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Energy consumption prediction is an important issue for governments, energy sector investors, and other related corporations.
Although there are several prediction techniques, selection of the most appropriate technique is of vital importance. As for the
approximate nonhomogeneous exponential data sequence often emerging in the energy system, a novel grey NGM(1, 1, 𝑘) self-
memory coupling prediction model is put forward in order to promote the predictive performance. It achieves organic integration
of the self-memory principle of dynamic system and grey NGM(1, 1, 𝑘) model. The traditional grey model’s weakness as being
sensitive to initial value can be overcome by the self-memory principle. In this study, total energy, coal, and electricity consumption
of China is adopted for demonstration by using the proposed coupling prediction technique. The results show the superiority of
NGM(1, 1, 𝑘) self-memory coupling prediction model when compared with the results from the literature. Its excellent prediction
performance lies in that the proposed coupling model can take full advantage of the systematic multitime historical data and catch
the stochastic fluctuation tendency. This work also makes a significant contribution to the enrichment of grey prediction theory
and the extension of its application span.

1. Introduction

As one of themost significant national strategic resources, the
energy issue is an important factor which restricts the state
economy and social development. Along with the ongoing
economic growth and the acceleration of industrialization,
energy consumption and production will increase even more
rapidly.Therefore, it is meaningful to identify and analyze the
energy issue legitimately, especially for predicting the future
energy consumption correctly and scientifically. Energy con-
sumption is featured by its information uncertainty and
few useful analyzing samples. There exist many influential
factors (economy condition, industry framework, climatic
variation, government policy and so on), which are difficult
to determine how exactly they affect energy consumption
[1, 2]. Owing to the apparent uncertain characters embodied
in the complicated energy system, the energy consumption
prediction can be regarded as a grey system exactly.

Most traditional prediction techniques for time series
concentrate mainly on the statistical analysis methods, such
as simple regression, multivariate regression, exponential
smoothing, and so forth, and possess the advantage of accu-
rately approximating the evolutionary trend [3–5]. Neverthe-
less, the methods must be accomplished with the assump-
tion of realizing the system structure and the limitation of
requiring a large amount of historical data. And owing to the
increasing complexity, uncertainty, and chaos of the system’s
structure, it is very difficult to accurately predict random
fields using the traditional statistical methods. To overcome
this drawback, the grey systems theory was initially proposed
by Deng to study the uncertainty of systems [6]. As an impor-
tant theoretical component, the grey prediction approach
represented by GM(1, 1) model can weaken the randomness
of original statistical data by means of accumulated gener-
ating operation [7]. The superiority of grey models is that
they only require a limited amount of statistical data without
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knowing their statistical distribution. GM(1, 1) model has
ideal predictive effect for approximate homogenous expo-
nential sequence and has already been effectively utilized
in numerous fields, such as social economy, geographical
environment, engineering science, public transit, and so on
[8–12]. Meanwhile, several improved GM(1, 1) prediction
models were developed for the prediction of electricity load,
energy consumption, and so forth [13–16]. Nevertheless, cer-
tain time series of energy system often show large stochastic
fluctuations due to some uncertain influence factors and
present the characteristics of approximate nonhomogeneous
exponential. It is inevitable to generate the apparentmodeling
errors by using GM(1, 1) model, so the grey NGM(1, 1, 𝑘)

model appropriate for the approximate nonhomogeneous
exponential law with stochastic fluctuation was put forward
[17].

On the basis of the retrieved modeling, the self-memory
principle of dynamic systemwas developed firstly byCao [18].
As a mathematic realization of integrating the deterministic
and random theories, the principle is a statistically-dynamic
method to solve problems of nonlinear dynamic systems [19,
20]. The self-memory principle can retrieve ideal nonlinear
dynamicmodels bymeans of the practical observational data.
It can overcome not only the weakness as being sensitive
to initial value of the initial value problem for differential
equations, but also the limitation as irrelevant to mechanism
equation due to the utilization of the historical materials.
It has been utilized increasingly into time series forecasting
in numerous fields from meteorology to engineering to
economics [21–23]. In recent years, some scholars prelimi-
narily attempted to introduce the self-memory principle into
certain basic grey prediction models. Fan derived the self-
memory numerical method for solving GM(1, 1) model and
established a novel grey model recollecting the last several
data [24]. Chen et al. established a coupled equation by
combining DHGM(2, 2) grey differential equation with the
self-memory principle to forecast the flood [25]. Guo et al.
established an interval grey number self-memory coupling
predictionmodel based on the grey degree of compound grey
number [26]. Accordingly, for the purpose of extending the
applicable range of grey prediction model and promoting its
predictive performance, the self-memory principle is firstly
introduced into grey NGM(1, 1, 𝑘)model.

The purpose of this paper is to construct a novel grey
NGM(1, 1, 𝑘) self-memory coupling predictionmodel appro-
priate for the approximate nonhomogeneous exponential
data sequence with stochastic fluctuation emerging in the
energy consumption prediction. The novel prediction model
synthesizes the advantages of the self-memory principle
and grey NGM(1, 1, 𝑘) model through organically coupling
the above two prediction methods. Its excellent predictive
performance lies in that the grey model’s weakness as being
sensitive to initial value can be overcomeby usingmulti-time-
point initial field instead of only single-time-point initial
field.

The remaining content is organized as follows. Section 2
provides an overview of the relevant literature on gener-
alized GM(𝑟, ℎ) model, GM(1, 1) model, and NGM(1, 1, 𝑘)

model. Section 3 presents the detailed algorithm of a novel

NGM(1, 1, 𝑘) self-memory coupling prediction model and a
step-by-step procedure. In Section 4, the illustrative examples
of total energy, coal, and electricity consumption prediction
in China are adopted to demonstrate the adaptability and
effectiveness of the proposedNGM(1, 1, 𝑘) self-memory cou-
pling prediction model. Finally, some conclusions are drawn
in Section 5.

2. Reviewing the Generalized Grey System
Model and NGM(1, 1, 𝑘) Model

2.1. Generalized Grey System Model and Symbols Description.
Assume that the sequence

𝐹
0

𝑡
= {𝑓
0

𝑡
| 𝑡 ∈ 1, 2, . . . , 𝑛} (1)

is an original time series, where 𝑓0
𝑡
denotes the observational

data at time 𝑡; then the first-order accumulated generation
(abbreviated as 1-AGO) value 𝑓1

𝑡
of the original time series

data 𝑓0
𝑡
is obtained as

𝑓
1

𝑡
=

𝑡

∑
𝑘=1

𝑓
0

𝑘
, 𝑡 = 1, 2, . . . , 𝑛. (2)

And the sequence
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1
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1

𝑡
| 𝑡 ∈ 1, 2, . . . , 𝑛} (3)

is called the 1-AGO time series of original time series 𝐹0
𝑡
.

The 𝑟-order differential equation
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(4)

is called the whitenization equation of the generalized
GM(𝑟, ℎ)model, where the vectors −𝑎 = [−𝑎

1
, −𝑎
2
, . . . , −𝑎

𝑟
]
𝑇

and 𝑏̂ = [𝑏
1
, 𝑏
2
, . . . , 𝑏

ℎ
]
𝑇 are called developing and driv-

ing coefficients vectors, respectively. And there is one
dependent variable 𝐹1

𝑡
and ℎ − 1 independent variables

𝑋1
1
(𝑡), 𝑋1
2
(𝑡), . . . , 𝑋1

ℎ−1
(𝑡) in (4).

2.2. Grey GM(1, 1) Model. Particularly when 𝑟 = 1 and
ℎ = 1 in (4), the first-order differential equation with one
dependent variable

𝑑𝐹1
𝑡

𝑑𝑡
+ 𝑎𝐹
1

𝑡
= 𝑏 (5)

is called the whitenization equation of the GM(1, 1) model,
where the parameter 𝑎 represents the developing coefficient, 𝑏
represents the grey input coefficient, and 𝐹1

𝑡
is the dependent

variable with AGO input value 𝑓1
𝑡
. Meanwhile the equation

𝑓
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𝑡
+ 𝑓
0

𝑡−1
) = 𝑏, 𝑡 = 1, 2, . . . , 𝑛 (6)

is called the basic form of the GM(1, 1)model.
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Let sampling time Δ𝑡 = 1; then by applying the least
square method with input data 𝑓

0

𝑡
and 𝑓

1

𝑡
, the parameters 𝑎

and 𝑏 in matrix 𝑅̂ can be obtained as
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where
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By making the initial value 𝑓1
1

= 𝑓0
1
, the time response

sequence of GM(1, 1)model is given by

𝑓
1

𝑡+1
= (𝑓
0

1
−

𝑏

𝑎
) 𝑒
−𝑎𝑡

+
𝑏

𝑎
, ∀𝑡 ≥ 1, (9)

and the simulated value 𝑓1
𝑡+1

of dependent variable 𝐹1
𝑡
can

be obtained from (9) accordingly. Consider the inverse
accumulated generation operation (abbreviated as IAGO)

𝑓
0

𝑡+1
= 𝑓
1

𝑡+1
− 𝑓
1

𝑡
, ∀𝑡 ≥ 1; (10)

then the simulated value 𝑓0
𝑡+1

of IAGO variable 𝐹0
𝑡
can be

obtained.
As mentioned above, GM(1, 1) model can be considered

as the most simple and special case of the generalized
GM(𝑟, ℎ)model. Conversely, generalizedGM(𝑟, ℎ)model can
be treated as the extension of GM(1, 1) model. As the basic
and core part of grey systems theory, GM(1, 1) model is one
of the most frequently used grey prediction models for time
series. It is based on the grey exponential law resulting from
accumulated generating and moving averaging operation,
which has an ideal predictive effect for the time series with
the approximate homogeneous exponential characteristics.
Meanwhile, there exist numerous literatures which play an
important role in promoting the predictive performance of
GM(1, 1) model by means of various kinds of optimization
techniques [8, 27, 28].

2.3. Grey NGM(1, 1, 𝑘) Model. When the traditional
GM(1, 1) model is used for modeling analysis, it is assumed
that the original data sequence must obey approximate
homogeneous exponential growth law. However, in fact, the
approximate homogeneous exponential data sequence is
very limited. As for the time series with the characteristics of
approximate nonhomogeneous exponential with stochastic
fluctuation, Cui et al. first put forward a novel grey prediction
model termed NGM(1, 1, 𝑘) model [17, 29]. Aiming at some
defects of parameter setting in original NGM(1, 1, 𝑘) model,
Cui and Lu [30] constructed a modified NGM(1, 1, 𝑘) model
by optimizing parameters of whitenization differential
equation. And then Chen and Wei [31] further optimized
the grey derivative of approximate nonhomogeneous index

sequence GM(1, 1) model, thus perfecting the model
parameters.

The first-order differential equation

𝑑𝐹
1

𝑡

𝑑𝑡
+ 𝑎𝐹
1

𝑡
= 𝛾𝑡 + 𝑏 (11)

is called the whitenization equation of the NGM(1, 1, 𝑘)

model, where the parameter 𝛾 represents the control coeffi-
cient and 𝑎, 𝑏 are the same as mentioned above. Meanwhile
the equation

𝑓
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+ 𝑓
0

𝑡−1
) = 𝛾𝑡 + 𝑏, 𝑡 = 1, 2, . . . , 𝑛 (12)

is called the basic form of the NGM(1, 1, 𝑘)model.
Let sampling time Δ𝑡 = 1; then the least square estimate

of the parameters sequence 𝑎, 𝛾, 𝑏 is given by

𝑅̂ = (

𝑎

𝛾

𝑏̂

) = (𝐵
𝑇

2
𝐵
2
)
−1

𝐵
𝑇

2
𝐹
0

𝑛
, (13)

where
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By making the initial value 𝑓1
1

= 𝑓0
1
, the time response

sequence of NGM(1, 1, 𝑘)model is given by

𝑓
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= (𝑓
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1
−
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+

𝛾
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𝑏
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(𝑡 + 1)
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(15)

and the simulated value 𝑓1
𝑡+1

of dependent variable 𝐹1
𝑡
can

be obtained from (15) accordingly. As mentioned above, the
simulated value𝑓0

𝑡+1
of IAGO variable 𝐹0

𝑡
can be calculated by

IAGO.
NGM(1, 1, 𝑘)model is a sort of significant nonlinear grey

predictionmodel in grey systems theory. It can reflect well the
approximate nonhomogeneous exponential characteristic of
real time series data, which possesses higher accuracy of
simulation and prediction. And the NGM(1, 1, 𝑘) model
is still further superior to GM(1, 1) model with respect to
applied range and predictive performance for the approx-
imate nonhomogeneous exponential law time series with
stochastic fluctuation.

3. Novel NGM(1, 1, 𝑘) Self-Memory Coupling
Prediction Model

3.1. Fundamental Principles of Self-Memory Principle of
Dynamic System. By introducing the memory concept into
physics, the self-memory principle of dynamic system is
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proposed on the basis that natural and social phenom-
ena are all irreversible. The history information should be
investigated fully if we want to realize present system and
predict its future. Accordingly, the principle emphasizes the
relationship between before and after of system status itself,
particularly on the systematic evolution law per se. After
the memory function which contains historical information
is introduced into the system’s dynamic differential equa-
tion, it can be transformed into an appropriate difference-
integral equation which is called a self-memorization one
by defining the inner product in Hilbert space. Because
the systematic self-memorization equation contains multiple
time-point initial fields instead of only single-time-point
initial field, the weakness as being sensitive to initial value of
the original dynamic differential equation can be overcome.
Then through studying systematic inner memorability, the
systematic evolutionary trend can be modeled and predicted.
The superiority of utilizing self-memory principle lies in that
the systematic predictive ability can be improved by means
of not only combining dynamics calculations and estimating
parameters of historical data, but also extracting systematic
information from historical data in statistics.

Based on the above-mentioned literature analysis, the
superior self-memory technique is introduced in this section
to support the NGM(1, 1, 𝑘) model so as to devise a novel
NGM(1, 1, 𝑘) self-memory coupling prediction model. Let
the original time series and the 1-AGO time series be 𝐹

0

𝑡
=

{𝑓0
𝑡

| 𝑡 ∈ 1, 2, . . . , 𝑛} and 𝐹1
𝑡

= {𝑓1
𝑡

| 𝑡 ∈ 1, 2, . . . , 𝑛},
respectively. Let 𝑑𝐹1

𝑡
/𝑑𝑡 in the whitenization equation of the

NGM(1, 1, 𝑘)model be 𝐹(𝑥, 𝜆, 𝑡); then

𝐹 (𝑥, 𝜆, 𝑡) = −𝑎𝐹
1

𝑡
+ 𝛾𝑡 + 𝑏. (16)

The differential equation 𝑑𝐹
1

𝑡
/𝑑𝑡, which has been deter-

mined by (16), is considered to be the system self-memory
dynamic equation of the NGM(1, 1, 𝑘) self-memory coupling
prediction model:

d𝑥
d𝑡

= 𝐹 (𝑥, 𝜆, 𝑡) , (17)

where 𝑥 is a variable, 𝜆 is a parameter, 𝑡 is the time interval
series, and 𝐹(𝑥, 𝜆, 𝑡) is the dynamic kernel. Introduce a
memory function 𝛽(𝑡) and define an inner product in the
Hilbert space:

(𝑓, 𝑔) = ∫
𝑏0

𝑎0

𝑓 (𝜉) 𝑔 (𝜉) d𝜉 (𝑓, 𝑔 ∈ 𝐿
2
) . (18)

3.2. Coupling Modeling Process of NGM(1, 1, 𝑘) Model and
Self-Memory Principle. Then, the step-by-stepmodeling pro-
cedure of a novel NGM(1, 1, 𝑘) prediction model coupled
with self-memory principle is described as follows.

Step 1 (deducing the difference-integral equation). Let
one time set 𝑇 = [𝑡

−𝑝
, 𝑡
−𝑝+1

, . . . , 𝑡
−1
, 𝑡
0
, 𝑡], where

𝑡
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, 𝑡
−𝑝+1

, . . . , 𝑡
−1
, 𝑡
0

is historical observation time, 𝑡
0

is
predicted initial time, 𝑡 is coming prediction time, the
retrospective order of the equation is 𝑝, and time sampling
interval is Δ𝑡.

Apply the above inner product operation into (17) and
suppose that variables𝑥, 𝛽 are continuous, differentiable, and
integrable; the analytic formula of (17) is therefore obtained
as

∫
𝑡

𝑡−𝑝

𝛽 (𝜏)
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𝜕𝜏
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that is,
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(20)

For every integral term in the left-hand side of (20),
after integration by parts, applying the median theorem and
performing algebra operation, a difference-integral equation
is deduced as

𝛽
𝑡
𝑥
𝑡
− 𝛽
−𝑝

𝑥
−𝑝

−

0

∑
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where 𝛽
𝑡
≡ 𝛽(𝑡), 𝑥

𝑡
≡ 𝑥(𝑡), 𝛽

𝑖
≡ 𝛽(𝑡
𝑖
), 𝑥
𝑖
≡ 𝑥(𝑡
𝑖
), 𝑖 = −𝑝, −𝑝 +

1, . . . , 0, and midvalue 𝑥𝑚
𝑖

≡ 𝑥(𝑡
𝑚
), 𝑡
𝑖
< 𝑡
𝑚

< 𝑡
𝑖+1

.

Step 2 (discretizing the self-memory prediction equation).
Let 𝑥
−𝑝

≡ 𝑥𝑚
−𝑝−1

and let 𝛽
−𝑝−1

≡ 0; then (21) can be converted
into

𝑥
𝑡
=

1

𝛽
𝑡

0

∑
𝑖=−𝑝−1

𝑥
𝑚

𝑖
(𝛽
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∫
𝑡
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𝛽 (𝜏) 𝐹 (𝑥, 𝜆, 𝜏) d𝜏

= 𝑆
1
+ 𝑆
2
,

(22)

which is called the self-memory equation with the retrospec-
tive order 𝑝. As the first term 𝑆

1
in (22) denotes the relative

contributions of historical data at 𝑝 + 1 times to the value of
variable 𝑥

𝑡
, it is defined as the self-memory term.The second

term 𝑆
2
is the total contribution of the function 𝐹(𝑥, 𝜆, 𝑡) in

the retrospective time interval [𝑡
−𝑝

, 𝑡
0
], and it is defined as

the exogenous effect term. Equation (22) emphasizes serial
correlation of the system by itself, that is, the self-memory
characteristic of the system. Therefore, it is the self-memory
prediction equation of the system.

If integral operation is substituted by summation and
differential is transformed into difference in (25), then the
midvalue 𝑥

𝑚

𝑖
is replaced simply by two values of different

times; namely,

𝑥
𝑚

𝑖
=

1

2
(𝑥
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+ 𝑥
𝑖
) ≡ 𝑦
𝑖
. (23)
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By taking equidistance time interval Δ𝑡
𝑖
= 𝑡
𝑖+1

− 𝑡
𝑖
= 1

and merging 𝛽
𝑡
and 𝛽

𝑖
together the self-memory equation of

discrete form is shown as follows:

𝑥
𝑡
=

−1

∑
𝑖=−𝑝−1

𝛼
𝑖
𝑦
𝑖
+

0

∑
𝑖=−𝑝

𝜃
𝑖
𝐹 (𝑥, 𝜆, 𝑖) , (24)

where 𝛼
𝑖

= (𝛽
𝑖+1

− 𝛽
𝑖
)/𝛽
𝑡
and 𝜃

𝑖
= 𝛽
𝑖
/𝛽
𝑡
. 𝛼
𝑖
and 𝜃

𝑖
are

called memory coefficients, and 𝐹(𝑥, 𝜆, 𝑡) is determined by
the dynamic kernel −𝑎𝐹1

𝑡
+ 𝑏𝑡 + 𝑐 of NGM(1, 1, 𝑘)model.

Step 3 (solving the self-memory prediction model). Assume
that there are 𝐿 items of historical data; the memory coeffi-
cients 𝛼

𝑖
and 𝜃
𝑖
can be estimated by the least square method.

Let

𝑋
𝑡

𝐿×1

=

[
[
[
[

[

𝑥
𝑡1

𝑥
𝑡2

...
𝑥
𝑡𝐿

]
]
]
]

]

;

𝑌
𝐿×(𝑝+1)

=

[
[
[
[

[

𝑦
−𝑝−1,1

𝑦
−𝑝,1

⋅ ⋅ ⋅ 𝑦
−1,1

𝑦
−𝑝−1,2

𝑦
−𝑝,2

⋅ ⋅ ⋅ 𝑦
−1,2

...
... d

...
𝑦
−𝑝−1,𝐿

𝑦
−𝑝,𝐿

⋅ ⋅ ⋅ 𝑦
−1,𝐿

]
]
]
]

]

,

𝐴
(𝑝+1)×1

=

[
[
[
[

[

𝛼
−𝑝−1

𝛼
−𝑝

...
𝛼
−1

]
]
]
]

]

,

Γ
𝐿×(𝑝+1)

=

[
[
[
[

[

𝐹(𝑥, 𝜆, −𝑝)
1

𝐹(𝑥, 𝜆, −𝑝 + 1)
1

⋅ ⋅ ⋅ 𝐹(𝑥, 𝜆, 0)
1

𝐹(𝑥, 𝜆, −𝑝)
2

𝐹(𝑥, 𝜆, −𝑝 + 1)
2

⋅ ⋅ ⋅ 𝐹(𝑥, 𝜆, 0)
2

...
... d

...
𝐹(𝑥, 𝜆, −𝑝)

𝐿
𝐹(𝑥, 𝜆, −𝑝 + 1)

𝐿
⋅ ⋅ ⋅ 𝐹(𝑥, 𝜆, 0)

𝐿

]
]
]
]

]

,

Θ
(𝑝+1)×1

=

[
[
[
[

[

𝜃
−𝑝

𝜃
−𝑝+1

...
𝜃
0

]
]
]
]

]

,

(25)

then (24) can be expressed as matrix form as follows:

𝑋
𝑡
= 𝑌𝐴 + ΓΘ. (26)

Let 𝑍 = [𝑌, Γ] and𝑊 = [ 𝐴
Θ
]; then (26) turns into

𝑋
𝑡
= 𝑍𝑊; (27)

thereby𝑊 is obtained by the least square method:

𝑊 = (𝑍
𝑇
𝑍)
−1

𝑍
𝑇
𝑋
𝑡
. (28)

When the memory coefficient matrix 𝑊 is obtained,
the simulating and predicting of original data sequence 𝐹0

𝑡

can be carried out. For the simulated and predicted values

Table 1: Test list of posterior variance ratio and small error
probability.

Modeling accuracy class Test index
Posterior

variance ratio 𝐶

Small error
probability 𝑝

1st level (superior) ≤0.35 ≥0.95
2nd level (qualified) 0.35∼0.50 0.80∼0.95
3rd level (marginal) 0.50∼0.65 0.70∼0.80
4th level (disqualified) ≥0.65 ≤0.70

𝑓1
𝑡
of the first-order accumulated generation sequence in

NGM(1, 1, 𝑘) self-memory coupling model, their inverse
accumulated values 𝑓0

𝑡
can be obtained as follows:

𝑓
0

𝑡
= 𝑓
1

𝑡
− 𝑓
1

𝑡−1
, (29)

where 𝑡 = 1, 2, . . . , 𝑛 and 𝑓1
0
≡ 0.

Step 4 (modeling simulation and prediction accuracy check).
The absolute percentage error (abbreviated as APE) at time 𝑡

is denoted by

APE
𝑡
=

󵄨󵄨󵄨󵄨󵄨
𝑓0
𝑡
− 𝑓0
𝑡

󵄨󵄨󵄨󵄨󵄨

𝑓0
𝑡

× 100%, (30)

and the mean absolute percentage error (abbreviated as
MAPE) at all times is defined as

MAPE =
1

𝑛

𝑛

∑
𝑡=1

APE
𝑡
. (31)

Accordingly, the comparison analysis between actual values
and simulative values derived from each prediction model
can be analyzed using APE

𝑡
and MAPE values.

At the same time, the established NGM(1, 1, 𝑘) self-
memory coupling predictionmodel must pass the simulation
accuracy check before performing extrapolation and predic-
tion. We usually check their accuracy by methods such as
the “posterior variance ratio” and “small error probability”
according to Table 1.

𝑆
1

= √(1/𝑛)∑
𝑛

𝑡=1
(𝑓0
𝑡
− 𝑓
0

𝑡
)
2

and 𝑆
2

=

√(1/𝑛)∑
𝑛

𝑡=1
(𝜀(𝑘) − 𝜀)

2 are the mean square error of
original values and residual error, respectively. For a given
𝐶
0

> 0, if the posterior variance ratio 𝐶 = 𝑆
2
/𝑆
1

< 𝐶
0
,

then the model is considered to pass through the posterior
variance ratio check [7].

In the same way, for a given 𝑝
0

> 0, if the small error
probability 𝑝 = 𝑃(|𝜀(𝑘)−𝜀| < 0.6745𝑆

1
) > 𝑝
0
, then themodel

is supposed to pass through the small error probability check
[7].

3.3. Programming Procedure of Coupling Prediction Model.
The calculation process is carried out as mentioned above
with the help of Matlab software in order to save the
computational effort. And the programming flowchart for
NGM(1, 1, 𝑘) self-memory coupling prediction model is
shown in Figure 1.
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Start

Obtain the system raw data

Generate the 1-AGO sequence
of original sequence

Establish the grey different
equation of NGM model

Calculate control coefficient
𝛾 and parameters a, b

Deduce the difference-integral
equation

Discretize the self-memory
prediction equation

Calculate memory
coefficients matrix W

Calculate the simulated values
and accuracy check

Dynamic kernel
F(x, 𝜆, t)

Retrospective
order p

Stop

Least square
estimate

Least square
estimate

Energy consumption
prediction

Figure 1: Programming flowchart for NGM(1, 1, 𝑘) self-memory coupling prediction model.
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Figure 2: Time series of total energy consumption (10,000 tce) in
China from 1999 to 2012.

4. Illustrative Examples for Energy
Consumption Prediction

China is one of the major countries in energy consumption.
According to China’s energy consumption structure, coal
is the main primary energy and electricity is the main
secondhand energy. Therefore, the illustrative examples of
total energy consumption, coal consumption, and electricity
consumption in China are adopted to verify the effectiveness
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Figure 3: Time series of coal consumption (10,000 ton) in China
from 1999 to 2012.

and practicability of the proposed NGM(1, 1, 𝑘) self-memory
coupling prediction model (abbreviated as NGM + self-
memory model). According to the China Energy Statistical
Yearbook 2013, Figures 2, 3, and 4 show the annual con-
sumption of total energy, coal, and electricity in China from
1999 to 2012, respectively. As it is seen in Figures 2–4, there
has been a tremendous rise in energy consumption for each
energy source, accompanied by irregular fluctuations due to
the unstable changes occurring in the social and economic



The Scientific World Journal 7

1
1.5

2
2.5

3
3.5

4
4.5

5
19

99
20

00
20

01
20

02
20

03
20

04
20

05
20

06
20

07
20

08
20

09
20

10
20

11
20

12
20

13

Years

×10
4

Electricity consumption

El
ec

tr
ic

ity
 co

ns
um

pt
io

n
(1
0
0

m
ill

io
n 

kW
·h

)

Figure 4: Time series of electricity consumption (100million kW⋅h)
in China from 1999 to 2012.

factors. In conclusion, China’s energy consumption shows an
obvious nonhomogeneous exponential rising tendency with
stochastic fluctuation.

In the statistical models, Markov chain can be used to
explain the stochastic fluctuation phenomenon inwhich state
transfer probability matrix is the basis of Markov prediction
model. In general, we cannot determine the typical distri-
bution of random variables and can only use the frequency
instead of the probability. Probability theory points out that
this replacement is meaningful only on the premise of large
sampled values. On the contrary, the grey prediction models
just possess an apparent superiority over a limited amount of
statistical data without knowing their statistical distribution.
Thereinto, the NGM(1, 1, 𝑘) model is especially appropriate
for the approximate nonhomogeneous exponential law time
series with stochastic fluctuation.

Following the coupling modeling process as mentioned
above, the NGM(1, 1, 𝑘) self-memory coupling prediction
models for total energy, coal, and electricity consumption are
established to model and predict the consumption amounts
for the upcoming three years, respectively. At the same
time, these novel models are compared with the traditional
GM(1, 1) model (abbreviated as GM model), the GM(1, 1)

model with three-point moving average (abbreviated as GM
+ three-point model) [32], and the traditional NGM(1, 1, 𝑘)

model (abbreviated as NGM model) to perform the error
analysis. APE

𝑡
and MAPE are used to compare the actual

values with simulative values to evaluate the predictive
performance of novel NGM+ self-memorymodel over other
popular grey models.

4.1. Total EnergyConsumption Forecasting inChina. Based on
statistical data from 1999 to 2012, the differential equation of
NGMmodel is formulated as follows:

d𝐹1
𝑡

d𝑡
= −0.0199𝐹

1

𝑡
+ 22066.6569𝑡 + 90668.0270. (32)

If the right-side terms of (32) are regarded as the
dynamic kernel 𝐹(𝑥, 𝜆, 𝑡), then d𝐹1

𝑡
/d𝑡 = 𝐹(𝑥, 𝜆, 𝑡). The self-

memorization equation can be established for total energy
consumption forecasting. The value of retrospective order is
determined as 𝑝 = 1 by trial calculation method under the
principle of minimum error. After the differential equation is

1

1.5

2

2.5

3

3.5

4

Actual values
GM model
GM + three-point model
NGM model
NGM + self-memory model

19
99

20
00

20
01

20
02

20
03

20
04

20
05

20
06

20
07

20
08

20
09

20
10

20
11

20
12

20
13

Years

To
ta

l e
ne

rg
y 

co
ns

um
pt

io
n

(1
0

,0
0
0

tc
e)

×10
5

Figure 5: Comparison among original and simulative curves of
different models for total energy consumption in China.

dealt with discretely, the memory coefficients can be solved
by the least square method. Then the prediction equation of
total energy consumption can be expressed as

𝑥
𝑡
=

−1

∑
𝑖=−2

𝛼
𝑖
𝑦
𝑖
+

0

∑
𝑖=−1

𝜃
𝑖
𝐹 (𝑥, 𝜆, 𝑖) , (33)

where 𝛼
−2

= 0.4493, 𝛼
−1

= 0.4977, 𝜃
−1

= 4.2646, and 𝜃
0
=

−1.6101.
Through calculation, the actual and simulative values of

four different models are presented in Table 2, respectively. It
is shown that the simulative MAPE of NGM model is lower
than GM model and GM + three-point model. Moreover,
the self-memory principle significantly further improves the
prediction accuracy of NGMmodel. Consequently, the NGM
+ self-memorymodel yields the lowestMAPE comparedwith
the other popular grey models.

The actual values and the simulative results for total
energy consumption from 1999 to 2012 obtained by four
different grey models are also presented in Figure 5. As
can be seen from Table 2 and Figure 5, the NGM + self-
memorymodel can better catch the development tendency of
total energy consumption with the characteristics of nonho-
mogeneous exponential law. And the self-memory principle
possesses an apparent advantage over other grey models
when dealing with the stochastic fluctuation phenomenon.

4.2. Coal Consumption Forecasting in China. Based on statis-
tical data from 1999 to 2012, the differential equation of NGM
model is formulated as follows:

d𝐹1
𝑡

d𝑡
= −0.0123𝐹

1

𝑡
+ 21890.3477𝑡 + 86775.2490. (34)

If the right-side terms of (34) are regarded as the
dynamic kernel 𝐹(𝑥, 𝜆, 𝑡), then d𝐹1

𝑡
/d𝑡 = 𝐹(𝑥, 𝜆, 𝑡). The

self-memorization equation can be established for coal con-
sumption forecasting. The value of retrospective order is



8 The Scientific World Journal

Table 2: Comparison of four different models for total energy consumption in China (unit: 10,000 tce).

Years Actual values GMmodel GM + three-point model NGMmodel NGM + self-memory model
Simulative values APE

𝑡
(%) Simulative values APE

𝑡
(%) Simulative values APE

𝑡
(%) Simulative values APE

𝑡
(%)

1999 140568.82 140568.82 0.00 145078.39 3.21 140568.82 0.00 — —
2000 145530.86 154097.54 5.89 153607.37 5.55 121587.39 16.45 — —
2001 150405.80 166155.76 10.47 166470.28 10.68 142213.09 5.45 145441.98 3.30
2002 159430.99 179157.54 12.37 179496.67 12.59 162614.72 2.00 160778.73 0.85
2003 183791.82 193176.71 5.11 193542.38 5.31 182794.71 0.54 197959.80 7.71
2004 213455.99 208292.90 2.42 208687.18 2.23 202755.47 5.01 209398.51 1.90
2005 235996.65 224591.93 4.83 225017.06 4.65 222499.39 5.72 229729.69 2.66
2006 258676.30 242166.37 6.38 242624.77 6.21 242028.81 6.44 253872.41 1.86
2007 280507.94 261116.02 6.91 261610.29 6.74 261346.08 6.83 276202.44 1.53
2008 291448.29 281548.49 3.40 282081.44 3.21 280453.49 3.77 296765.50 1.82
2009 306647.15 303579.81 1.00 304154.47 0.81 299353.33 2.38 314095.98 2.43
2010 324939.15 327335.10 0.74 327954.72 0.93 318047.84 2.12 327720.81 0.86
2011 348001.66 352949.25 1.42 353617.35 1.61 336539.26 3.29 341540.94 1.86
2012 361732.01 380567.72 5.21 371361.56 2.66 354829.80 1.91 358909.33 0.78

MAPE (%) 4.95 4.74 4.42 2.30
There are no simulative values from year 1999 to 2000 owing to the retrospective order 𝑝 = 1.

Table 3: Comparison of four different models for coal consumption in China (unit: 10,000 ton).

Years Actual values GMmodel GM + three-point model NGMmodel NGM + self-memory model
Simulative values APE

𝑡
(%) Simulative values APE

𝑡
(%) Simulative values APE

𝑡
(%) Simulative values APE

𝑡
(%)

1999 139336.46 139336.46 0.00 142733.77 2.44 139336.46 0.00 — —
2000 141091.70 149528.38 5.98 150048.17 6.35 117190.05 16.94 — —
2001 144528.11 161279.66 11.59 161587.50 11.80 137509.12 4.86 — —
2002 152282.66 173954.46 14.23 174286.49 14.45 157579.06 3.48 152937.13 0.43
2003 180587.04 187625.36 3.90 187983.48 4.10 177402.94 1.76 177480.28 1.72
2004 207561.29 202370.64 2.50 202756.91 2.31 196983.77 5/10 213909.03 3.06
2005 231851.07 218274.73 5.86 218691.36 5.68 216324.53 6.70 228641.92 1.38
2006 255065.45 235428.71 7.70 235878.09 7.52 235428.16 7.70 250270.35 1.88
2007 272745.88 253930.81 6.90 254415.50 6.72 254297.57 6.76 272886.66 0.05
2008 281095.92 273886.97 2.56 274409.74 2.38 272935.63 2.90 288069.05 2.48
2009 295833.08 295411.46 0.14 295975.32 0.05 291345.17 1.52 295298.07 0.18
2010 312236.50 318627.53 2.05 319235.71 2.24 309529.01 0.87 315925.57 1.18
2011 342950.24 343668.14 0.21 344324.11 0.40 327489.91 4.51 329093.20 4.04
2012 352647.07 370676.65 5.11 361673.81 2.56 345230.59 2.10 361701.32 2.57

MAPE (%) 5.13 4.93 4.66 1.73
There are no simulative values from year 1999 to 2001 owing to the retrospective order 𝑝 = 2.

determined as 𝑝 = 2 by trial calculation method under the
principle of minimum error. After the differential equation is
dealt with discretely, the memory coefficients can be solved
by the least square method. Then the prediction equation of
coal consumption can be expressed as

𝑥
𝑡
=

−1

∑
𝑖=−3

𝛼
𝑖
𝑦
𝑖
+

0

∑
𝑖=−2

𝜃
𝑖
𝐹 (𝑥, 𝜆, 𝑖) , (35)

where 𝛼
−3

= 0.0717, 𝛼
−2

= −0.4124, 𝛼
−1

= 1.2960, 𝜃
−2

=

−49.6300, 𝜃
−1

= 102.7246, and 𝜃
0
= −51.2947.

Through calculation, the actual and simulative values of
four different models are presented in Table 3, respectively. It
is shown that the simulative MAPE of NGM model is lower
than GM model and GM + three-point model. Moreover,
the self-memory principle significantly further improves the
prediction accuracy of NGMmodel. Consequently, the NGM
+ self-memorymodel yields the lowestMAPE comparedwith
the other popular grey models.

The actual values and the simulative results for coal
consumption from 1999 to 2012 obtained by four different
grey models are also presented in Figure 6. As can be
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Figure 6: Comparison among original and simulative curves of
different models for coal consumption in China.

seen from Table 3 and Figure 6, the NGM + self-memory
model can better catch the development tendency of coal
consumption with the characteristics of nonhomogeneous
exponential law. And the self-memory principle possesses
an apparent advantage over other grey models when dealing
with the stochastic fluctuation phenomenon.

4.3. Electricity Consumption Forecasting in China. Based on
statistical data from 1999 to 2012, the differential equation of
NGMmodel is formulated as follows:

d𝐹1
𝑡

d𝑡
= 0.0599𝐹

1

𝑡
+ 1390.9613𝑡 + 8703.5942. (36)

If the right-side terms of (36) are regarded as the
dynamic kernel 𝐹(𝑥, 𝜆, 𝑡), then d𝐹1

𝑡
/d𝑡 = 𝐹(𝑥, 𝜆, 𝑡). The

self-memorization equation can be established for electricity
consumption forecasting. The value of retrospective order is
determined as 𝑝 = 2 by trial calculation method under the
principle of minimum error. After the differential equation is
dealt with discretely, the memory coefficients can be solved
by the least square method. Then the prediction equation of
electricity consumption can be expressed as

𝑥
𝑡
=

−1

∑
𝑖=−3

𝛼
𝑖
𝑦
𝑖
+

0

∑
𝑖=−2

𝜃
𝑖
𝐹 (𝑥, 𝜆, 𝑖) , (37)

where 𝛼
−3

= 0.2790, 𝛼
−2

= −0.5414, 𝛼
−1

= 1.1746, 𝜃
−2

=

14.9812, 𝜃
−1

= −21.8940, and 𝜃
0
= 9.6612.

Through calculation, the actual and simulative values of
four different models are presented in Table 4, respectively. It
is shown that the simulative MAPE of NGM model is lower
than GM model and GM + three-point model. Moreover,
the self-memory principle significantly further improves
the prediction accuracy of NGM model. Consequently, the
NGM model + self-memory model yield the lowest MAPE
compared with the other popular grey models.

The actual values and the simulative results for electricity
consumption from 1999 to 2012 obtained by four different
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Figure 7: Comparison among original and simulative curves of
different models for electricity consumption in China.

grey models are also presented in Figure 7. As can be seen
from Table 4 and Figure 7, the NGM + self-memory model
can better catch the development tendency of electricity
consumption with the characteristics of nonhomogeneous
exponential law. And the self-memory principle possesses
an apparent advantage over other grey models when dealing
with the stochastic fluctuation phenomenon.

The MAPE of different prediction models for total
energy, coal, and electricity consumption are all presented
in Table 5, respectively. It is obvious that the prediction
error of NGM(1, 1, 𝑘) model is lower than GM(1, 1) model
and GM(1, 1) model with three-point, and the self-memory
principle further reduces the prediction error ofNGM(1, 1, 𝑘)

model remarkably.
The “posterior error” method is used to perform the

simulation accuracy check, with the results showing that
the posterior variance ratio and small error probability of
three NGM + self-memory prediction models are all up
to the first precision level on the basis of Table 1. The
simulation accuracies of the simulative values to the actual
values are 97.70%, 98.27%, and 98.46%, respectively. Because
three NGM+ self-memory predictionmodels have all passed
through the simulation accuracy check, they all could be
used to carry out extrapolation and prediction, which could
reasonably reflect the growth trend of the future energy
consumption of China.

The total energy, coal, and electricity consumption in
China from 2013 to 2015 is predicted according to the NGM
+ self-memory prediction models as mentioned above. The
results show that, compared with the data of 2012, the total
energy, coal energy, and electricity energy consumption will
increase at the annual average rate of 3.44%, 2.53%, and
8.08%, respectively, in the next three years. In the energy
consumption structure, the proportion of coal energy and
electricity energy consumption will increase gradually, as
shown in Table 6.This means that along with the rapid devel-
opment of China’s economy, the need for energy is increasing
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Table 4: Comparison of four different models for electricity consumption in China (unit: 100 million kW⋅h).

Years Actual values GMmodel GM + three-point model NGMmodel NGM + self-memory model
Simulative values APE

𝑡
(%) Simulative values APE

𝑡
(%) Simulative values APE

𝑡
(%) Simulative values APE

𝑡
(%)

1999 12304.71 12304.71 0.00 13019.57 5.81 12304.71 0.00 — —
2000 13472.38 14449.29 7.25 14275.93 5.96 11872.22 11.88 — —
2001 14723.46 16073.79 9.17 16134.67 9.58 14038.59 4.65 — —
2002 16465.45 17880.94 8.60 17948.66 9.01 16338.71 0.77 16389.34 0.46
2003 19031.60 19891.26 4.52 19966.59 4.91 18780.82 1.32 18696.47 1.76
2004 21971.37 22127.59 0.71 22211.40 1.09 21373.68 2.72 22793.26 3.74
2005 24940.32 24615.35 1.31 24708.58 0.93 24126.62 3.26 25177.32 0.95
2006 28587.97 27382.80 4.22 27486.52 3.85 27049.50 5.38 27923.64 2.32
2007 32711.81 30461.39 6.88 30576.77 6.53 30152.82 7.82 31833.53 2.68
2008 34541.35 33886.11 1.90 34014.45 1.53 33447.72 3.17 35697.92 3.35
2009 37032.14 37695.85 1.79 37838.63 2.18 36946.02 0.23 36937.38 0.26
2010 41934.49 41933.92 0.00 42092.75 0.38 40660.28 3.04 41689.98 0.58
2011 47000.88 46648.47 0.75 46825.15 0.37 44603.84 5.10 46905.23 0.20
2012 49762.64 51893.06 4.28 50144.86 0.77 48790.85 1.95 50099.17 0.68

MAPE (%) 3.83 3.78 3.66 1.54
There are no simulative values from year 1999 to 2001 owing to the retrospective order 𝑝 = 2.

Table 5: MAPE of four different models for energy consumption.

Energy sources GMmodel GM + three-point model NGMmodel NGM + self-memory model
Total energy 4.95% 4.74% 4.42% 2.30%
Coal 5.13% 4.93% 4.66% 1.73%
Electricity 3.83% 3.78% 3.66% 1.54%

Table 6: The predictive values of the NGM + self-memory model and the growth rates.

Years Total Energy (10,000 tce) Coal (10,000 ton) Electricity (100 million kW⋅h)
Quantity Growth rate Quantity Growth rate Quantity Growth rate

2013 373905.27 3.37% 357900.57 1.49% 52545.77 5.59%
2014 385239.04 3.03% 364615.31 1.88% 57218.44 8.89%
2015 400317.60 3.91% 380018.09 4.22% 62808.14 9.77%

continuously. Moreover, with the increasing growth of coal
energy consumption, the proportion of electricity energy
consumption is also growing rapidly with a growth rate far
higher than coal energy.

5. Conclusion

In this study, aiming at the approximate nonhomogeneous
exponential data sequence with stochastic fluctuation emerg-
ing in the energy consumption, the predictive performance
of the traditional NGM(1, 1, 𝑘) model has been markedly
improved by using the self-memory principle of dynamic
system. The illustrative examples show the superiority of
NGM(1, 1, 𝑘) self-memory coupling prediction model over
other popular grey models. This superiority results from the
organic integration of the grey NGM(1, 1, 𝑘) model and the
self-memory principle. The coupling prediction model can
take full advantage of the systematic multitime historical

data and tightly catch the stochastic fluctuation tendency.
The future total energy, coal, and electricity consumption
of China has been effectively predicted using the proposed
NGM(1, 1, 𝑘) self-memory coupling prediction model. It is
worth popularizing and applying in other relevant energy
consumption predictions.

These results may guide China’s institutions related to
energy production in implementing the energy planning
studies and framing the suitable energy strategies. In the
future, China’s energy consumption structure will still mainly
depend on coal energy, together with an obvious upward
trend of the consumption share of electricity energy. This
conforms to the future sustainable multiple clean energy
consumption strategy that is basedmainly on coal.Therefore,
the proposed coupling prediction model could provide a ref-
erence for other countries (especially developing countries)
to establish and adjust the energy consumption structure
and coordinate the relationship among energy, economy, and
environment.
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This study also supports that there is still room for
improving the performance of the existing prediction meth-
ods for energy consumption. As a future work, grey pre-
diction models based on various kinds of optimization
techniques will be integrated with the self-memory principle
in order to further improve the prediction accuracy and
stability in energy consumption. Meanwhile, we have not
found an ideal algorithm for the optimal retrospective order,
only by means of the trial calculation method under the
principle of minimum error. Therefore, whether there are
certain intelligent optimization algorithms, such as nonlinear
programming and particle swarm optimization, that could
be introduced into the coupling model needs further explo-
ration.
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