189 research outputs found
Strong interaction of a turbulent spot with a shock-induced separation bubble
Direct numerical simulations have been conducted to study the passage of a turbulent spot through a shock-induced separation bubble. Localized blowing is used to trip the boundary layer well upstream of the shock impingement, leading to mature turbulent spots at impingement, with a length comparable to the length of the separation zone. Interactions are simulated at free stream Mach numbers of two and four, for isothermal (hot) wall boundary conditions. The core of the spot is seen to tunnel through the separation bubble, leading to a transient reattachment of the flow. Recovery times are long due to the influence of the calmed region behind the spot. The propagation speed of the trailing interface of the spot decreases during the interaction and a substantial increase in the lateral spreading of the spot was observed. A conceptual model based on the growth of the lateral shear layer near the wingtips of the spot is used to explain the change in lateral growth rat
Recommended from our members
Numerical flow analysis of a centrifugal compressor with ported and without ported shroud
Turbochargers are commonly used in automotive engines to increase the internal combustion engine performance during off design operation conditions. When used, a most wide operation range for the turbocharger is desired, which is limited on the compressor side by the choke condition and the surge phenomenon. The ported shroud technology is used to extend the operable working range of the compressor, which permits flow disturbances that block the blade passage to escape and stream back through the shroud cavity to the compressor inlet. The impact of this technology on a speed-line at near optimal operation condition and near surge operation condition is investigated. A numerical study investigating the flow-field in a centrifugal compressor of an automotive turbocharger has been performed using Large Eddy Simulation. The wheel rotation is handled by the numerically expensive sliding mesh technique. In this analysis, the full compressor geometry (360 deg) is considered. Numerical solutions with and without ported shroud for a near optimal operation condition and near-surge operation condition. The flow-field of the different cases is analyzed to elucidate the functionality of the ported shroud. In agreement with previous observations, it was found that the ported shroud reduces the flow disturbances in the blade passage for all operating conditions. However, the compressor efficiency for the off-design operation condition was found to be higher without the ported shroud, supporting the findings reported recently by an experimental investigation. The computational results are validated with experimental measurements in terms of the performance parameters and available Particle Image Velocimetry data. Copyright © 2014 SAE International
Global visualization and quantification of compressible vortex loops
The physics of compressible vortex loops generated due to the rolling up of the shear layer upon the diffraction of a shock wave from a shock tube is far from being understood, especially when shock-vortex interactions are involved. This is mainly due to the lack of global quantitative data available which characterizes the flow. The present study involves the usage of the PIV technique to characterize the velocity and vorticity of compressible vortex loops formed at incident shock Mach numbers ofM=1.54 and1.66. Another perk of the PIV technique over purely qualitative methods, which has been demonstrated in the current study, is that at the same time the results also provide a clear image of the various flow features. Techniques such as schlieren and shadowgraph rely on density gradients present in the flow and fail to capture regions of the flow influenced by the primary flow structure which would have relatively lower pressure and density. Various vortex loops, namely, square, elliptic and circular, were generated using different shape adaptors fitted to the end of the shock tube. The formation of a coaxial vortex loop with opposite circulation along with the generation of a third stronger vortex loop ahead of the primary with same circulation direction are of the interesting findings of the current study
Mixing in Circular and Non-circular Jets in Crossflow
Coherent structures and mixing in the flow field of a jet in crossflow have been studied using computational (large eddy simulation) and experimental (particle image velocimetry and laser-induced fluorescence) techniques. The mean scalar fields and turbulence statistics as determined by both are compared for circular, elliptic, and square nozzles. For the latter configurations, effects of orientation are considered. The computations reveal that the distribution of a passive scalar in a cross-sectional plane can be single- or double-peaked, depending on the nozzle shape and orientation. A proper orthogonal decomposition of the transverse velocity indicates that coherent structures may be responsible for this phenomenon. Nozzles which have a single-peaked distribution have stronger modes in transverse direction. The global mixing performance is superior for these nozzle types. This is the case for the blunt square nozzle and for the elliptic nozzle with high aspect ratio. It is further demonstrated that the flow field contains large regions in which a passive scalar is transported up the mean gradient (counter-gradient transport) which implies failure of the gradient diffusion hypothesis
Clinical practice guidelines for the care of girls and women with Turner syndrome:Proceedings from the 2023 Aarhus International Turner Syndrome Meeting
Turner syndrome (TS) affects 50 per 100 000 females. TS affects multiple organs through all stages of life, necessitating multidisciplinary care. This guideline extends previous ones and includes important new advances, within diagnostics and genetics, estrogen treatment, fertility, co-morbidities, and neurocognition and neuropsychology. Exploratory meetings were held in 2021 in Europe and United States culminating with a consensus meeting in Aarhus, Denmark in June 2023. Prior to this, eight groups addressed important areas in TS care: (1) diagnosis and genetics, (2) growth, (3) puberty and estrogen treatment, (4) cardiovascular health, (5) transition, (6) fertility assessment, monitoring, and counselling, (7) health surveillance for comorbidities throughout the lifespan, and (8) neurocognition and its implications for mental health and well-being. Each group produced proposals for the present guidelines, which were meticulously discussed by the entire group. Four pertinent questions were submitted for formal GRADE (Grading of Recommendations, Assessment, Development and Evaluation) evaluation with systematic review of the literature. The guidelines project was initiated by the European Society for Endocrinology and the Pediatric Endocrine Society, in collaboration with members from the European Society for Pediatric Endocrinology, the European Society of Human Reproduction and Embryology, the European Reference Network on Rare Endocrine Conditions, the Society for Endocrinology, and the European Society of Cardiology, Japanese Society for Pediatric Endocrinology, Australia and New Zealand Society for Pediatric Endocrinology and Diabetes, Latin American Society for Pediatric Endocrinology, Arab Society for Pediatric Endocrinology and Diabetes, and the Asia Pacific Pediatric Endocrine Society. Advocacy groups appointed representatives for pre-meeting discussions and the consensus meeting.</p
Statistical analysis of the velocity field in a mechanical precessing jet flow
An experimental investigation of a precessing jet issuing from a mechanically rotating nozzle directed at an angle of α=45° relative to the axis of rotation is reported. Both conventional and conditional statistics of the velocity field of the jet were measured using a combined hot-wire and cold-wire (to identify any reverse flow) probe. Three distinct values (≈0.005, 0.01, and 0.02) of the precession Strouhal number Stp (≡ rotation frequency × nozzle diameter / jet exit bulk velocity) were used to assess the effect of varying Stp. The measurements reveal that the Strouhal number in general has significant influence on the entire mixing field generated by a precessing jet. The occurrence of precession at all the Strouhal numbers of investigation produces a central recirculation zone at x ≤ 7d, where x is a distance measured from the rotating nozzle exit. A critical Strouhal number, i.e., Stp,cr ≈0.008 for the present case, is identified: at Stp ≥ Stp,cr the core jet converges to the axis of rotation while at Stp ≥ Stp,cr it does not. The characteristics of the turbulent flow in the near and intermediate regions are quite different and depend upon the magnitude of Stp. The near-field region, x/d ≤ 10-15, is dominated by a regime of global precession of the entire jet. As a result, the large-scale entrainment of the ambient fluid is substantially enhanced while the fine-scale turbulent mixing is suppressed. Under the supercritical regime (i.e., Stp ≥ Stp,cr), the jet in the far field resembles some features of the nonprecessing counterpart. Nevertheless, significant differences still retain in the statistical properties. © 2005 American Institute of Physics.J. Mi and G. J. Natha
Position of static cylinder effect on base flows
This paper presents the effect of the cylinder as a passive controller on the recirculation zone behind high-speed objects. The low-pressure recirculation zone was measured for base and wall region with a portable data acquisition system using sixteen solo sensors between reattachment and separation points at angles 0°, 30°, 60°, 90°. Pressure measurements were done by the transducer of National Instruments 9205 Screw Term and Data Acquisition cDAQ-1974. The measurement was done using DAQ connected to 16 solo sensors of 0-150 psi range. In a second it is capable of scanning 250 samples, followed by computing the overall average and store it on the disk. The NI LabVIEW Academic Software using DAQ through pressure sensors acquires data from all the sixteen channels and displays it on the computer screen. The experiments were carried out for overexpanded and perfectly expanded supersonic jets at Mach 2 through the C-D nozzle for area ratio 9. It is found that the control has marginally influenced the base and wall flow field when the control was placed at different positions along the imaginary line from separation to reattachment angled at 30° to the horizontal base and the flow field in the base area along the separation line is mostly independent of its locations except near the exit of the enlarged duct where the flow field is mostly influenced by the back pressure. The control seems to be strongly effective when flow expanded is ideal
- …