdoor air pollutant metrics investigated, PM2.5, pollen (sycamore, grass, cedar), and mold (Helminthosporium, Peronospora, and Erysiphe) contributed the highest weight to the air pollutant mixture
AXTAR: Mission Design Concept
The Advanced X-ray Timing Array (AXTAR) is a mission concept for X-ray timing
of compact objects that combines very large collecting area, broadband spectral
coverage, high time resolution, highly flexible scheduling, and an ability to
respond promptly to time-critical targets of opportunity. It is optimized for
submillisecond timing of bright Galactic X-ray sources in order to study
phenomena at the natural time scales of neutron star surfaces and black hole
event horizons, thus probing the physics of ultradense matter, strongly curved
spacetimes, and intense magnetic fields. AXTAR's main instrument, the Large
Area Timing Array (LATA) is a collimated instrument with 2-50 keV coverage and
over 3 square meters effective area. The LATA is made up of an array of
supermodules that house 2-mm thick silicon pixel detectors. AXTAR will provide
a significant improvement in effective area (a factor of 7 at 4 keV and a
factor of 36 at 30 keV) over the RXTE PCA. AXTAR will also carry a sensitive
Sky Monitor (SM) that acts as a trigger for pointed observations of X-ray
transients in addition to providing high duty cycle monitoring of the X-ray
sky. We review the science goals and technical concept for AXTAR and present
results from a preliminary mission design study.Comment: 19 pages, 10 figures, to be published in Space Telescopes and
Instrumentation 2010: Ultraviolet to Gamma Ray, Proceedings of SPIE Volume
773
Three Millisecond Pulsars in FERMI LAT Unassociated Bright Sources
We searched for radio pulsars in 25 of the non-variable, unassociated sources
in the Fermi LAT Bright Source List with the Green Bank Telescope at 820 MHz.
We report the discovery of three radio and gamma-ray millisecond pulsars (MSPs)
from a high Galactic latitude subset of these sources. All of the pulsars are
in binary systems, which would have made them virtually impossible to detect in
blind gamma-ray pulsation searches. They seem to be relatively normal, nearby
(<=2 kpc) millisecond pulsars. These observations, in combination with the
Fermi detection of gamma-rays from other known radio MSPs, imply that most, if
not all, radio MSPs are efficient gamma-ray producers. The gamma-ray spectra of
the pulsars are power-law in nature with exponential cutoffs at a few GeV, as
has been found with most other pulsars. The MSPs have all been detected as
X-ray point sources. Their soft X-ray luminosities of ~10^{30-31} erg/s are
typical of the rare radio MSPs seen in X-rays.Comment: Accepted for publication in ApJ Letter
Eight gamma-ray pulsars discovered in blind frequency searches of Fermi LAT data
We report the discovery of eight gamma-ray pulsars in blind frequency
searches using the LAT, onboard the Fermi Gamma-ray Space Telescope. Five of
the eight pulsars are young (tau_c10^36 erg/s), and
located within the Galactic plane (|b|<3 deg). The remaining three are older,
less energetic, and located off the plane. Five pulsars are associated with
sources included in the LAT bright gamma-ray source list, but only one, PSR
J1413-6205, is clearly associated with an EGRET source. PSR J1023-5746 has the
smallest characteristic age (tau_c=4.6 kyr) and is the most energetic
(Edot=1.1E37 erg/s) of all gamma-ray pulsars discovered so far in blind
searches. PSRs J1957+5033 and J2055+25 have the largest characteristic ages
(tau_c~1 Myr) and are the least energetic (Edot~5E33 erg/s) of the
newly-discovered pulsars. We present the timing models, light curves, and
detailed spectral parameters of the new pulsars. We used recent XMM
observations to identify the counterpart of PSR J2055+25 as XMMU
J205549.4+253959. In addition, publicly available archival Chandra X-ray data
allowed us to identify the likely counterpart of PSR J1023-5746 as a faint,
highly absorbed source, CXOU J102302.8-574606. The large X-ray absorption
indicates that this could be among the most distant gamma-ray pulsars detected
so far. PSR J1023-5746 is positionally coincident with the TeV source HESS
J1023-575, located near the young stellar cluster Westerlund 2, while PSR
J1954+2836 is coincident with a 4.3 sigma excess reported by Milagro at a
median energy of 35 TeV. Deep radio follow-up observations of the eight pulsars
resulted in no detections of pulsations and upper limits comparable to the
faintest known radio pulsars, indicating that these can be included among the
growing population of radio-quiet pulsars in our Galaxy being uncovered by the
LAT, and currently numbering more than 20.Comment: Submitted to Ap
Improved Measurement of the Form Factors in the Decay Lambda_c^+ --> Lambda e^+ nu_e
Using the CLEO detector at the Cornell Electron Storage Ring, we have studied
the distribution of kinematic variables in the decay Lambda_c^+ -> Lambda e^+
nu_e. By performing a four-dimensional maximum likelihood fit, we determine the
form factor ratio, R = f_2/f_1 = -0.31 +/- 0.05(stat) +/- 0.04(syst), the pole
mass, M_{pole} = (2.21 +/- 0.08(stat) +/- 0.14(syst)) GeV/c^2, and the decay
asymmetry parameter of the Lambda_c, alpha_{Lambda_c} = -0.86 +/- 0.03(stat)
+/- 0.02(syst), for = 0.67 (GeV/c^2)^2. We compare the angular
distributions of the Lambda_c^+ and Lambda_c^- and find no evidence for
CP-violation: A_{Lambda_c} = (alpha_{Lambda_c^+} + alpha_{Lambda_c^-})/
(alpha_{Lambda_c^+} - alpha_{Lambda_c^-}) = 0.00 +/- 0.03(stat) +/- 0.01(syst)
+/- 0.02, where the third error is from the uncertainty in the world average of
the CP-violating parameter, A_{Lambda}, for Lambda -> p pi^-.Comment: 8 pages postscript,also available through
http://www.lns.cornell.edu/public/CLNS/2004/, submitted to PR
Observation of the Hadronic Transitions Chi_{b 1,2}(2P) -> omega Upsilon(1S)
The CLEO Collaboration has observed the first hadronic transition among
bottomonium (b bbar) states other than the dipion transitions among vector
states, Upsilon(nS) -> pi pi Upsilon(mS). In our study of Upsilon(3S) decays,
we find a significant signal for Upsilon(3S) -> gamma omega Upsilon(1S) that is
consistent with radiative decays Upsilon(3S) -> gamma chi_{b 1,2}(2P), followed
by chi_{b 1,2} -> omega Upsilon(1S). The branching ratios we obtain are
Br(chi_{b1} -> omega Upsilon(1S) = 1.63 (+0.35 -0.31) (+0.16 -0.15) % and
Br(chi_{b2} -> omega Upsilon(1S) = 1.10 (+0.32 -0.28) (+0.11 - 0.10)%, in which
the first error is statistical and the second is systematic.Comment: submitted to XXI Intern'l Symp on Lepton and Photon Interact'ns at
High Energies, August 2003, Fermila
- …