1,619 research outputs found

    Circles within spirals, wheels within wheels; Body rotation facilitates critical insights into animal behavioural ecology

    Get PDF
    How animals behave is fundamental to enhancing their lifetime fitness, so defining how animals move in space and time relates to many ecological questions, including resource selection, activity budgets and animal movement networks. Historically, animal behaviour and movement has been defined by direct observation, however recent advancements in biotelemetry have revolutionised how we now assess behaviour, particularly allowing animals to be monitored when they cannot be seen. Studies now pair ‘convectional’ radio telemetries with motion sensors to facilitate more detailed investigations of animal space-use. Motion sensitive tags (containing e.g., accelerometers and magnetometers) provide precise data on body movements which characterise behaviour, and this has been exemplified in extensive studies using accelerometery data, which has been linked to space-use defined by GPS. Conversely, consideration of body rotation (particularly change in yaw) is virtually absent within the biologging literature, even though various scales of yaw rotation can reveal important patterns in behaviour and movement, with animal heading being a fundamental component characterising space-use. This thesis explores animal body angles, particularly about the yaw axis, for elucidating animal movement ecology. I used five model species (a reptile, a mammal and three birds) to demonstrate the value of assessing body rotation for investigating fine-scale movement-specific behaviours. As part of this, I advanced the ‘dead-reckoning’ method, where fine-scale animal movement between temporally poorly resolved GPS fixes can be deduced using heading vectors and speed. I addressed many issues with this protocol, highlighting errors and potential solutions but was able to show how this approach leads to insights into many difficult-to-study animal behaviours. These ranged from elucidating how and where lions cross supposedly impermeable man-made barriers to examining how penguins react to tidal currents and then navigate their way to their nests far from the sea in colonies enclosed within thick vegetation

    Deep Learning-Based Part Labeling of Tree Components in Point Cloud Data

    Get PDF
    Point cloud data analysis plays a crucial role in forest management, remote sensing, and wildfire monitoring and mitigation, necessitating robust computer algorithms and pipelines for segmentation and labeling of tree components. This thesis presents a novel pipeline that employs deep learning models, such as the Point-Voxel Transformer (PVT), and synthetic tree point clouds for automatic tree part-segmentation. The pipeline leverages the expertise of environmental artists to enhance the quality and diversity of training data and investigates alternative subsampling methods to optimize model performance. Furthermore, we evaluate various label propagation techniques to improve the labeling of synthetic tree point clouds. By comparing different community detection methods and graph connectivity inference techniques, we demonstrate that K-NN connectivity inference and carefully selected community detection methods significantly enhance labeling accuracy, efficiency, and coverage. The proposed methods hold the potential to improve the quality of forest management and monitoring applications, enable better assessment of wildfire hazards, and facilitate advancements in remote sensing and forestry fields

    Power house, prison house - an oral genre and its use in Isaiah Shembe's Nazareth Baptist Church

    Get PDF
    Paper presented at the Wits History Workshop: The Making of Class, 9-14 February, 198

    Deep Learning-Based Part Labeling of Tree Components in Point Cloud Data

    Get PDF
    Point cloud data analysis plays a crucial role in forest management, remote sensing, and wildfire monitoring and mitigation, necessitating robust computer algorithms and pipelines for segmentation and labeling of tree components. This thesis presents a novel pipeline that employs deep learning models, such as the Point-Voxel Transformer (PVT), and synthetic tree point clouds for automatic tree part-segmentation. The pipeline leverages the expertise of environmental artists to enhance the quality and diversity of training data and investigates alternative subsampling methods to optimize model performance. Furthermore, we evaluate various label propagation techniques to improve the labeling of synthetic tree point clouds. By comparing different community detection methods and graph connectivity inference techniques, we demonstrate that K-NN connectivity inference and carefully selected community detection methods significantly enhance labeling accuracy, efficiency, and coverage. The proposed methods hold the potential to improve the quality of forest management and monitoring applications, enable better assessment of wildfire hazards, and facilitate advancements in remote sensing and forestry fields

    Women in Morocco: Gender Equality

    Get PDF
    This newsflash focuses on gender equality in Morocco. The articles are a result of research conducted throughout the semester (Spring 2014), as well as a service-learning trip to Rabat, Morocco (May 2014). The newsflash delves into several different aspects of Moroccan life, such as, changes to the family code, job creation, equality in education, and the portrayal of women in the media, specifically magazines. This newsflash gives a general knowledge of the changes taking place in Morocco. It allows readers to understand, on a basic level, what is unfolding in Morocco today
    • …
    corecore