52 research outputs found
Breed identification and authentication of Black Slavonian pigs by DNA analysis
Istraživanje je provedeno na 107 životinja od kojih je bilo 50 svinja crne slavonske pasmine (CS), 15 PIC hibrida, 12 pietrena (P), 10 topigsa (TP), 10 velikih jorkšira (J), 5 landrasa (L) i 5 duroka (D). Od ukupno analiziranih 100 svinja crne slavonske pasmine kod kojih smo odredili genotip MC1R gena odabrano je 30 životinja homozigota za crnu boju (CS), te 20 životinja heterozigota (CSX). Cilj istraživanja bio je utvrditi genetski status crne slavonske svinje pomoću seta od 26 mikrosatelitska markera te optimizirati najmanji broj mikrosatelita dovoljnih za identifikaciju pasmine te autentifikaciju proizvoda načinjenih od iste.
Prema preporuci ISAG-FAO odabran je set od 26 mikrosatelitna lokusa (S0026, S0155, S0005, Sw2410, Sw830, S0355, Sw24, Sw632, Swr1941, Sw936, S0218, S0228, Sw122, Sw857, S0097, sw240, IGF1, Sw2406, Sw72, S0226, S0090, Sw2008, Sw1067, S0101, S0178, Sw911 i S0002) grupirana u tri združene PCR reakcije. Dobiveni PCR produkti su analizirani pomoću ABI 3730XLs (Applied Biosystems).
Analizom genetske strukture populacija utvrđena je niska genetska udaljenost između CS i CSX skupina, no visoka genetska udaljenost s ostalim pasminama. Analizom frekvencije gena identificirano je 15 privatnih alela specifičnih za skupinu crnih svinja homozigota na MC1R genu, te 10 privatnih alela specifičnih samo za heterozigote na MC1R genu. Prosječan broj alela po lokusu se kretao od 2,61 do 6,54 što ukazuje na veliku genetsku raznolikost. Optimizacijom broja mikrosatelitskih lokusa temeljenom na frekvenciji alela, broju privatnih alela, vrijednosti informacijskog sadržaja polimorfizma te izračunu vjerojatnosti identiteta utvrđen je set od pet markera koji su dovoljno informativni za identifikaciju pasmine i autentifikaciju proizvoda. Koristeći navedeni set moguće je identificirati crnu slavonsku pasminu od koje su proizvedeni proizvodi napravljeni od pojedinačnih životinja (šunka ili pršut), međutim identifikacija u kobasičarskim proizvodima nije izvediva zbog većeg broja životinja korištenih pri proizvodnji ovakvih proizvoda, što za ovaj tip analize i veliku polimorfnosti mikrosatelitskih markera nije pogodno.The study was conducted on 107 animals, of which there were 50 pigs Black Slavonian breed (CS) 15 PIC hybrids, 12 Pietrain (P), 10 Topigs (TP), 10 Large White (J), 5 Landrace (L) and 5 Duroc (D). The aim of this study was to determine the genetic status of the Black Slavonian pig with a set of 26 microsatellite markers that were grouped into 3 multiplex PCR reactions and optimize the smallest number of microsatellite markers that are sufficient for breed identification and product authentication.
Isolation of DNA from the collected samples were performed using Thermo Scientific Gene Jet Genomic DNA Purification Kit. Insulation performance was checked by electrophoresis on 1.0% agarose gel. After checking, the isolated DNA was stored at - 20°C and was subsequently used for the genotyping of microsatellite loci. According to the recommendation ISAG-FAO selected set of 26 microsatellite loci were: S0026, S0155, S0005, Sw2410, Sw830, S0355, SW24, Sw632, Swr1941, Sw936, s0218, s0228, Sw122, Sw857, S0097, sw240, IGF1, Sw2406, Sw72 , s0226, S0090, SW2008, Sw1067, S0101, S0178, S0002 and Sw911. Microsatellites are grouped into 4 combined with the reaction due to their length. In a joint response to each of three microsatellites were marked with the same colour (F-6-FAM - blue, ATTO550- yellow, H HEX green). By analysing the genetic structure of populations showed low distance between the two groups of Black Slavonian breed, but a high genetic distance to other breeds. Analysis of allele frequency was found 15 private allele specific for black pigs homozygous the MC1R gene, and 10 private alleles specific for hybrids. The average number of alleles per locus ranged from 2.61 to 6.538 indicating a great genetic diversity. The optimization of the number of microsatellite loci was based on the frequency of alleles, the number of private alleles, the value of polymorphism information content and calculation of probability of identity. The number of microsatellite loci was optimized and analysis was provided a set of five microsatellite markers that were sufficiently informative for breed identification and product authentication. With a set made of 5 microsatellite markers, it is possible to identify the breed from which are certain food products are produced, such as ham. Identification in other kind of products is not possible because such products are produced by a large number of animals witch is not suitable for this type of analysis because of high microsatellite polymorphism
Specifičnosti proizvodnje konzumnih jaja u Republici Hrvatskoj
The self-sufficiency and production of table eggs, as well as the balance of imports and exports in the period from 2013 to 2019 are investigated in this paper. In the aforementioned period, egg production increased by 8.3%, which was insufficient for domestic needs, and the market deficit was compensated by permanent imports. Self-sufficiency decreased to 95 and 90%, respectively. The importance of eggs in human diet, as well as their consumption, is also shown. Official statistical data were used to analyse the situation. Linear and exponential functions were used to describe the phenomena. Research has shown the specifics of egg production and consumption in the Republic of Croatia. Annual egg imports ranged from 2.6 to 15.4%. In order for the Republic of Croatia to be more competitive on the European market, it is necessary to intensify egg production and produce eggs more economically. It is assumed that in the coming period there will be an increase in egg production and consumption in the Republic of Croatia and in EU countries.U radu je analizirana samodostatnost i proizvodnja konzumnih jaja, odnos uvoza i izvoza u razdoblju od 2013. do 2019. godine. U navedenom razdoblju je došlo do povećanja proizvodnje jaja za 8,3% što je nedovoljno za domaće potrebe te je tržišni deficit nadoknađen stalnim uvozom. Samodostatnost se smanjila od 95 % na 90%. Nadalje, prikazana je važnost jaja u ljudskoj prehrani, kao i važnost njihove konzumacije. Za analizu su korišteni službeni podaci dok su za opis stanja korištene linearne i eksponencijalne funkcije. Istraživanje je pokazalo specifičnosti proizvodnje i konzumacije jaja u Republici Hrvatskoj. Godišnji uvoz jaja kretao se od 2,6 do 15,4 %. Kako bi Republika Hrvatska bila konkurentnija na europskom tržištu, potrebno je intenzivirati proizvodnju jaja i ekonomičnije proizvoditi. Pretpostavlja se da će u narednom razdoblju doći do povećanja proizvodnje i potrošnje jaja u Republici Hrvatskoj i u zemljama Europske Unije
KARNOZIN – POLIFUNKCIONALAN BIOLOŠKI AKTIVAN SASTOJAK
In this paper, authors summarise studies refferering to enrichment of breast and thigh muscles with carnosine that has an important function in physiological processes. Research has shown that carnosine improves quality of chicken meat. By adding amino acids β-alanine and L-histidine in chickens’ feed, carnosine synthesizes in skeletal muscles, brain, heart muscle and olfactory receptor cells. It has been determined that the content of carnosine depends on the type of muscle (white or dark meat), broiler genotype as well as sex. Chicken meat is sensitive to oxidation processes, but lipid oxidation can be efficiently prevented by enriching meat with carnosine.U radu se istražuje obogaćivanje mišića prsa i zabataka karnozinom, koji ima važnu funkciju u fiziološkim procesima. Istraživanja su pokazala da karnozin poboljšava kvalitetu pilećega mesa. Dodavanjem aminokiselina β-alanina i L-histidina u hranu pilića sintetizira se karnozin u skeletnim mišićima, mozgu, srčanome mišiću i stanicama čula mirisa. Ustanovljeno je da sadržaj karnozina ovisi o tipu mišića (bijelo ili tamno meso) te genotipu brojlera, kao i o spolu. Meso pilića osjetljivo je na oksidacijske procese, ali se lipidna oksidacija može efikasno prevenirati obogaćivanjem mesa karnozinom
Tracing the Domestic Pig Using the Omics Technologies
Pork represents one of the most important sources of protein in the human diet. Consumers today expect their food to be safe and of expected quality. Therefore, traceability and originality of the product must be guaranteed. This chapter provides an overview of the different approaches used for traceability and authentication of pork and pork products. Different DNA-based methods for meat speciation and authentication are described and their potential for use in the pork industry is highlighted
Utjecaj brzine rasta na svojstva trupova, kvalitetu mesa i profil masnih kiselina broilera
This research investigates the growth rate of Ross 308 broilers (Group A 50g weight gain) during a 42-day fattening period and its influence on the carcass traits and technological quality of breast meat by referring to the broiler sex and fatty acid profile in breast and thigh muscles. The portions of breasts, drumsticks with thighs, back, wings (%), and dressing percentage (%) are considered for the assessment of carcass traits. Technological quality is determined by reviewing the following indicators: pH1, pH2, ΔpH, drip loss, and the breast meat color (CIE L*, a*, b*) . This research confirms a significant influence of broiler sex and growth rate on the live weight gain and carcass weight (p˂0.001) and the portions of breasts (p=0.006) and drumsticks with thighs (p=0.004) too. The growth rate has a significant influence on the portions of drumsticks with thighs and wings (p˂0.001). Broiler sex exerts an influence on the differences in drip loss, % (p=0.003) and in the yellowness (p=0.029) of breast meat. There is a positive correlation determined between the pH1 and pH2 (p0.05). Highly significant differences (p˂0.05) are determined, however, in the content of certain fatty acids between the breast and thigh muscles.U radu se istražuje utjecaj intenziteta prirasta Ross 308 brojlera ( 50g prirasta skupina B) u tovu do 42 dana na karakteristike trupova, tehnološku kvalitetu prsnoga mesa s obzirom na spol i profil masnih kiselina u mišićima prsa i zabataka. Karakteristike trupova određene su na osnovi udjela (%) prsa, bataka sa zabatcima, leđa, krila i randmana (%). Za vrjednovanje tehnološke kvalitete korišteni su sljedeći pokazatelji: pH1, pH2, ΔpH, gubitak mesnoga soka i boje (CIE L*, a*, b*) prsnoga mesa. Utvrđen je statistički značajan utjecaj spola i intenziteta prirasta za živu težinu brojlera, masu trupova (p˂0.001) te udjele prsa (p=0.006) i bataka sa zabatcima (p=0.004). Intenzitet prirasta statistički je značajno utjecao na udjele bataka sa zabacima i krila (p˂0.001). Spol pilića utjecao je na razlike gubitka mesnoga soka, % (p=0.003) i razlike stupnja žutila (p=0.029) prsnoga mesa. Ustanovljena je pozitivna korelacija između pH1 i pH2 (p0.05). Utvrđene su statistički visoko značajne razlike (p˂0.05) u sadržaju pojedinih masnih kiselina između mišića prsa i zabataka
Estimation of population differentiation using pedigree and molecular data in Black Slavonian pig
Submitted 2020-07-17 | Accepted 2020-08-24 | Available 2020-12-01https://doi.org/10.15414/afz.2020.23.mi-fpap.241-249The aim of the study was to investigate the genetic differentiation of the Black Slavonian pig population. Two parallel analyses were performed using genealogical records and molecular data. Pedigree information of 6,099 pigs of the Black Slavonian breed was used to evaluate genetic variability and population structure. Additionally, 70 pigs were genotyped using 23 microsatellite markers. Genealogical data showed shrinkage in genetic diversity parameters with effective population size of 23.58 and inbreeding of 3.26%. Expected and observed heterozygosity were 0.685 and 0.625, respectively, and the average number of alleles per locus was 7.826. Bayesian clustering algorithm method and obtained dendrograms based on pedigree information and molecular data revealed the existence of four genetic clusters within the Black Slavonian pig. Wright’s FIS, FST and FIT from pedigree records were 0.017, 0.006, and 0.024, respectively, and did not prove significant population differentiation based on the geographical location of herds, despite the natural mating system. Obtained results indicate that despite the increased number of animals in the population, genetic diversity of Black Slavonian pig is low and conservation programme should focus on strategies aimed at avoiding further loss of genetic variability. Simultaneous use of genealogical and molecular data can be useful in conservation management of Black Slavonian pig breed.Keywords: autochthonous pig breed, microsatellite, genealogical data, genetic structuringReferencesBarros, E. A., Brasil, L. H. de A., Tejero, J. P., Delgado-Bermejo, J. V. & Ribeiro, M. N. (2017). Population structure and genetic variability of the Segureña sheep breed through pedigree analysis and inbreeding effects on growth traits. Small Ruminant Research, 149, 128-133.Belkhir, K. (2004). GENETIX 4.05, logiciel sous Windows TM pour la génétique des populations. http://www. genetix. univ-montp2. fr/genetix/genetix. htm.Boichard, D., Maignel, L. & Verrier, E. (1997). The value of using probabilities of gene origin to measure genetic variability in a population. Genetics Selection Evolution, 29, 5.Caballero, A. & Toro, M. A. (2000). Interrelations between effective population size and other pedigree tools for the management of conserved populations. Genetics Research, 75, 331-343.Casellas, J., Ibanez-escriche, N., Varona, L., Rosas, J. P. & Noguera, J. L. (2019). Inbreeding depression load for litter size in Entrepelado and Retinto Iberian pig varieties. Journal of Animal Science, 97(5), 1979–1986.Cortés, O., Martinez, A. M., Cañon, J., Sevane, N., Gama, L. T., Ginja, C., Landi, V., Zaragoza, P., Carolino, N., Vicente, A., Sponenberg, P. & Delgado, J. V. for the BioPig Consortium. (2016). Conservation priorities of Iberoamerican pig breeds and their ancestors based on microsatellite information. Heredity, 117(1), 14-24.Commission on Genetic Resources for Food and Agriculture Food and Agriculture Organization. (2011). Molecular genetic characterization of animal genetic resources. FAO.Croatian Agency for Agriculture and Food. (2020). Annual Report 2019: Pig breeding, Osijek, Croatia.Crovetti, A., Sirtori, F., Pugliese, C., Franci, O. & Bozzi, R. (2013). Pedigree analysis of Cinta Senese and Mora Romagnola breeds. Acta Agriculturae Slovenica, Suppl. 4, 41-44.D’Alessandro, E., Giosa, D., Sapienza, I., Giuffrè, L., Cigliano, R. A., Romeo, O. & Zumbo, A. (2019). Whole genome SNPs discovery in Nero Siciliano pig. Genetics and Molecular Biology, 42(3), 594-602.Diniz-Filho, J. A. F., Melo, D. B., de Oliveira, G., Collevatti, R. G., Soares, T. N., Nabout, J. C., Lima, J., Dobrovolski, R., Chaves, L. J., Naves, R. V., Loyola, R. D. & Telles M. P. de C. (2012). Planning for optimal conservation of geographical genetic variability within species. Conservation Genetics, 13(4), 1085-1093.Druml, T., Salajpal, K., Dikic, M., Urosevic, M., Grilz-Seger, G., & Baumung, R. (2012). Genetic diversity, population structure and subdivision of local Balkan pig breeds in Austria, Croatia, Serbia and Bosnia-Herzegovina and its practical value in conservation programs. Genetics Selection Evolution, 44(1), 5.Earl, D. A. & vonHoldt, B. M. (2012). STRUCTURE HARVESTER: a website and program for visualizing STRUCTURE output and implementing the Evanno method. Conservation Genetics Resources, 4(2), 359-361.Evanno, S., Regnaut, S. & Goudet, J. (2005). Detecting the number of clusters of individuals using the software STRUCTURE: A simulation study. Molecular Ecology, 14, 2611–2620.FAO (2000). Secondary guidelines for development of national farm animal genetic resources management plans: Management of small populations at risk. Rome: Food and Agriculture Organization.Francis, R. M. (2017). Pophelper: an R package and web app to analyse and visualize population structure. Molecular Ecology Resources, 17(1), 27-32.Goyache, F., Gutiérrez, J. P., Fernández, I., Gomez, E., Alvarez, I., Díez, J. & Royo, L. J. (2003). Using pedigree information to monitor genetic variability of endangered populations: the Xalda sheep breed of Asturias as an example. Journal of Animal Breeding and Genetics, 120, 95-105.Gutiérrez, J. P. & Goyache, F. (2005). A note on ENDOG: a computer program for analysing pedigree information. Journal of Animal Breeding and Genetics, 122, 172-176.Gvozdanović, K., Margeta, V., Margeta, P., Djurkin Kušec, I., Galović, D., Dovč, P. & Kušec, G. (2019). Genetic diversity of autochthonous pig breeds analyzed by microsatellite markers and mitochondrial DNA D-loop sequence polymorphism. Animal Biotechnology, 30(3), 242-251.Gvozdanović, K., Djurkin Kušec, I., Margeta, P., Salajpal, K., Džijan, S., Bošnjak, Z. & Kušec, G. (2020). Multiallelic marker system for traceability of Black Slavonian pig meat. Food Control, 109, 106917.International Society for Animal Genetics (ISAG)/Food and Agricultural Organization (FAO) (2011). Molecular genetic characterization of animal genetic resources. Rome: FAO Animal Production and Health Guidelines.Jombart, T. (2008). adegenet: a R package for the multivariate analysis of genetic markers. Bioinformatics, 24, 1403–1405.Jombart, T., Devillard, S. & Balloux, F. (2010). Discriminant analysis of principal components: A new method for the analysis of genetically structured populations. BMC Genetics, 11(1), 94.Kramarenko, S. S., Lugovoy, S. I., Kharzinova, V. R., Lykhach, V. Y., Kramarenko, A. S. & Lykhach, A. V. (2018). Genetic diversity of Ukrainian local pig breeds based on microsatellite markers. Regulatory Mechanisms in Biosystems, 9(2), 177-182.Lacy, R. C. (1987). Loss of genetic diversity from managed populations: interacting effects of drift, mutation, immigration, selection, and population subdivision. Conservation Biology, 1, 143-158.Lemus-Flores, C., Ulloa-Arvizu, R., Ramos-Kuri, M., Estrada, F. J. & Alonso, R. A. (2001). Genetic analysis of Mexican hairless pig populations. Journal of Animal Science, 79(12), 3021-3026.Lukić, B., Smetko, A., Mahnet, Ž., Klišanić, V., Špehar, M., Raguž, N. & Kušec, G. (2015). Population genetic structure of autochthonous Black Slavonian Pig. Poljoprivreda, 21(1), 28-32.Ma, L., Ya-Jie J. & Zhang, D. X. (2015). Statistical measures of genetic differentiation of populations: Rationales, history and current states. Current Zoology, 61(5): 886–897.Margeta, P., Margeta, V. & Budimir, K. (2013). How black is really Black Slavonian pig? Acta Agriculturae Slovenica, Suppl. 4, 25-28.Margeta, P., Margeta, V., Gvozdanović, K., Galović, D., Djurkin Kušec, I. & Kušec, G. (2016). Microsatellite multiplex method for potential use in Black Slavonian pig breeding. Acta Agriculturae Slovenica, 5, 66-70.Margeta, P., Gvozdanovic, K., Djurkin Kušec, I., Radišić, Ž., Kusec, G. & Margeta, V. (2018). Genetic analysis of Croatian autochthonous pig breeds based on microsatellite markers. Archivos de Zootecnia, 1, 13-16.Mariani, E., Summer, A., Ablondi, M. & Sabbioni, A. (2020). Genetic variability and management in Nero di Parma swine breed to preserve local diversity. Animals, 10(3), 538.Meuwissen, T. H. E. & Luo, Z. (1992). Computing inbreeding coefficients in large populations. Genetics Selection Evolution, 24, 305.Muñoz, M., Bozzi, R., García-Casco, J., Núñez, Y., Ribani, A., Franci, O., García, F., Škrlep, M., Schiavo, G., Bovo, S., Utzeri, V. J., Charneca, R., Martins, J. M., Quintanilla, R., Tibau, J., Margeta, V., Djurkin-Kušec, I., Mercat, M. J., Riquet, J., Estellé, J., Zimmer, C., Razmaite, V., Araujo, J. P., Radović, Č., Savić, R., Karolyi, D., Gallo, M., Čandek-Potokar, M., Fernández, A. I., Fontanesi, L. & Óvilo, C. (2019). Genomic diversity, linkage disequilibrium and selection signatures in European local pig breeds assessed with a high density SNP chip. Scientific Reports, 9(1), 13546.Nei, M. (1973). Analysis of gene diversity in subdivided populations. Proceedings of the National Academy of Sciences, 70(12), 3321-3323.Nei, M., Tajima, F. & Tateno, Y. (1983). Accuracy of estimated phylogenetic trees from molecular data. Journal of Molecular Evolution, 19(2), 153-170.Nei, M., (1987). Molecular Evolutionary Genetics. Columbia University Press, New York, 512 pp.Pritchard, J. K., Stephens, M. & Donnelly, P. (2000). Inference of population structure using multilocus genotype data. Genetics, 155, 945–959.Posta, J., Szabó, P. & Komlósi, I. (2016). Pedigree analysis of Mangalica pig breeds. Annals of Animal Science, 16(3), 701-709.R Development Core Team. (2018). A language and environment for statistical computing. R Foundation for Statistical Computing. Retrieved May 5, 2020 from http://www.R-project.org/.Sargolzaei, M., Iwaisaki, H. & Colleau, J. J. (2006). CFC: a tool for monitoring genetic diversity. Proc. 8th World Congr. Genet. Appl. Livest. Prod., CD-ROM Communication, (27-28), 13-18.Scali, M., Vignani, R., Bigliazzi, J., Paolucci, E., Bernini, A., Spiga, O., Niccolai, N. & Cresti, M. (2012). Genetic differentiation between CintaSenese and commercial pig breeds using microsatellite. Electronic Journal of Biotechnology, 15(2), 1-11.Silió, L., Barragán, C., Fernández, A.I., García‐Casco, J. & Rodríguez, M. C. (2016). Assessing effective population size, coancestry and inbreeding effects on litter size using the pedigree and SNP data in closed lines of the Iberian pig breed. Animal Breeding and Genetics, 133(2),145-154.Toomey, A. H., Knight, A. T. & Barlow, J. (2017). Navigating the space between research and implementation in conservation. Conservation Letters, 10(5), 619-625.Wang, J. (2014). Marker-based estimates of relatedness and inbreeding coefficients: an assessment of current methods. Journal of Evolutionary Biology, 27, 518–530.Wright, S. (1931). Evolution in mendelian populations. Genetics, 16, 97-159.Wright, S. (1978). Evolution and the genetics of populations: Vol. 4. Variability within and among natural populations. University of Chicago Press: Chicago. USA.Yang, B., Cui, L., Perez-Enciso, M., Traspov, A., Crooijmans, R. P. M. A., Zinovieva, N., Schook, L. B., Archibald, A., Gatphayak, K., Knorr, C., Triantafyllidis, A., Alexandri, P., Semiadi, G., Hanotte, O., Dias, D., Dovč, P., Uimari, P., Iacolina, L., Scandura, M., Groenen, M. A. M., Huang, L. & Megens, H.-J. (2017). Genome-wide SNP data unveils the globalization of domesticated pigs. Genetics Selection Evolution, 49(1), 71.Zhang, J., Jiao, T. & Zhao, S. (2016). Genetic diversity in the mitochondrial DNA D-loop region of global swine (Sus scrofa) populations. Biochemical and Biophysical Research Communications, 473(4), 814-820.
APPLICATION OF ANALYTICAL METHODS FOR FOOD AUTHENTICATION
Autentifikacija proizvoda služi za dokazivanje sastava i podrijetla poljoprivrednih i prehrambenih proizvoda. Republika Hrvatska ima veliki broj poljoprivrednih i prehrambenih proizvoda koji su zbog specifičnih organoleptičkih, tehnoloških i prehrambenih specifičnosti deklarirani kao proizvodi visoke vrijednosti te zaštićeni oznakom izvornosti, zemljopisnog podrijetla ili zajamčeno tradicionalnog specijaliteta. Provođenje postupka autentifikacije predstavlja multidisciplinarni postupak koji uključuje analitičke metode kombinirane s informatikom, matematikom i statistikom, a sve s ciljem dobivanja što točnijih i pouzdanijih podataka kako bi se mogao donijeti zaključak o podrijetlu i sastavu proizvoda. Zanimanje javnosti za konzumiranjem kvalitetne i sigurne hrane dovelo je do brzog razvoja metoda za autentifikaciju proizvoda. U analitičke metode analize ubrajaju se molekularne metode analize, kromatografske metode, spektrometrijske metode i imunološke metode. U radu su opisane analitičke metode koje se primjenjuju u postupcima dokazivanja izvornosti, zemljopisnog podrijetla ili tradicijskog specijaliteta proizvoda u svijetu.Food Authentication is primarily used for testing the composition and origin of agricultural and food products. Croatia has a large number of agricultural and food products, which are due to the specific organoleptic, technological and nutritional specifics declared as high-value and they are protected by designation of origin, geographical indications and traditional specialties guaranteed. The implementation of the authentication procedure is multidisciplinary process which includes analytical methods combined with computer science, mathematics and statistics, all with the goal of achieving a more accurate and reliable information in order to make a conclusion about the origin and composition of the product. Public interest in the consumption of high-quality and safe food has led to a rapid development of methods for products authentication. The analytical approach to the analysis is divided in several categories related to the molecular analysis methods, chromatographic methods, immunological methods and spectroscopic methods. This paper describes the analytical methods used in the procedures of proving the origin, geographical indications or traditional specialties product
DEVELOPMENT OF NEW SEQUENCING TECHNOLOGIES AND THEIR APPLICATION IN GENOME ANALYSIS OF DOMESTIC ANIMALS
Sekvenciranje i detaljno istraživanje genoma domaćih životinja započeto je sredinom prošloga stoljeća. U prvome redu to se odnosilo na razvoj metoda prve generacije sekvenciranja, odnosno Sangerovu metodu sekvenciranja. Primjena tehnologijama nove generacije u analizi genoma domaćih životinja trenutno je najzastupljenija metoda sekvenciranja životinjskoga genoma. Primjenom tih metoda dobiva se i do 100 puta više podataka u usporedbi sa Sangerovom metodom sekvenciranja. Razvoj novih tehnologija sekvenciranja od 2005. godine do danas omogućile su provođenje analiza koje uključuju RNK sekvenciranje, genotipiziranje cijeloga genoma, imunoprecipitaciju povezanu s DNK mikročipovima, detektiranje mutacija i nasljednih bolesti i sekvenciranje mitohondrijskoga genoma. Primjena novih metoda sekvenciranja u analizi genoma domaćih životinja otvara vrata prema boljem razumijevanju genetske osnove proizvodnih svojstava važnih za unaprijeđenje stočarske proizvodnje.Sequencing and detailed study of the genom of domestic animals began in the middle of the last century. It was primarily referred to development of the first generation sequencing methods, i.e. Sanger sequencing method. Next generation sequencing methods are currently the most common methods in the analysis of domestic animals genom. The application of these methods gave us up to 100 time more data in comparison with Sanger method. Analyses including RNA sequencing, genotyping of whole genome, immunoprecipitation associated with DNA microarrays, detection ofmutations and inherited diseases, sequencing ofthemitochondrial genome and many others have been conducted with development and application of new sequencing methods since 2005 until today. Application of new sequencing methods in the analysis ofdomestic animal genome provides better understanding of the genetic basis for important production traits which could help in improving the livestock production
Black Slavonian (Crna slavonska) Pig
Black Slavonian (Crna slavonska) pig was created during the second part of the nineteenth century using planned crossing between four pig breeds. It is an autochthonous pig breed in the Republic of Croatia and one of the local pig breeds investigated in the project TREASURE. The present chapter aims to present history and current status of Black Slavonian pig breed, its exterior phenotypic characteristics, reproductive traits, geographical location, production system and main products from this breed of pigs. Also, a collection and review of available literature data, available until August 2017, on productive traits of Black Slavonian pig breed were carried out. Growth performance was estimated utilising average daily gain and average daily feed intake in the overall fattening stage as this was the information mostly provided in considered studies. Carcass traits were evaluated by means of age and weight at slaughter, hot carcass weight, carcass yield, muscularity and back fat thickness. Meat quality traits of the longissimus muscle evaluated were objective colour and intramuscular fat content. Although a considerable number of studies on Black Slavonian pig were included in the current review, data on growth performance and some parameters of carcass, meat and fat quality are scarce
- …