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Abstract

The production of perfluoroalkyl acids (PFAAs) Haeen phased out over recent decades;
however, no significant decline in their environrtramtoncentrations has been observed. This
is partly due to the photochemical decompositioPBAAs precursors (PrePFAAS) which
remain in extensive use. The decomposition of PA@BFmay be accelerated by the
light-activated engineered nanomaterials (ENMs)water. In light of this hypothesis, we
investigated the photochemical transformation ofe¢h PrePFAAs, which are 8:2
fluorotelomer sulfonic acid (8:2 FTSA), 8:2 fluoetwmer alcohol (8:2 FTOH), and
2-(N-ethylperfluorooctane-1-sulfonamido ethphosphate (SAMPAP), in the presence of six
ENMs under simulated sunlight irradiation. The sfanmation rates of 8:2 FTSA and 8:2
FTOH were increased by 2—6 times when in the peesef six ENMs. However, most of
ENMs appeared to inhibit the decomposition of SAMRPAhe transformation rates of
PrePFAAs were found to depend on the yield of reaaixygen species generated by ENMs,
but the rates were also related to compound phatmhsy, adsorption to surfaces, and
photo-shielding effects. The PrePFAAs are transéatno perfluorooctanoic acid (PFOA)
or/and perfluorooctane sulfonate (PFOS) with higlesicity and longer half-life, PFOA or
PFOS and a few PFAAs having shorter carbon chaigtlhs. Higher concentrations of the
PFAAs photodegradation products were observedeiptasence of most of the ENMs.
Keywords. PFAAs precursors, engineered nanoparticles, phetaical transformation,

reactive oxygen species, PFOS, PFOA
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1. Introduction

Perfluoroalkyl acids (PFAAS) are a class of polgd aerfluoroalkyl substances (PFASS)
that have been used in thousands of products imgudieflon cookware, pizza boxes,
furniture, and clothing (Krafft and Riess, 2015)wtver, PFAAs are endocrine disrupters
that have been shown to interfere with hormonestudt brain development in children,
cause damage to male reproductive systems, ané canser (Grandjean and Clapp, 2014).
The broad toxicity profile of PFAAs has led to thieeing gradually phased out of products in
many countries since 2000; however, the conceatratbf PFAAS in the environment are still
relatively high (Gao et al., 2019, Gewurtz et 2019, Roultti et al., 2016). This may be due to
the decomposition of PFAA precursors (PrePFAAs)Iteg in the formation of PFAAs
(Nguyen et al., 2013, Peng et al., 2014).

PrePFAAs are produced either as industrial productsas chemical intermediates.
Perfluorochemicals including perfluorooctylsulfofiybride (POSF) (Zhang et al., 2004),
methyl perfluorooctane sulfonamide (MeFOSA) (Chuw dretcher, 2014), perfluorooctane
sulfonamidoethanol (MeFOSE) (Avendano and Liu, 301B-ethyl perfluorooctane
sulfonamide (EtFOSA)N-ethyl perfluorooctane sulfonamidoethanstEtFOSE) (Gaillard et
al., 2017) are used as precursors for the formaifgmerfluorinated sulfonic acids (PFSAS).
Flourotelomer alcohols (PFOHS), perfluoroiodineaks (PFIs), perfluoroalkyl phosphates
(PAPs), perfluorophosphonates (PFPAs), and pedplaysphinates (PFPiAs) are used as
precursors for the formation of perfluorinated canydic acids (PFCASs) (De Silva et al., 2012,
Lee et al., 2012, Lee and Mabury, 2011). In addjtiBrePFAAs are produced in quantities
considerably larger than the quantified mass ewpmssiof PFAAs (Houtz et al., 2013).

PrePFAAs have been detected in rivers, lakes, ssdsnwastewater treatment plant (WWTP)
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effluents, and other environments (Chen et al..92@ebbink et al., 2016, Schaefer et al.,
2018, Wang et al., 2015).

In the environment, the transformations from mostPFAAs to PFAAs proceed slowly
with typical half-lives of 300 days (Liu and Avendg 2013, Royer et al., 2015, Zhang et al.,
2017). Many PrePFAAs are highly resistant to mi@bloegradation with little measured
losses and/or associated product formation aftérdb¥s (Avendano and Liu, 2015, Benskin
et al., 2013, Dasu and Lee, 2016). For example, JAenPAP diester was found to be
recalcitrant with respect to microbial degradatadter 120 days of incubation resulting in an
estimated half-life of >380 days at 25 °C (Bensiral., 2013)Photochemical transformation
of PrePFAAs are quite slow given that most PrePFAgk&k of conjugated structures with
very low sunlight molar extinction coefficients. Ud) the direct photochemical transformation
of most PrePFAAs is unlikely to occur under ambmamntlight (Martin et al., 2006).

Both PrePFAAs and engineered nanomaterials (ENKkspfien used additives in synthetic
fibers, rubbers, paints, dyes, paper products, etes) and packing materials. For example
Nanoclays combined with EtFOSE-based phosphatéedi@sg., SAMPAP diester) have been
added to packaging materials in order to improverall material strength, coating stability,
and liquid or gas barrier properties (SCRCAP, 20IM)xtures of nanoparticles with
perfluorocarbons are used to prevent oxygen anérwedm penetrating through packaging
containers (Geueke, 2016). Paper mills often ad#680.3% of nano-sized T§DZnO, or
FeOs; to paper pulp for antistatic capacity and wear istasce coupled with
perfluoroalkylethyl acrylate (trademark PF-001) faater and oil resistance. With the
widespread use of ENMs coupled with PrePFAAs inmmantial products, large quantities of

ENMs and PrePFAAs are eventually released int@atjuatic environment. Since many of the
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commercially produced metal-oxide nanomaterials @reto-activated under UV-vis light
coupled with bandgap energies ranging from 2.2 &30 (nm) to 3.2 eV (385 nm), they are
able to generate reactive oxygen species (ROS)dimgi hydroxyl radical'QH), superoxide
anion (Q"), and singlet oxygen'@,) under ambient sunlight irradiation (Buchman et al
2019, Ganguly et al., 2018, Hoffmann et al.,, 1998)us the ENMs may be capable of
producing indirect photochemical transformation PfePFAAs in water leading to the
formation of PFAAs as unintended byproducts. Previgtudies have demonstrated that
PrePFAAs are a source of PFAAs, but their photodtantransformation pathways are not
resolved, and the photocatalytic impact of varidetNMs on the transformation from
PrePFAAs to PFAAs has little attention (Ahrens &uwhdschuh, 2014, Sznajder-Katarzynska
et al., 2019).

In light of the above concerns, we herein inveséighe photochemical transformations of
three typical PrePFAAs including 8:2 fluorotelomsulfonic acid (8:2 FTSA), 8:2
fluorotelomer alcohol (8:2 FTOH), and 2-(N-ethylfdi@orooctane-1-sulfonamido) ethyl
phosphate (SAMPAP) under simulated sunlight irtamhain the presence of six different
ENMs including TiQ, ZnO, FegOs3; CuO, graphene oxide (GO), and multi-walled carbon
nanotubes (MWCNTS) in water. The effects of ENMstoa photolysis kinetics of PrePFAAs
were examined. Meanwhile, photo-absorption, phbielding, ROS free radicals and band
structure of six ENMs are analyzed to discuss ffezts of ENMs on the transformation rates
of PrePFAAs. In addition, the distribution and centration levels of intermediate products
are also detected during the photochemical tramsftbon of PrePFAAS.

2. Materialsand Methods

2.1 Chemicals and Reagents
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8:2 fluorotelomer sulfonic acid (8:2 FTSA ElIsF17S0;, 90%) was supplied by Synica
Company (Shanghai, CHN). 8:2 fluorotelomer alcot@R FTOH, GHsF2;:0, 92%) was
obtained from DuPont Specialty Chemicals (Delaware, USA).
2-(N-ethylperfluorooctane-1-sulfonamido) ethphosphate (SAMPAP, »@H25F34N20P S,
90%) was purchased from Silworld Chemical Co., (Mduhan, CHN). All other PFAAs
standard samples were supplied by Wellington Labdes (Guelph, CA). Commercial
nanomaterials, titanium dioxide (T3 zinc oxide (ZnO), ferric oxide (K©3), copper oxide
(CuO), graphene oxide (GO), and hydroxyl group fiomalized multi-walled carbon
nanotubes (MWCNTS,) were purchased from Sigma-2lid¢USA). All other chemicals used
were of analytical grade. Deionized water (18.22Mm™) was obtained using a Milli-Q
water purification system.

2.2 Analysis and Characterization

X-ray diffraction (XRD) was carried out using a DAM-2000 diffractometer (Rigaku,
Japan) using Cu-Kradiation at a scan rated)2of 4° min* to determine the phase identity of
the ENMs and the crystallite sizes. Fourier tramsfanfrared (FTIR) spectroscopy was
carried out at 400—-4000 Cfon a Perkin-Elmer spectrometer (Spectrum 400,6drBtates).
Field emission scanning electron microscopy (FESENB0O0, Hitachi, Japan) was employed
for surface topography analysis. The particles sizZeNMs was analyzed byanoparticle Size
Analyzer (Nicoma 380, PSS, USAA full-automatic specific surface area analyzer fS2020,
Micrometrics, USA) was used to measure the spesiiiface area of ENMs. All the above
characterizations are shown in Fig. S1-S4 and TahleDiffusion reflection spectroscopy
(DRS) and UV-vis absorption spectroscopy were edrout on a Cary 500 UV-Vis NIR

spectrophotometer (Agilent/Varian, USA) with an eigitating sphere attachment in the
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200-800 nm range. Teflon powder was employed asference. Electron paramagnetic
resonance (EPR) spectra were collected on an EB&remeter (A300, Bruker, Germany)
for radical analysis with DMPO and TEMP as the catiscavenger. DMPO was used as a
trapping agent to characteriZ@H and Q"-, and TEMP was used to tr&p,. The detailed
measurement methods were showBupplementary data.
2.3 Seady-Sate Photolysis Experiments

Steady-state photochemical experiments were coeduct investigate the photochemical
transformation of PrePFAAs and their intermediatedpcts. The photochemical reactor
vessel was constructed of a quartz glass cooliegvel (250 mm high, 55 mm diameter)
containing a quartz tube (25 mm external diameted) sealed at one end. The tube was fitted
in the reactor center with a Xenon lamp (CHF-XM-8Q0Trusttech, China) with AM 1.5G
filter to simulate sunlight. The actual photon flwas 1.7x13° ein §' cm® The system
temperature was controlled at 25+1°C by circulatvafer from a thermostatic water bath
(VIVO Itherm-B3; Hamburg, Germany). PrePFAAs andNENoncentrations of 10 mg L
and 0.1 g C* were employed, respectively. PrePFAAs aqueoudisnkiwere made from an
acetone stock and phosphate buffer (pH=7.0+£0.1,ask¥gg with nitrogen). Prior to
irradiation, the samples containing ENMs and Pre&4$-#ere exposed to the dark for 30 min
under stirring (160 rpm) to establish an adsorptiesorption equilibrium. Then the Xenon
lamp was initiated to conduct the photolytic expemnts. The experiments were carried out
over 8 h, with a sampling interval of 2 h and a glmg volume of 1 mL. To avoid the
adsorption of PrePFAAs and their intermediate petslon the ENMs and the vessels, each
sampled reaction solution was firstly centrifugd@,000 rpm) for 10 min to separate the

liquid (ca. 1 mL of aqueous solution containing F¥AAs and intermediates) and the solids
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(ENMs), and then the ENMs was eluted with 1 mL oétane at vortex mixer (800 rpm) for
10 min to elute the organic fluorine componentse Bibtained acetone supernatant (1 mL)
was mixed with the aqueous solution (1 mL) to indég an acetone-water mixture which was
then concentrated into 10A by the rotary evaporation. The 100 of concentrated solution
was injected into the HPLC-ESI-MS/MS for the furthguantitative measure. Control
experiments, i.e., in the absence of irradiationEdiMs, were conducted simultaneously.
Experimental uncertainties evaluated in reactoheut ENMs and irradiation were less than
5% of the initial concentrations. All experimentsr& carried out in triplicate, and the average
value was adopted.
2.4 dentification of Intermediates

The concentrations of PrePFAAs and their interntedian the photolysis reactions were
monitored using a high-performance liquid chromedpyy electrospray ionization mass
spectrometry system (HPLC-ESI-MS/MS; AB3200, ApgliBiosystems, USA) equipped
with a Symmetry C18 column. The electrospray iotaa (ESI) source was operated in
negative mode. A linear gradient of acetonitriled &0 mmol L' of ammonium acetate
aqueous solution (100:0 to 50:50) at a flow ratel & mL min* was used to separate the
PrePFAAs and their intermediates over a total amliime of 35 min. The products were
identified using the MS/MS mode and were analyzgdhltiple reaction monitoring (MRM)
using their characteristic ion pairs (Table S2) aome identified products were also proofed
by standard samples.

3. Results and Discussion
3.1 Photo-absor ption response

The three PrePFAAs do not absorb light in the lesibowever, there is a small amount of
8
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UV light absorption below 300 nm. As shown in Fitp, SAMPAP has the strongest
absorption in the UV region, and its optimal troplosric absorption overlap should occur at
295 nm. The absorption overlap for 8:2 FTOH is bkhefted by 5 nm down to the
tropospheric cutoff of 290 nm for solar photochergisHowever, the UV absorption

spectrum of 8:2 FTSA shows absorption only belo@ @6.

Fig. 1 here

The recorded DRS of the six ENMs are shown in Eig.where nTi@ and nZnO exhibit
high photo-absorption in the UV region but no clkeeestic absorption in the visible light
region (>400 nm), while nE®; and nCuO both have stronger adsorption at longer
wavelengths up to 600 nm. The absorption peaks@f&6d MWCNTs are mainly in the UV
region and their longer wavelength absorption iskvd hese ENMs can absorb the simulated
sunlight and undergo bandgap excitation, which mighdge the light irradiation and
photochemical reaction of PrePFAAs in aqueous mwist In some cases, these ENMs had
photo-shielding effects (see Fig. S7) due to narimpes floating on the surface of water
resulting in light scattering and surface refractad incident light leading to reduced direct or
indirect photolysis of the PrePFAAs. Therefore, tleexistence of ENMs and PrePFAAS in

water body has the potential to influence photodbahtransformations of the PrePFAAs.

3.2 Transformation Kinetics of three PrePFAAS

Fig. 2 and Table S3 summarize the observed phdagokisetics of the three target
PrePFAAs under simulated sunlight irradiation. Theappearance of the three PrePFAAs

followed apparent first-order reaction kinetics twithe corresponding photolytic rates of
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0.069 h', 0.148 K', and 0.890 H for 8:2 FTSA, 8:2 FTOH, and SAmMPAP, respectively.
Since there is a small intersection between theilsit®d solar spectrum and the absorption
spectra of SAMPAP or 8:2 FTOH, (see Fig. 1 insetjicating that SAmMPAP and 8:2 FTOH

might be transformed via the direct photolysis. ld@er, there is no intersection between the
simulated solar spectrum and 8:2 FTSA, thus 8:2AEShot likely to be decomposed under
sunlight. Furthermore, the frontier molecular aatst(FMO) analysis results for the three
PrePFAAs also indicate that the stability of SAMP&Ress than those of 8:2 FTSA and 8:2
FTOH (see Fig. S8). The FMO prediction is consistevith the observed faster

transformation rate of SAMPAP during the direct {aitysis process.

Fig. 2. here

Significant differences were observed during thePFAAs photolysis in the presence of
the ENMs. Under simulated sunlight irradiation, fhieotolytic rates of 8:2 FTSA and 8:2
FTOH were increased by about 2—6 times in the piEsef six ENMs. nTi@ had the most
significant enhancement effect on the transformmatitd:2 FTSA and 8:2 FTOH in which the
first-order rate constants for photolysis increagech 0.069 h' and 0.148 H to 0.416 R
and 0.812 H, respectively. In the case of nZnO, the photolsdie constant of 8:2 FTOH was
higher than those observed for gBg nCuO, GO and MWCNTs. However, it had the lowest
first-order photolysis rate constant for the trangfation of 8:2 FTSA. Even though the photo
absorptivity of nFg03 is much higher than that of nCuO, the photolyats cconstants for 8:2
FTSA and 8:2 FTOH were somewhat lower than thosemwied for nCuO. The photolysis
rate constants for 8:2 FTSA and 8:2 FTOH were metégr enhanced by GO and MWCNTSs.

By contrast, the enhancement effects of ENMs orptiaolysis of 8:2 FTSA and 8:2 FTOH
10
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in water could be higher than that of dissolvedaarg matter (DOM) under the same
concentration (seBupplementary data). However, the photolytic rate constants for SARPA
was not enhanced in the presence of aTMoreover, they were decreased substantially in
the presence of n@;, NnCuO, GO and MWCNTSs. For example, in a suspensianFeO3
photolysis rate constant for SAMPAP decreased tiprfaf 6.7. It is clear in this specific case,
that hematite nanopatrticles inhibit the photolgiegradation of SAMPAP in water. In contrast,
the relative inhibition effects of nCuO, GO and MWTs on the photolytic transformation of

SAMPAP were minor.
3.3 Free Radicals and Band Structure Analyses

In the case of PrePFAAs coexisting with ENMs, iedirphotolysis by the photo-generated
ROS of ENMs, such a®H, O,", and'O,, may play an important role in the transformation
of PrePFAAs. The standard state redox potenkg) Of the dissolved oxygen/superoxide
anion pair (Q/O"), singlet oxygen/dissolved oxygen paffOf§0,) and water/hydroxyl
radical pair (HO/OH) in aqueous solution is —0.20, 1.88, and 2.20reSpectively (Li et al.,
2012). Theoretically, in order to generatg’ Ghe potential of the photo-generated electrons
of the material should be lower than —0.20 eV,l&d there is sufficient reducing capacity to
reduce @ to O,". Similarly, if 'O, and'OH are formed in the photolytic system involving
ENMs, then the potential of the photo-generate@olf the material should be greater than
1.88 eV and 2.20 eV, respectively, so that therenisugh energy to oxidize,8 (OH) to
"OH and to excite ground stai@, to 'O,.

Fig. 3 shows the EPR spectra of DMR@M, DMPO/Q", and TEMP/O? adducts
produced by different ENMs under simulated sunliigiatdiation. There is no EPR signal in

the DMPO and DMPO-ENMs hybrid systems in the absedrradiation. After irradiation,
11
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the DMPO and ENMs (nTi©® nZnO, nCuO, GO) hybrid system have a characiepstak of
1:2:2:1 (Fig. 3a), which is the DMP@QH adduct formed by the reaction of DMPO witH.

It can be seen from Fig. S9 that the valence banenpials E,) values of four metal-oxide
ENMs, nTiQ (2.92 eV), nZnO (3.08 eV), nCuO (2.39 eV) and 24:62.66 eV) are higher
than theEy of H,OMOH (2.20 eV) and0,°0,(1.88 eV) (Li et al., 2012). Thus, the holes
generated by these ENMs can oxidizeOHto ‘OH and excite’0, to *O,, respectively.
However, théOH and'O, were not detected in the nBe suspension. This probably because
the recombination rate of electrons and holes geéeeby ther-Fe&O; ENMs is high, and the
diffusion lengths of holes are also low (2—4 nmjjick requires a larger potential for the
photo-assisted water oxidation byFe,0O3 (Mishra and Chun, 2015). As shown in Fig. 4, the
concentrations 0OH and'O, generated by nZnO are significantly higher tharséhobtained
with nTiO,, especially the yield 0OH in nZnO was approximately 3-fold more than timat
nTiO,, which is consistent with previous reports (Wabhgle 2017). This probably because
the E, of nZnO is higher due to quantum sizing effecenticomparable shifts for nT30In
addition, considering the much stronger bondinggnef Ti-O (666.5 kJ/mol) than Zn-O
(250 kJ/mol), surface bound hydroxyl radicals m&asisociate more difficultly from Ti¥O
than that from ZnO, resulting in lower concentratal hydroxyl radicals in solution, and may
be less likely to form DMPO adducts (Haynes, 2008g E. value of nTiQ (—0.28 eV) is
lower than theéey of O,/O," (-=0.20 eV), indicating that the potential of nFitd generate @,
which agrees with the experimental result shownFig. 3. Unexpectedly, considerable
amount of @ could also been detected in the nZnO and nCuCessams, although thel.
values (-0.12 and 0.69 eV, respectively) are highan —0.20 eV. For nZnO, the actizl

may be lower than -0.20 eV duedoantum sizing effects, allowing electron trandfem
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the conduction band to,@nolecules and generatingQLi et al., 2012, Wang et al., 2017).
For CuO, it has been reported that the significguntity of superoxide anions might be
rendered directly from the surface defect sitesl{sas Cu(l) sites) in nanocrystalline CuO
(Meghana et al., 2015). Even though #P£is n-type semiconductor, it did not producg O

or the concentrations were below the detectiontlimhis may be due the considerable

difference between the; of nFeO3(0.46 eV) and th& of O,/O,".

Fig. 3. here

Fig. 4. here

For the two carbon nanomateria®;” and ‘O, signals were detected. The MWCNTs
suspension gave stronger adduct signals, whil&tesuspension gave weakéH and'O,
signals. As a one-dimensional nano-material witteéi@nt electrical properties, CNTs have a
band gap determined by the circumferential quantamfinement, which depends on the
diameter and chirality. The band gap of MWCNTs ethfrom 23 meV to 2.7 eV depending
on the radial deformation (Gelao et al., 2019). ilirty, the GO can be regarded as an
unfolded CNT with similar electronic structures. wiver, the abundance of -COOH, —OH,
and —S@H functional groups and defects on edge of GO rnamdsire results in variable
band gap energies from zero (metallic) to 6.5 eWh(lie et al., 2014). Thus, it is difficult to
estimate whether they can generate ROS by using Epend E; values. It is reported that
types of surface functionalization, defects ongtdace, as well as differences in amorphous
carbon and metal impurity content during preparatide.g., Fe), may facilitate the

photo-generation of some ROS by CNTs or GO (ChehJaifvert, 2011, Felip-Leon et al.,
13
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2019, Qu et al., 2013, Zhao and Jafvert, 2015)b&afate and hydroxylated MWCNTSs have
been proved to produce ROS, which agree with opemental result that MWCNTSs with
—OH groups produced D and*0,. The numerous functional groups and defect sitethe
surface of GO may lead to the formatiori®H and'O..

The indirect photochemical transformation rate?dPFAAs depend on the ROS yields
generated by ENMs, but they are also related ta th&insic stability, surface sorption
ability, and photo-shielding effects. The enhanceinedfects for most of ENMs in the case of
8:2 FTSA and 8:2 FTOH are positively correlatedhwihe ROS concentrations that are
generated except for nZnO. As mentioned aboveyigie of OH and'O, generated by nZnO
are higher than for the other ENMisthe transformation of the PrePFAASs in the preseaf
the ENMs are controlled only by ROS vyield, then @Zshould accelerate the transformation
rates of the PrePFAAs more than other ENMs. In resitto this prediction, however, the
photolytic transformation rates of 8:2 FTSA and BTOH were the fastest in the presence of
nTiO,. On one hand, nTiOis an active photocatalyst &at< 385 nm that produces ROS. On
the other hand, nZnO patrticles are relatively usistavith respect to reversion to Zn(QHIn
addition, nZnO photo-corrosion during irradiatiome >1.0 h may reduce the apparent
photocatalytic activity (Hoffmann et al., 1995, @kato et al., 1985, Zhang et al., 2009) when
compared to much short irradiation time. The highSRconcentrations measured during our
experiments with nZnO were detected after 10-miofiieradiation. Photo-corrosion may not
have had a significant impact during this relatpvehort irradiation time. However, the ROS
yields with nZnO may be lower during an 8 h illumiion time due to the accumulative
effects of photo-corrosion. The photolytic decompaos rates of 8:2 FTSA and 8:2 FTOH in

suspensions of GO were found to be slightly highen those measured with MWCNTS,
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which might be attributed to the relatively stronge&idation capacity of -OH generated by
GO.

In the case of SAMPAP, direct photolysis resultsit;relatively rapid decomposition,
which is most likely due to its lack of chemicahblsility. As a result, the proportional
contribution of ROS produced by the ENMs to thesfarmation of SAMPAP is not obvious.
The SAMPAP transformation rates in the presened i@, and nZnO were comparable to the
measured direct photolysis rate, whereas in theepee of CuO, GO and MWCNTs were
clearly lower than the corresponding direct phdidyrate. That is because the ROS yield
might counteract the photo-shielding effects ofilaidal ENMs entirely or partly. However,
the SAmMPAP transformation rate in suspensions a®f-were decreased dramatically.
This effect can be attributed to the lack ROS detkin the nFgD3; suspensions as a counter

balance to the photo-shielding effects.

3.4 I ntermediate Products

It is known that PrePFAAs undergo defluorinatiogdtolysis, f-oxidation, and enzymatic
reactions to produce various PFAAs that have difierdegrees of toxicity and ecological
risks in the aqueous environment and to aquatictamdstrial organisms (Appleman et al.,
2014, Houtz et al., 2016). The PFAAs transformeanfiPrePFAAs mainly include PFCAs
and PFSAs with different carbon chain lengths. IBerboctanoic acid (PFOA) and
perfluorooctane sulfonate (PFOS) are the mostastiuBFCAs and PFSAS, respectively. Both
of them are PFAAs with long carbon chain (C8), amd main decomposition products of
many PrePFAAs (Gebbink et al., 2016). In the prestmy, some of PFCAs and PFSAs with
different carbon chain lengths £Cs) have been detected by LC-ESI-MS/MS as intermediat

reaction products during photolysis of the PrePFAa8summarized in Table S2. The carbon
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and fluorine recovery rates were analyzed, anditie fluorine recovery rates (mainly in the
range of 56%~98%) indicate that it is sufficienttarify the photochemical transformation of
the three PrePFAAs based on the detected intertesdseéupplementary data).

Since the PrePFAAs samples used in this study earenercial industrial-grade products,
various intermediate PFCAs and PFSAs products detected at measurable concentrations
in the stock solutions of the PrePFAAs. Therefdhe increase in concentration during
photolysis relative to the initial concentration svased to determine the production of the
intermediate reaction products. Based on this amro SAMPAP was found to be
transformed into both PFCAs and PFSAs, althouglctimeentrations of PFCAs were found
to be much higher than the concentrations of th&A2F(see Fig. 5). Furthermore, the
concentrations of both PFCAs and PFSAs with lormgelbon chain, such as PFOA and PFOS,
were higher than that those with relatively shoxtarbon chain, such as PFPnA, PFBA,
PFPnS and PFBS. In contrast, 8:2 FTSA and 8:2 FWeke decomposed only into PFCAs
with the concentrations of the longer carbon ciRHTCAS higher than those of shorter carbon
chain products. For comparison, after sunlightdiation for 8 h, the PFOA formed by
photolysis of SAMPAP was more than 10 times highan that formed from 8:2 FTSA, and
more than 20 times higher than that formed fromRBI®H photolysis. Thus, it is clear that
all three PrePFAAs can be photolytically transfodnieto PFCAs and/or PFSAs of different
carbon chain lengths (€Cg) under simulated sunlight irradiation conditiorsd the C8

products, PFOA or PFOS, were found to be the maidyzts.

Fig. 5. here
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When photo-activated ENMs are present with PrePFAAa body of water, they will
affect not only the photolytic transformation ratdsPrePFAAS, but also the generation rates
and concentrations of the various intermediateti@aproducts. For instance, with nHQhe
photolytic efficiencies of 8:2 FTSA and 8:2 FTOH neeenhanced under simulated sunlight
irradiation and more PFCAs were detected in theti@a solution. The concentration of
PFOA formed from 8:2 FTSA was over 2 times highwant that without nTi@ During
photolysis of 8:2 FTOH with nTig similar concentration of PFOA were produced. Hosve
the concentrations of PFHpA and PFHxA were incredsethree orders of magnitude, and
the concentrations of PFPnA and PFBA were alsoeas®d by one or two orders of
magnitude. In addition, PFCAs with different carbcmains (G-Cg) were detected in the
SAMPAP/NTIQ reaction solution with concentrations in the ramgel?* to 10 nmol L™
These concentrations were about 30 times higher tiva@se in measured in the absence of
NTiO,. Thus, it is clear that photolysis of suspensioin®:2 FTOH or SAMPAP with nTign
water under sunlight irradiation readily form PFCAimilar results were observed in
suspensions of 8:2 FTOH or SAMPAP with ZnO. When 82 FTSA or 8:2 FTOH were
irradiated in suspensions of &g, CuO, GO or MWCNTSs, the final concentrations ofsino
reaction products were similar, although theirgsaiéproduction were different in the case of
each ENM.

Although the photolytic transformation rates for IBRAP in the presence of the ENMs
were much lower compared to photolysis in the atseri the ENMs (as shown in Fig. 2),
the steady-state concentrations of the intermegietducts found to be just slightly lower
than those detected during photolysis in the alesaficENMs. Since SAMPAP has a 27

backbone combined with 34 fluorines, there arerbteaultiple steps involved leading to the
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formation of PFOA, PFOS, and related PFAAs haviaidpon chains: C8 (see Fig. S12). The
initial transformations must involve multiple stepsorder for the parent C27 molecule to be
cleaved into PFAAs with carbon numbers >C8. The ENNI not appear to inhibit rates of
production or steady-state concentrations of CL8PFAAs that were detected. In some
cases, the detected C4 and C5 PFCAs and PFCSstatioes declined with the increase of
photolysis time, which may be due to the photogéitaimpact of the ENMs.
4. Conclusions

In the present study, the photochemical transfdomagirocesses of three typical PrePFAAs
in the presence of six ENMs under simulated suhligadiation were investigated. Based on
our investigation, it is clear that the transforimatof PrePFAAs into PFAASs is influenced by
the photochemical activity of the studied ENMs. Tiect photolysis rates of 8:2 FTSA and
8:2 FTOH are found to be low, but photolytic corsifen of SAMPAP is relatively facile.
Furthermore, in suspensions of nTihZnO, nFeO3;, nCuO, GO and MWCNTSs, the
transformation rates of 8:2 FTSA and 8:2 FTOH wenbanced under simulated sunlight
irradiation, while most of ENMs had inhibiting efts on the photolysis of SAMPAP.
Photo-generated ROS on the surfaces of the ENMg plakey role in PrePFAAs
decomposition. In addition, the photochemical tfamsation of PrePFAAs might be also
related to the photo-stability, adsorption to scefg and photo-shielding effects. Meanwhile,
these PrePFAAs could be transformed to PFOA or P&iQsher PFAAs products, and higher
concentrations of PFAAs products were detectetierpresence of most ENMs.

Indeed, both the PrePFAAs and ENMs are widely uegdther in various industrial and
commercial applications. With the rapid developmehtnanotechnology, the number of

PrePFAAs/ENMs-containing industrial products on tharket has increasethe PrePFAAs
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and ENMs containing products are eventually rel@éast the environment, and inevitably
exposed to sunlight. The inherent photochemicapgmies of many ENMs will most likely
affect the transport and transformation of PrePFAfsvater. Nevertheless, in the ambient
water environment, various photolysis reactions rhaymore complicated due the various
competing reaction pathways including the photeégtiof DOM, sorption to organic
surfaces, biodegradation, and loss to the sedimBtganwhile, the acceleration or inhibition
effects of ENMs might be also influenced by thecedhcy limitation of mass transfer, radical
guenching or more complex components in the acta#tr environment. Anyway, when the
PrePFAAs coexist with ENMs in water, part of theE&IMs could accelerate the
transformation from PrePFAAs to PFOA or/and PFOShwhigher toxicity and longer
half-life. Therefore, it is necessary to pay mattergtion to the photochemical transformation
behavior of PrePFAAs coexisting with ENMs in watend also focus more on the influence

of actual environmental factors next.
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Figure captions

Fig. 1. (a) Molar absorptivity of 8:2 FTSA, 8:2 FTOH, SARAP, and emission spectra of
simulated sunlight (Xenon lamp witkM 1.5G filter); (b) Diffuse reflection spectrum aix

ENMs, including nTiQ, nZnO, nFeO3, nCuO, GO and MWCNTSs.

Fig. 2. Transformation kinetics of three PrePFAAs (i.8:2 FTSA, 8:2 FTOH and
SAMPAP) in the presence of six ENMs (i.e., nZi@ZnO, nFegO;, nCuO, GO and

MWCNTSs) under simulated sunlight irradiation.

Fig. 3. EPR spectra of DMPUBH adducts in aqueous solution (a), DMPg-#@lducts in
methanol (b), and TEMBO, adducts in aqueous solution (c) after ENMs suspesswere
irradiated by simulated sunlight for 10 min. [DMP©]0.04 mol [, [TEMP] = 0.04 mol [*
and [ENMs]=0.1 g [*.

Fig. 4. Concentrations ofOH, O~ and 'O, generated by six ENMs (0.1 g™ under the
irradiation of simulated sunlight for 10 min, andettransformation kinetic rates of three

PrePFAAs under the irradiation of simulated surtlighen coexisting with six ENMs.

Fig. 5. Concentrations of PrePFAAs photolysis producta &snction of reaction time: (a—g)
8:2 FTSA, (h—n) 8:2 FTOH, and (0o—u) SAmMPAP. Theezipents were conducted using 10
mg L™ of PrePFAAs and 0.1 gt of ENMs (i.e., nTiQ, nZnO, nFgds;, nCuO, GO or

MWCNTSs under simulated sunlight irradiation conafits.
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Fig. 5. Concentrations of PrePFAAs photolysis producta &mction of reaction time: (a—g) 8:2

FTSA, (h-n) 8:2 FTOH, and (0o—u) SAMPAP. The experita were conducted using 10 m¢ L

of PrePFAAs and 0.1 gt of ENMSs (i.e., nTiQ, nZnO, nFgDs, nCuO, GO or MWCNTs under

simulated sunlight irradiation conditions.



Highlights

ENMs can promote or inhibit the photochemical transformation of PrePFAAS in
water.

PrePFAAS could be transformed to PFOA or/and PFOS and other shorter chain
PFAAS.

High concentrations of PFAAs products were detected in the presence of most
ENMs.

Photo-generated ROS play major roles in photochemical transformation of
PrePFAAS.

Photo-stability and photo-shielding of ENMs aso affect transformation of

PrePFAAS.
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