326 research outputs found

    Photochemical transformation of perfluoroalkyl acid precursors in water using engineered nanomaterials

    Get PDF
    The production of perfluoroalkyl acids (PFAAs) has been phased out over recent decades; however, no significant decline in their environmental concentrations has been observed. This is partly due to the photochemical decomposition of PFAAs precursors (PrePFAAs) which remain in extensive use. The decomposition of PrePFAAs may be accelerated by the light-activated engineered nanomaterials (ENMs) in water. In light of this hypothesis, we investigated the photochemical transformation of three PrePFAAs, which are 8:2 fluorotelomer sulfonic acid (8:2 FTSA), 8:2 fluorotelomer alcohol (8:2 FTOH), and 2-(N-ethylperfluorooctane-1-sulfonamido ethyl] phosphate (SAmPAP), in the presence of six ENMs under simulated sunlight irradiation. The transformation rates of 8:2 FTSA and 8:2 FTOH were increased by 2–6 times when in the presence of six ENMs. However, most of ENMs appeared to inhibit the decomposition of SAmPAP. The transformation rates of PrePFAAs were found to depend on the yield of reactive oxygen species generated by ENMs, but the rates were also related to compound photo-stability, adsorption to surfaces, and photo-shielding effects. The PrePFAAs are transformed to perfluorooctanoic acid (PFOA) or/and perfluorooctane sulfonate (PFOS) with higher toxicity and longer half-life, PFOA or PFOS and a few PFAAs having shorter carbon chain lengths. Higher concentrations of the PFAAs photodegradation products were observed in the presence of most of the ENMs

    A comparative study of two molecular mechanics models based on harmonic potentials

    Full text link
    We show that the two molecular mechanics models, the stick-spiral and the beam models, predict considerably different mechanical properties of materials based on energy equivalence. The difference between the two models is independent of the materials since all parameters of the beam model are obtained from the harmonic potentials. We demonstrate this difference for finite width graphene nanoribbons and a single polyethylene chain comparing results of the molecular dynamics (MD) simulations with harmonic potentials and the finite element method with the beam model. We also find that the difference strongly depends on the loading modes, chirality and width of the graphene nanoribbons, and it increases with decreasing width of the nanoribbons under pure bending condition. The maximum difference of the predicted mechanical properties using the two models can exceed 300% in different loading modes. Comparing the two models with the MD results of AIREBO potential, we find that the stick-spiral model overestimates and the beam model underestimates the mechanical properties in narrow armchair graphene nanoribbons under pure bending condition.Comment: 40 pages, 21 figure

    Further discussions on the security of a nominative signature scheme

    Get PDF
    A nominative signature scheme allows a nominator (or signer) and a nominee (or veri¯er) to jointly generate and publish a signature in such a way that only the nominee can verify the signature and if nec- essary, only the nominee can prove to a third party that the signature is valid. In a recent work, Huang and Wang proposed a new nominative signature scheme which, in addition to the above properties, only allows the nominee to convert a nominative signature to a publicly veri¯able one. In ACISP 2005, Susilo and Mu presented several algorithms and claimed that these algorithms can be used by the nominator to verify the validity of a published nominative signature, show to a third party that the signature is valid, and also convert the signature to a publicly veri¯able one, all without any help from the nominee. In this paper, we point out that Susilo and Mu\u27s attacks are actually incomplete and in- accurate. In particular, we show that there exists no e±cient algorithm for a nominator to check the validity of a signature if this signature is generated by the nominator and the nominee honestly and the Decisional Di±e-Hellman Problem is hard. On the other hand, we point out that the Huang-Wang scheme is indeed insecure, since there is an attack that allows the nominator to generate valid nominative signatures alone and prove the validity of such signatures to a third party

    Photochemical transformation of perfluoroalkyl acid precursors in water using engineered nanomaterials

    Get PDF
    The production of perfluoroalkyl acids (PFAAs) has been phased out over recent decades; however, no significant decline in their environmental concentrations has been observed. This is partly due to the photochemical decomposition of PFAAs precursors (PrePFAAs) which remain in extensive use. The decomposition of PrePFAAs may be accelerated by the light-activated engineered nanomaterials (ENMs) in water. In light of this hypothesis, we investigated the photochemical transformation of three PrePFAAs, which are 8:2 fluorotelomer sulfonic acid (8:2 FTSA), 8:2 fluorotelomer alcohol (8:2 FTOH), and 2-(N-ethylperfluorooctane-1-sulfonamido ethyl] phosphate (SAmPAP), in the presence of six ENMs under simulated sunlight irradiation. The transformation rates of 8:2 FTSA and 8:2 FTOH were increased by 2–6 times when in the presence of six ENMs. However, most of ENMs appeared to inhibit the decomposition of SAmPAP. The transformation rates of PrePFAAs were found to depend on the yield of reactive oxygen species generated by ENMs, but the rates were also related to compound photo-stability, adsorption to surfaces, and photo-shielding effects. The PrePFAAs are transformed to perfluorooctanoic acid (PFOA) or/and perfluorooctane sulfonate (PFOS) with higher toxicity and longer half-life, PFOA or PFOS and a few PFAAs having shorter carbon chain lengths. Higher concentrations of the PFAAs photodegradation products were observed in the presence of most of the ENMs

    Growth diagram of La0.7Sr0.3MnO3 thin films using pulsed laser deposition

    Get PDF
    An experimental study was conducted on controlling the growth mode of La0.7Sr0.3MnO3 thin films on SrTiO3 substrates using pulsed laser deposition (PLD) by tuning growth temperature, pressure and laser fluence. Different thin film morphology, crystallinity and stoichiometry have been observed depending on growth parameters. To understand the microscopic origin, the adatom nucleation, step advance processes and their relationship to film growth were theoretically analyzed and a growth diagram was constructed. Three boundaries between highly and poorly crystallized growth, 2D and 3D growth, stoichiometric and non-stoichiometric growth were identified in the growth diagram. A good fit of our experimental observation with the growth diagram was found. This case study demonstrates that a more comprehensive understanding of the growth mode in PLD is possible

    A Grey NGM

    Get PDF
    Energy consumption prediction is an important issue for governments, energy sector investors, and other related corporations. Although there are several prediction techniques, selection of the most appropriate technique is of vital importance. As for the approximate nonhomogeneous exponential data sequence often emerging in the energy system, a novel grey NGM(1,1,k) self-memory coupling prediction model is put forward in order to promote the predictive performance. It achieves organic integration of the self-memory principle of dynamic system and grey NGM(1,1,k) model. The traditional grey model’s weakness as being sensitive to initial value can be overcome by the self-memory principle. In this study, total energy, coal, and electricity consumption of China is adopted for demonstration by using the proposed coupling prediction technique. The results show the superiority of NGM(1,1,k) self-memory coupling prediction model when compared with the results from the literature. Its excellent prediction performance lies in that the proposed coupling model can take full advantage of the systematic multitime historical data and catch the stochastic fluctuation tendency. This work also makes a significant contribution to the enrichment of grey prediction theory and the extension of its application span
    • …
    corecore