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Abstract

Point cloud data analysis plays a crucial role in forest management, remote sensing,

and wildfire monitoring and mitigation, necessitating robust computer algorithms

and pipelines for segmentation and labeling of tree components. This thesis presents

a novel pipeline that employs deep learning models, such as the Point-Voxel Trans-

former (PVT), and synthetic tree point clouds for automatic tree part-segmentation.

The pipeline leverages the expertise of environmental artists to enhance the quality

and diversity of training data and investigates alternative subsampling methods to

optimize model performance. Furthermore, we evaluate various label propagation

techniques to improve the labeling of synthetic tree point clouds. By comparing

different community detection methods and graph connectivity inference techniques,

we demonstrate that K-NN connectivity inference and carefully selected community

detection methods significantly enhance labeling accuracy, efficiency, and coverage.

The proposed methods hold the potential to improve the quality of forest manage-

ment and monitoring applications, enable better assessment of wildfire hazards, and

facilitate advancements in remote sensing and forestry fields.
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Chapter 1

Introduction

1.1 Background and motivation

Forests are critical components of the global ecosystem and play an essential role in

sustaining life on Earth [12,13]. They provide a wide range of ecological services, such

as carbon sequestration [14], biodiversity conservation [15], water regulation [16], and

climate stabilization [13]. In addition to these benefits, forests offer economic ad-

vantages, including timber production, non-timber forest products, and recreational

opportunities [12]. Therefore, effective management and preservation of these ecosys-

tems are necessary to maintain their health and ensure the continued provision of

these services.

Over the years, remote sensing technologies have revolutionized the study of

forestry, allowing for detailed assessments of forest structure, composition, and dy-

namics. Light Detection and Ranging (LiDAR) is a remote sensing technology that

uses laser pulses to measure distances to objects, such as vegetation and terrain. Ter-

restrial and Airborne Laser Scanning (TLS and ALS) are two applications of LiDAR
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technology that enable forestry professionals to digitally catalog entire landscapes in

the form of large point cloud datasets [17].

LiDAR systems emit laser pulses that travel to the Earth’s surface and reflect off

objects, such as trees, ground, and buildings. The time it takes for the laser pulse

to travel back to the sensor is recorded, and this information is used to calculate

the distance to the object. By combining distance measurements with the precise

location and orientation data of the LiDAR system, 3D point cloud datasets can be

generated [17].

TLS involves mounting LiDAR sensors on a tripod to capture data from a sta-

tionary position, while ALS systems are mounted on aircraft to capture data over

larger areas [17]. These datasets provide valuable, high-resolution information on the

structure and composition of forest ecosystems at various scales, from individual trees

to entire landscapes. The extraction of meaningful information from these datasets

requires advanced processing techniques that can accurately identify and classify dif-

ferent components of the forest ecosystem. Specifically, the automated segmentation

and labeling of individual trees and their parts, such as the trunk, branches, and

leaves, are crucial for obtaining detailed information on topological, geometrical, and

volumetric aspects of tree structures.

Part segmentation is particularly useful in several applications, including tree

species identification, mensuration, and biomass estimation. For instance, the vol-

ume, shape, and branching patterns of different tree parts can be used to distinguish

between species and characterize their growth patterns [18]. Additionally, part seg-

mentation allows for the accurate measurement of tree parameters, such as tree height,

diameter at breast height (DBH), and crown diameter, which are essential for forest

mensuration and inventory. Furthermore, the volumetric information obtained from

part segmentation can be utilized to estimate tree biomass and carbon sequestration
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potential, providing valuable insights for forest management, conservation, and cli-

mate change mitigation efforts [19]. These parameters are crucial for informing forest

management decisions, assessing the health and productivity of forest ecosystems,

and monitoring changes over time [20].

However, current deep-learning segmentation and labeling techniques for point

cloud data often face limitations due to the fixed-size vector inputs used in batch

training the segmentation models. Constraining the model by subsampling the input

point cloud down to a fixed-size can result in inaccurate or incomplete labeling cov-

erage, potentially reducing the reliability and utility of the derived information for

forestry applications. Furthermore, manual segmentation and labeling of point cloud

data are time-consuming, labor-intensive, and subject to human error, rendering them

impractical for generating large-scale datasets.

Given these challenges, there is a pressing need for more effective and automated

labeling techniques that can overcome the limitations of existing methods and enhance

the accuracy and granularity of information obtained from TLS and ALS data. Such

advancements hold the potential to significantly improve our understanding of forest

ecosystems and provide valuable insights to support informed decision-making by

forestry professionals.

1.2 Problem Statement

The challenges faced in the segmentation and labeling of tree components within

point cloud datasets have necessitated the development of improved techniques for

accurate and efficient analysis. Key issues include:

1. Tree Part-Segmentation limited to RGB images: Current techniques for

tree part-segmentation, such as those in Amatya et al. [21] and Lin et al. [22],
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primarily focus on using RGB images rather than point cloud data. While

these techniques have shown success in their respective applications, they are

limited in their ability to manage the unique challenges presented by point

cloud datasets. Moreover, the reliance on RGB images for segmentation neces-

sitates controlled environments, and labor-intensive data collection and manual

label annotation, as seen in Lin et al. [22], where it took two months to create

segmented labels manually.

2. Lack of automation: More traditional methods, like using point cloud data

to reconstruct quantitative structure models (QSM) for trees, show promise in

AGB estimation and part-segmentation [23]. However, these methods require

someone proficient in manually fine-tuning the algorithm’s input parameters to

produce quality cylindrical estimates of the tree’s topology. Depending on the

size and complexity of the input tree, QSM may also take a large inference time

to calculate and produce results [24], which may not be feasible in an application

at-scale.

3. Scalability and adaptability: Current techniques may not scale well for large

datasets or adapt to the wide variety of tree species and forest types that are

encountered in real-world applications. Point cloud data collected from terres-

trial and airborne remote sensing platforms often contain noise and occlusions

due to the complex geometry of tree canopies and forest environments. These

issues can significantly impact the accuracy and reliability of segmentation and

labeling results.

Addressing these challenges is essential for developing a more robust and efficient ap-

proach to segmentation and labeling of tree components within point cloud datasets.

This will enhance the quality of forest management and monitoring applications, as

well as facilitate advancements in the field of remote sensing and forestry.
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1.3 Objectives and scope

The primary objectives of this research are to develop and evaluate novel techniques

for point cloud segmentation and labeling in the context of forestry applications, with

a specific focus on addressing the challenges of accuracy, automation, scalability, and

adaptability.

To achieve these objectives, the thesis encompasses the following key components:

1. Evaluation of deep learning point cloud segmentation models: The potential

benefits of deep learning techniques for point cloud segmentation in forestry

applications will be assessed through the training, evaluation, and comparison

of several state-of-the-art models, including Pointnet, Pointnet++, ShellNet,

DGCNN, and PVT. These models will be evaluated in terms of their perfor-

mance and effectiveness in segmenting tree components.

2. Enhancement of point cloud segmentation using synthetic tree point clouds: A

novel approach to improving point cloud segmentation and labeling is proposed

by generating synthetic tree point clouds using SpeedTree software. These syn-

thetic point clouds will be used to train and evaluate deep learning models and

enhance the performance of the K-Neighbor-Nurtured-Garden (KNNG) algo-

rithm through label propagation and transfer learning techniques.

3. Development of the KNNG algorithm: The KNNG algorithm is a graph-based

approach that enables the extension of point cloud segmentation outcomes to

the broader unlabeled points within the dataset. The KNNG algorithm lever-

ages local neighborhood information and connectivity patterns to help identify

distinct tree components such as trunks, branches, and leaves. The design,

implementation, and evaluation of the KNNG algorithm will be thoroughly de-

tailed in this study.
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The objectives and scope of this thesis are to develop and evaluate novel techniques

for point cloud segmentation and labeling in the context of forestry applications, with

a specific focus on addressing the challenges of accuracy, automation, scalability, and

adaptability. This work aims to make significant contributions to the field of point

cloud segmentation and labeling in forestry applications, providing valuable insights

and practical solutions that can be readily applied to real-world scenarios.
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Chapter 2

Background

Figure 2.1: Concept map of the main topics discussed in the background section,
including deep learning-based point cloud segmentation, point cloud subsampling
techniques, unsupervised clustering, and label propagation for partially labeled data.

This section provides a comprehensive overview of the related works and tech-

niques in the field of point cloud segmentation and community detection, focusing on

their applications in forestry and related domains. The topics discussed encompass
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several critical themes, including deep learning-based point cloud segmentation, point

cloud subsampling techniques, unsupervised clustering and community detection, la-

bel propagation for partially labeled data, and the challenges and opportunities in

point cloud segmentation.

To provide context and facilitate understanding, Figure 2.1 presents a concept

map illustrating the main themes and interrelations between the various topics dis-

cussed in this section. This figure helps to emphasize the connections between the

different techniques and their applications in the field of point cloud segmentation

and community detection.

In the following subsections, the details of each of these topics are explained in

detail, exploring the relevant literature and techniques that have been employed in

the field of point cloud segmentation and community detection.

2.1 Deep Learning-based Point Cloud Segmentation

Deep learning techniques have emerged as powerful tools in the field of point cloud

segmentation, leading to significant advancements in the analysis and interpretation

of complex 3D data. Several deep learning-based approaches have been proposed to

address various challenges associated with point cloud segmentation, with some of

the most notable methods outlined below:

2.1.1 PointNet [1]

PointNet is a pioneering deep learning approach for processing and analyzing point

clouds. It is designed to handle the unique challenges of unordered and irregular 3D

point data, focusing on processing individual points while capturing local information.

The architecture of PointNet consists of several key components:



9

1. Input Transform: PointNet employs a learned input transformation network

to align the input point cloud to a canonical space, reducing the impact of

different orientations and improving the network’s robustness.

2. Shared MLPs: PointNet uses shared multi-layer perceptrons (MLPs) to ex-

tract point-wise features from the input point cloud. The shared weights in these

MLPs ensure that the network is invariant to the order of the input points.

3. Symmetric Function: To aggregate information from the unordered points,

PointNet utilizes a symmetric function (e.g., max-pooling) that combines the

features of all points in the point cloud. This allows the network to extract

global features from the point cloud, which are essential for tasks such as object

classification, segmentation, and scene understanding.

By processing point clouds in this manner, PointNet is able to achieve robust

performance across a variety of tasks, including object classification, segmentation,

and scene understanding. The network’s ability to process individual points and

capture local information makes it particularly well-suited for point cloud analysis.

However, PointNet’s primary limitation is its reliance on global features, which may

not be sufficient for capturing fine-grained local structures in complex point clouds.

This has led to the development of several extensions and improvements, such as

PointNet++ [2], which incorporate hierarchical structures and local feature extraction

to address these limitations.

2.1.2 PointNet++ [2]

PointNet++ builds upon the concepts introduced by PointNet and enhances its abil-

ity to capture local geometric structures in addition to global features. The core idea

behind PointNet++ is to apply a hierarchical neural network structure that processes
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point clouds at multiple scales by recursively applying PointNet on nested local re-

gions. This hierarchical approach allows the network to capture both local and global

features, resulting in improved segmentation performance.

The PointNet++ architecture consists of the following key components:

1. Sampling and Grouping: The point cloud is partitioned into overlapping

local regions by applying a sampling strategy, such as Farthest Point Sampling

(FPS). Each local region is formed by grouping neighboring points around the

sampled points. This process can be performed in multiple hierarchical layers,

with each layer focusing on a different spatial scale.

2. Local Feature Extraction: Within each local region, PointNet is applied

to extract local features. This is achieved by aggregating information from

the unordered points using a symmetric function, such as max-pooling, which

enables the extraction of meaningful local geometric features.

3. Hierarchical Processing: The local features extracted from each region are

processed hierarchically. This process refers to the organization and process-

ing of point cloud data at multiple levels of granularity. At each level of the

hierarchy, the features are aggregated and combined to produce higher-level

features, which capture the relationships between the local regions and their

spatial context.

By capturing both local and global features in a hierarchical manner, PointNet++

is better equipped to model complex geometric structures found in point clouds. This

leads to improved performance in various point cloud processing tasks, including ob-

ject classification, semantic segmentation, and scene understanding. However, similar

to PointNet, PointNet++ also requires a fixed input size, which may necessitate heavy
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subsampling of the point cloud data, potentially leading to information loss and im-

pacting the quality of the segmentation results.

2.1.3 SpiderCNN [3]

SpiderCNN is another deep learning-based approach for processing point clouds, in-

troducing a new convolution operator called the spider convolution. The main com-

ponents and advantages of SpiderCNN include:

1. Spider Convolution Operator: While traditional convolution operators are

typically designed for grid-like data, the spider convolution operator was created

to specifically work with point cloud data. The operator generates learnable

radial basis functions (RBFs) and directional functions. RBFs capture point

distances, while directional functions model orientation relationships between

points. This combination allows the spider convolution to capture local geomet-

ric information within point neighborhoods. SpiderCNN processes local point

neighborhoods by applying the spider convolution operator on them.

2. Adaptive Kernel Weights: SpiderCNN’s convolution operator adapts kernel

weights to account for the varying density of points in the point cloud. This

results in a more robust feature representation, less affected by noise or irregular

sampling. The adaptive kernel weights enable SpiderCNN to perform well even

with missing or noisy data.

3. Hierarchical Feature Learning: SpiderCNN, similar to PointNet++, em-

ploys a hierarchical structure for feature learning. This structure allows the

model to learn multi-scale features, capturing both fine-grained local details

and global context. Leveraging this hierarchical structure, SpiderCNN can bet-

ter represent complex geometric structures.
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SpiderCNN introduces the spider convolution operator which enables the model to

uniquely capture geometric features using a convolution-like operator. Through local

point neighborhood processing and hierarchical feature learning, SpiderCNN achieves

comprehensive feature representations.

2.1.4 ShellNet [4]

ShellNet is a deep learning-based method for processing point clouds, which intro-

duces the shell partitioning method and the multi-scale spherical convolution. The

main components and advantages of ShellNet include:

1. Shell Partitioning: ShellNet utilizes a partitioning method that divides the

point cloud into concentric shells. This process, called shell partitioning, helps

the model capture the spatial distribution of points effectively. Each shell con-

tains points that are within a certain distance range from the center of the point

cloud. This partitioning method enables the model to better understand the

local and global structure of the point cloud.

2. Multi-Scale Spherical Convolution: ShellNet introduces a multi-scale spher-

ical convolution that operates on the shell partitioned point cloud. This con-

volution captures geometric features from different spatial scales, allowing the

model to learn more comprehensive feature representations. The multi-scale

spherical convolution is specifically designed to work with point cloud data,

making it effective for handling irregularly sampled and unordered points.

3. Hierarchical Feature Learning: Similar to SpiderCNN and PointNet++,

ShellNet adopts a hierarchical structure for feature learning. This structure

enables the model to learn multi-scale features, capturing both fine-grained

local details and global context. By leveraging the hierarchical structure and
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multi-scale spherical convolution, ShellNet can effectively represent complex

geometric structures within the point cloud.

ShellNet’s shell partitioning and local-to-global hierarchical learning strategy pro-

vide an effective method for processing point clouds with varying densities and irregu-

lar structures. By utilizing the shell partitioning to capture the spatial distribution of

points and incorporating a multi-resolution hierarchy, ShellNet demonstrates strong

performance in handling complex geometries and capturing relevant features at mul-

tiple scales.

2.1.5 DGCNN [5]

DGCNN, or Dynamic Graph CNN, is a deep learning-based approach for processing

point clouds. It introduces a dynamic graph-based structure to capture local geomet-

ric features effectively. The main components and advantages of DGCNN include:

1. Dynamic Graph Construction: DGCNN constructs a dynamic graph for

each point cloud by connecting each point to its k nearest neighbors. The

graph is dynamically updated for each layer in the network, allowing the model

to adapt and capture different levels of geometric detail. This dynamic graph

construction enables DGCNN to better understand the local and global struc-

ture of the point cloud.

2. EdgeConv: DGCNN introduces a novel convolution operation called Edge-

Conv, which operates on the edges of the dynamic graph. EdgeConv is specif-

ically designed to work with point cloud data, making it effective for handling

irregularly sampled and unordered points. By capturing both local and non-

local geometric features, EdgeConv allows DGCNN to learn more comprehensive

feature representations.
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3. Hierarchical Feature Learning: Like SpiderCNN, PointNet++, and Shell-

Net, DGCNN employs a hierarchical structure for feature learning. This struc-

ture enables the model to learn multi-scale features, capturing both fine-grained

local details and global context. By leveraging the hierarchical structure and

EdgeConv, DGCNN can effectively represent complex geometric structures within

the point cloud.

DGCNN’s dynamic graph construction and EdgeConv operation provide a unique

and adaptive approach to point cloud processing, enabling the model to effectively

capture complex geometric features in various contexts. By employing a hierarchical

structure and dynamically updating the graph at each layer, DGCNN excels in rep-

resenting local and global structures while adapting to different levels of detail within

the point cloud.

2.1.6 KPConv [6]

Kernel point convolution (KPConv), processes point clouds by directly working with

points in 3D space. The convolutional operator in KPConv differs from that of Spider-

CNN in that it directly applies convolutional operations on local point neighborhoods

in 3D space using kernel functions defined over pairs of points, whereas SpiderCNN

extends traditional convolution operators with a spider convolution operator. Kernel

functions are defined over pairs of points in a point cloud. These kernel functions are

then used to compute the convolutional output for each point in the local neighbor-

hood.

One of the advantages of KPConv is its flexibility, which allows the method to

adapt to various data distributions and densities. This adaptability is particularly

beneficial when working with point cloud data that may be irregularly sampled or

contain high variance point densities. KPConv has demonstrated great performance
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in point cloud segmentation tasks, showcasing the effectiveness of this approach in

extracting and processing relevant features from point cloud data.

KPConv scales well with large point clouds. This stems from its ability to leverage

data structures like k-d trees and octrees, which can significantly speed up the nearest-

neighbor search required for processing local point neighborhoods.

While these point-based deep learning-based methods have achieved remarkable

performance in semantic segmentation of point clouds, several additional techniques

have been developed to address the challenges of 3D object detection and segmenta-

tion using a voxel-based approach for a more discrete and compact representation of

the input-space. These methods include the following:

2.1.7 VoxelNet [7]

VoxelNet divides the input point cloud into a 3D grid of voxels, with each voxel

encompassing a specific region in the 3D space. Features of the points within each

voxel are summarized, effectively discretizing the local geometric information within

each voxel. This process reduces the complexity of the input data, allowing for a

more efficient analysis while still preserving essential structural information.

3D convolutional layers are used to extract both local and global features from

the data. These layers are capable of capturing the spatial relationships between the

voxels, contributing to the model’s ability to recognize and segment different objects

within the point cloud.

2.1.8 SECOND [8]

SECOND is a deep learning approach for point cloud processing that shares simi-

larities with VoxelNet in terms of utilizing a voxel representation for point clouds.
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However, SECOND introduces a sparse convolutional operation to further improve

efficiency and computational performance. Sparse convolutions aim to only process

non-empty voxels in the 3D grid.

2.1.9 Point-Voxel Transformer (PVT) [9]

Point-Voxel Transformer (PVT) merges the strengths of point-based and voxel-based

representations in order to effectively process and analyze point clouds. This hybrid

method aims to capitalize on the feature-space provided by point-based techniques

and the computational efficiency provided by voxel-based methods. Consequently,

PVT is capable of delivering high-quality segmentation results while maintaining

adaptability to different point cloud densities and structures.

The PVT architecture is built upon a hierarchical structure that successively pro-

cesses and down-samples the input point cloud data at multiple levels of granularity.

At each level, the point cloud is transformed into a voxel representation, which is then

used to extract local features. These voxelized features are subsequently fed into a

transformer module, which is responsible for capturing and encoding both local and

global context information within the point cloud.

The transformer module in PVT is designed to manage irregular and unordered

point cloud data by incorporating self-attention mechanisms. This allows the model to

dynamically weight the importance of different local features, enabling it to learn and

adapt to the underlying structure of the point cloud. The output of the transformer

module is then decoded back into a point-based representation. By employing a

hierarchical processing structure alongside the transformer module, PVT effectively

combines the benefits of both point-based and voxel-based techniques.

Additionally, many of these models also suffer from a significant limitation related

to the fixed input size of the model. This constraint often requires heavy subsampling
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of the point cloud data, which can lead to information loss and potentially compromise

the quality of the segmentation results.

While the deep learning-based techniques mentioned earlier have shown impressive

performance on well-known point cloud datasets such as ModelNet40 [25], ShapeNet

[26], and S3DIS [27], their applicability to the segmentation of complex tree point

clouds may be limited due to several factors. A primary concern is the stark differ-

ence between the point cloud objects typically found in standard benchmark datasets

typically used to evaluate these models and the complexity of tree point clouds. The

structures found in tree point clouds are inherently more intricate and challenging to

segment compared to the objects commonly present in standard benchmark datasets

like ModelNet40, ShapeNet, and S3DIS. Additionally, the objects present in these

datasets are able to take advantage of priors that a pointcloud of a tree cannot use,

such as morphological variance. As a result, the performance of these deep learning-

based techniques on tree point clouds may not be as robust as their reported perfor-

mance on other datasets. This highlights the need for more targeted research and

development efforts that specifically address the unique challenges associated with

tree point cloud segmentation.

This thesis investigates a range of deep learning-based point cloud models and

evaluates their performance on tree point clouds to address concerns regarding their

effectiveness. The investigation aims to draw inferences about the factors contributing

to superior performance of certain models in capturing the intricacies of tree point

cloud structures. By identifying and understanding the essential attributes of these

methods that enable them to handle the unique challenges presented by tree point

clouds, this work aims to advance the state of the art in forestry applications and offer

practical insights for developing effective tree point cloud segmentation techniques.
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2.2 Point Cloud Subsampling Techniques

As mentioned in the previous section, deep learning models for point cloud processing

rely on efficient subsampling techniques to deliver accurate results. These techniques

play a crucial role in handling large point cloud datasets by reducing their size while

preserving key structural and geometric information. Effective subsampling not only

enhances the processing efficiency but also minimizes storage and computational re-

quirements, ultimately improving the performance of the deep learning models dis-

cussed earlier.

Point cloud subsampling techniques can be classified into different categories de-

pending on their approach and the specific application requirements. This section

provides an overview of various subsampling methods, including Random sampling,

Farthest Point Subsampling, Uniform Point Sampling, Grid Subsampling, and Geo-

metric subsampling, and discusses their advantages and drawbacks in the context of

deep learning-based point cloud processing.

2.2.1 Random Subsampling

Random subsampling is a simple and computationally efficient technique for reducing

the size of point cloud datasets. The algorithm operates by randomly selecting a

subset of points from the original point cloud without replacement. The process is as

follows:

1. Determine the desired number of points in the subsampled point cloud.

2. Randomly select points from the original point cloud without replacement until

the desired number of points is reached.

Random subsampling works well when the original point cloud has a uniformly

distributed density of points. In such cases, the randomly selected points are likely to
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capture the overall structure of the tree point cloud effectively. However, when point

density has high variance throughout the tree due to occlusions, random subsampling

may fail to capture the tree’s structure accurately. In areas with high point density,

random subsampling may still select a disproportionately large number of points,

while sparser regions may be underrepresented in the subsampled point cloud. This

can lead to information loss and compromise the quality of the subsequent analysis.

Despite these limitations, random subsampling remains attractive for its compu-

tational efficiency. The algorithm has a complexity of O(1), as it involves selecting

points from the point cloud without regard to their order or position in the cloud.

Each point in the cloud has an equal probability of being selected, and the number of

points selected does not depend on the size of the cloud. However, when dealing with

tree point clouds with varying point densities, alternative subsampling techniques

or density-aware adaptations of the random subsampling algorithm may need to be

considered to ensure accurate representation and analysis of the tree structure.

2.2.2 Farthest Point Subsampling (FPS) [10]

Farthest Point Subsampling (FPS) is a technique used for reducing the size of point

cloud datasets while aiming to preserve the overall geometric structure. The algorithm

works as follows:

1. Initialize the subsampled point cloud by selecting an arbitrary point from the

original point cloud.

2. Calculate the Euclidean distances between the selected point and all remaining

points in the original point cloud.

3. Select the point that is farthest from the previously selected point and add it

to the subsampled point cloud.
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4. Repeat steps 2 and 3 until the desired number of points in the subsampled point

cloud is reached.

The FPS algorithm tends to select points that are farther apart, which attempts

to query a more uniform distribution of points. This can be particularly useful in

certain contexts but fails to capture the geometric structure of tree point clouds. FPS

exhibits a surface bias, which means that it tends to select points on the surface of

the tree rather than within the internal branchy substructure. This occurs because

the points on the tree’s surface have larger distances between them compared to the

points within the branchy substructure. The surface bias may limit the effectiveness

of FPS when applied to tree point cloud datasets, especially in applications that

require accurate representation and analysis of the internal branch structure. To

overcome this limitation, alternative subsampling techniques or modifications to the

FPS algorithm should be considered.

The computational complexity of the FPS algorithm is primarily determined by

the number of distance calculations and iterations required to construct the subsam-

pled point cloud. For a point cloud with n points and a desired subsample size of

k, the algorithm requires O(nk) distance calculations. This can be computationally

expensive, particularly for large datasets.

Several optimizations and approximations can be applied to the FPS algorithm to

reduce its computational complexity. For example, the use of spatial data structures,

such as k-d trees or octrees, can speed up the nearest neighbor search, potentially

reducing the complexity to O(n log k). Additionally, approximate FPS techniques can

be employed to trade off some accuracy in point selection for reduced computation

time.
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2.2.3 Uniform Point Sampling

Uniform Point Sampling is a technique used for reducing the size of point cloud

datasets while attempting to maintain a uniform distribution of points across the

entire point cloud. This method aims to achieve better coverage of the geometric

structure and capture more representative information about the tree point clouds.

The algorithm works as follows:

1. Define a grid with a fixed cell size, which covers the extent of the input point

cloud.

2. Assign each point in the input point cloud to its corresponding grid cell.

3. For each non-empty grid cell, select one point (either randomly or based on a

specific criterion) and add it to the subsampled point cloud.

Uniform Point Sampling can effectively create a more evenly distributed subsam-

pled point cloud, which is beneficial for tree point cloud analysis. The method helps

to retain points from different regions of the tree, including branches, trunks, and

leaves, by ensuring that points are sampled uniformly across the entire spatial extent

of the tree point cloud.

The computational complexity of the Uniform Point Sampling algorithm primar-

ily depends on the number of points in the input point cloud, the size of the grid

cells, and the spatial distribution of the points. The complexity can be reduced by

employing efficient data structures, such as spatial hashing or octrees, which enable

faster point-to-cell assignment and cell traversal. One potential limitation of Uniform

Point Sampling is the selection of the grid cell size, which can have a significant im-

pact on the quality of the subsampled point cloud. If the grid cell size is too large,

important geometric features may be missed, while if it is too small, the subsampled
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point cloud may still contain a large number of points, reducing the efficiency of the

subsampling process.

2.2.4 Geometric Point Sampling [11]

Geometric Point Sampling is a subsampling technique that aims to reduce the size of

point cloud datasets while preserving the local geometric structure and characteristics

of the original data. This method is based on the PointCleanNet algorithm proposed

by Rakotosaona et al. [11]. The algorithm works as follows:

1. Estimate the local geometric structure for each point in the point cloud by

calculating the local surface variation (LSV), which is a measure of the surface

curvature.

2. Assign a sampling probability to each point based on its LSV, with higher

probabilities assigned to points with higher LSV values.

3. Sample points from the input point cloud according to their assigned probabil-

ities, resulting in a subsampled point cloud that emphasizes geometric features

with higher curvature.

Geometric Point Sampling has the advantage of capturing and preserving the fine

geometric details in tree point clouds, which is particularly useful for deep learning ap-

plications that require accurate representations of branch, trunk, and leaf structures.

By emphasizing points with higher curvature, this method ensures that the critical

geometric features of the tree point cloud are retained in the subsampled dataset.

The computational complexity of the Geometric Point Sampling algorithm is pri-

marily determined by the calculation of the LSV values for each point in the input

point cloud and the subsequent sampling step. One potential limitation of Geometric
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Point Sampling is that the LSV values might be sensitive to noise in the input point

cloud data. Because of this, additional denoising preprocessing steps need to be taken

to assure noisy points, or outliers, are removed before subsampling.

2.3 Unsupervised Clustering and Community Detec-

tion

Unsupervised clustering and community detection techniques are widely employed

to analyze complex data structures, such as point clouds, by grouping similar data

points together based on their features or relationships. These methods help reveal

underlying patterns in the data, facilitating more effective analysis and interpreta-

tion. This section provides an in-depth review of traditional unsupervised clustering

approaches and popular community detection techniques that can be adapted for

clustering partially segmented point clouds.

2.3.1 Traditional Unsupervised Clustering Approaches

Traditional unsupervised clustering algorithms typically focus on grouping data points

based on their spatial proximity or similarity in feature space. Some notable clustering

methods include:

• Voronoi clustering: This method partitions the data space into regions (called

Voronoi cells) around the input data points, where each region contains all the

points closer to the corresponding data point than any other point. Voronoi

clustering is often used for nearest-neighbor search and mesh generation in var-

ious applications, such as computer graphics and computational geometry.
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• K-means clustering: A widely used partitioning-based clustering algorithm

that iteratively assigns data points to K centroids based on the Euclidean dis-

tance between the data points and the centroids. The algorithm seeks to mini-

mize the sum of squared distances between the data points and their assigned

centroids.

• DBSCAN [28]: A density-based clustering algorithm that groups points with

high spatial density together, while treating points in low-density regions as

noise. DBSCAN forms clusters by expanding dense regions, as it connects

points that are close to each other according to a distance metric and a density

threshold.

• Random Walks and Efficient Graph-based Segmentation (EGS) [29]:

This approach employs graph representations to segment the point cloud data.

In EGS, each data point is considered a node in the graph, and edges are defined

based on the similarity between the nodes. The algorithm then constructs a

minimum spanning tree of the graph and merges nodes based on edge weights,

resulting in the final segmentation.

2.3.2 Community Detection Techniques

Community detection algorithms aim to identify densely connected groups of nodes

within a network or graph, where the nodes inside a community have more connections

with each other than with nodes outside the community. These techniques have been

extensively studied in various domains and can be adapted for clustering partially

segmented point clouds. Some widely used community detection methods include:

• Louvain algorithm [30]: This algorithm iteratively optimizes the modularity

score of the network to determine communities. The algorithm initially assigns
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each node to its own community and then iteratively merges communities to

maximize the modularity gain until no further improvement is possible.

• Infomap [31]: A flow-based algorithm that minimizes the description length

of a random walk on the network. The algorithm encodes the random walk as

a hierarchical map, with the objective of finding the optimal partitioning of the

network that results in the shortest possible description length.

• Spectral algorithm [32]: Spectral algorithms employ the eigenvectors of

the graph Laplacian matrix to efficiently identify optimal partitioning within a

network. By capitalizing on the inherent properties of the Laplacian matrix,

these algorithms effectively uncover information about the community structure

within the network. However, calculating the eigenvectors of the Laplacian does

not scale linearly, which can limit the algorithm’s applicability to large graphs,

as the computational complexity increases significantly for larger datasets. To

address this challenge, the Lanczos method [33] can be utilized for computing

eigenvectors more efficiently, as it is an iterative method specifically designed

for symmetric matrices like the graph Laplacian. This approach can potentially

improve the scalability and efficiency of the spectral algorithm for large graphs.

• FUMO algorithm [34]: FUMO (Fast Unfolding of Modular Organization)

is an extension of the Louvain algorithm that offers increased efficiency and is

able to handle larger networks. The algorithm operates similarly to the Louvain

method, with iterative optimization of modularity, but incorporates additional

refinements to improve the partitioning process and convergence speed.

FUMO and other community detection techniques have been applied across a

wide range of applications, including: community detection in social networks [35]

gene co-expression networks [36], and brain functional networks [37].
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The motivation behind exploring these clustering methods is to investigate their

effectiveness in propagating partial labels throughout the tree point cloud. By lever-

aging the partially labeled point clouds generated by deep learning-based models,

these techniques can be used to propagate labels to neighboring points through mod-

ularity maximization or graph-based techniques, potentially leading to improvements

in both the coverage, accuracy, and efficiency of tree point cloud segmentation.

2.4 Label Propagation for Partially Labeled Data

Label propagation algorithms provide a powerful approach to clustering and classifi-

cation in partially labeled data. These methods are particularly useful in scenarios

where obtaining complete ground truth labels is difficult or expensive. By exploiting

the available labeled data, label propagation algorithms can effectively spread labels

throughout the dataset, resulting in the labeling of previously unlabeled points. This

section presents an in-depth review of various label propagation algorithms and their

potential applications in labeling partially segmented point clouds.

2.4.1 Overview of Label Propagation Algorithms

Label propagation algorithms typically operate on graphs, where nodes represent

data points, and edges capture the relationships or similarities between these points.

The general idea is to propagate the labels from labeled nodes to their neighbors,

iteratively updating the labels until convergence is achieved or a stopping criterion is

met. Some notable label propagation algorithms include:

• Label Propagation Algorithm (LPA) [38]: LPA is a simple and efficient

method for detecting communities in large networks. The algorithm assigns

an initial label to each node and updates the labels by adopting the majority



27

label in its neighborhood during each iteration. The process is repeated until

convergence or a maximum number of iterations is reached.

• Semi-Synchronous Label Propagation Algorithm (SSLP) [39]: SSLP is

an extension of LPA that introduces a semi-synchronous update mechanism to

improve the stability and performance of the original method. In SSLP, nodes

are updated in a random order, and a delayed update strategy is employed

to prevent oscillations between label assignments. SSLP has been shown to

outperform other popular community detection algorithms in terms of accuracy

and efficiency, particularly in the context of social networks.

• Fluid Communities [40]: Fluid Communities is a highly scalable and com-

petitive community detection algorithm inspired by fluid dynamics. The al-

gorithm models each community as a fluid that flows through the network,

occupying nodes based on their capacity and the fluid’s density. The method

iteratively updates node assignments until a stable state is reached, resulting

in the final community structure. Fluid Communities has demonstrated strong

performance in large-scale networks, offering a promising solution for handling

massive datasets.

• Localized Label Propagation (LLP) [41]: LLP is a label propagation al-

gorithm designed for semi-supervised learning in large-scale, high-dimensional

data. The method employs a localized propagation strategy, focusing on prop-

agating labels only within local neighborhoods. This approach reduces the

computational complexity of the algorithm while maintaining high classifica-

tion accuracy, making it well-suited for processing large datasets.
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2.4.2 Potential Applications to Partially Segmented Point Clouds

Label propagation algorithms hold promise for labeling partially segmented point

clouds by leveraging the available labeled points as seeds and propagating the labels

to neighboring unlabeled points to generate clusters. The iterative nature of these al-

gorithms allows them to gradually refine the label assignments, ultimately converging

to a stable labeling configuration.

The application of label propagation techniques to tree point cloud segmenta-

tion could potentially benefit from the incorporation of domain-specific knowledge or

additional feature information to guide the propagation process. For example, incor-

porating spatial or geometric features of the tree point clouds can help improve the

accuracy of label assignments by ensuring that labels are propagated along regions

with similar characteristics. Additionally, the use of adaptive weighting schemes or

dynamic update mechanisms can further enhance the performance of these methods

by accounting for variations in point cloud density or distribution.

By adapting and extending label propagation algorithms to the context of tree

point cloud segmentation, this thesis aims to explore the effectiveness of these methods

in addressing the challenges posed by partially labeled data. Specifically, the aim is

to evaluate label propagation methods that can effectively utilize the partially labeled

point clouds produced by deep learning models to propagate labels to the remaining

unlabeled points. By doing so, this approach seeks to address the limitations of deep

learning models related to their fixed input size and the need for heavy subsampling,

which can result in loss of information and poorer segmentation outcomes.
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2.5 Challenges and Opportunities

The application of deep learning-based point cloud segmentation, unsupervised clus-

tering, community detection techniques, and label propagation algorithms to the

analysis of tree point clouds presents several challenges and opportunities. This sec-

tion discusses these challenges and opportunities in detail and highlights potential

avenues for future research and development.

2.5.1 Challenges in Point Cloud Segmentation

1. Variability in tree point clouds: Tree point clouds can exhibit significant

variations in terms of density, scale, and complexity due to a variety of factors,

including the age of the tree, its health, occlusions in scans, different tree species,

and the use of different scanning devices. Trees at different growth stages, for

instance, may have distinct structural and geometrical characteristics, while the

health of a tree can affect its overall appearance and shape. Occlusions in scans,

often resulting from the presence of leaves, branches, or other obstacles, can cre-

ate gaps or inconsistencies in the point cloud data. Furthermore, different tree

species may possess unique features and branching patterns, adding to the vari-

ability of the point cloud topology. Additionally, the use of different scanning

devices with varying resolution and accuracy can introduce further variations in

the data. These factors pose challenges for the design and evaluation of segmen-

tation and clustering algorithms, as the methods must be adaptable to different

data characteristics while maintaining accurate and robust performance.

2. Noise and outliers: Point cloud data may contain noise and outliers, which

can arise from measurement errors, environmental factors, or other anomalies.

These issues can negatively impact the performance of segmentation algorithms
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and may require additional preprocessing steps to mitigate their effects. Devel-

oping robust approaches that are less sensitive to noise and can better handle

irregularities in the data will be essential for achieving accurate and reliable

segmentation results.

3. Large-scale point clouds: Forestry applications often involve large-scale

datasets containing millions of points, which can be computationally demanding

for segmentation and clustering techniques. Managing such large datasets can

be computationally expensive and may necessitate the use of subsampling or

other techniques to reduce the data size for processing. However, these methods

may lead to a loss of information and reduced segmentation accuracy. Develop-

ing efficient algorithms capable of handling these large-scale datasets is a critical

challenge in this context.

4. Limited labeled data: Obtaining labeled data for tree point clouds can be

time-consuming, labor-intensive, and monetarily expensive. As a result, there is

a scarcity of standardized, high-quality, and open-source labeled data available

for training and evaluation of segmentation algorithms. While some datasets

might exist, they are often not widely used in the literature, which poses chal-

lenges in terms of benchmarking and comparing different methods. Further-

more, the limited availability of labeled data for specific tree species of interest

can make it difficult to develop and assess algorithms tailored to particular

species or ecosystems. This limitation can hinder the development, assessment,

and generalizability of new methods in tree point cloud segmentation.

5. Partial labels: Deep learning-based point cloud segmentation models often

generate partially labeled point clouds due to their fixed input size and sub-

sampling requirements. Leveraging these partial labels effectively for clustering
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and label propagation presents a challenge, as the algorithms must balance

between utilizing the available labeled data and accounting for the potential

inaccuracies in the labels.

6. Integration of diverse techniques: Achieving significant label-coverage,

highly accurate, and efficient tree point cloud analysis requires the effective

integration of various methods, such as deep learning-based segmentation, unsu-

pervised clustering, community detection, and label propagation. Determining

the optimal combination and order in which to apply these techniques presents a

significant challenge. This task demands a comprehensive understanding of the

strengths and weaknesses of each method to identify the most suitable approach

for analyzing tree point clouds.

2.5.2 Opportunities for Improvement

1. Transfer learning and domain adaptation: Developing methods to trans-

fer knowledge from related domains or pre-trained models can help overcome

the limited availability of labeled data. In this thesis, a synthetically gener-

ated dataset of tree point clouds will be heavily utilized to conduct most of

the research. The goal is to train a model on synthetic trees and then use

it to partially label real trees, which can then be fed back into the model for

further training and adaptation. This process enables the model to transfer

its knowledge from the synthetic tree domain to the real tree domain, effec-

tively bridging the gap between the two. By leveraging transfer learning and

domain adaptation techniques, it may be possible to improve the performance

of segmentation algorithms on tree point clouds with limited labeled data, while

simultaneously addressing the challenges associated with dataset variability and

tree species-specific requirements. This approach offers the potential to acceler-
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ate the development and deployment of effective tree point cloud segmentation

methods, ultimately benefiting forestry applications and research.

2. Efficient processing of large-scale datasets: There is a need to develop

and improve algorithms for tree point cloud analysis that can efficiently process

large-scale forestry datasets. Addressing this need is vital, as existing methods

may demonstrate high performance on subsampled point clouds but struggle

to scale when applied to extensive datasets, such as entire forests. Developing

scalable and efficient algorithms will benefit various applications, such as forest

inventory, tree species identification, and biomass estimation.

3. Adaptable methods: Designing segmentation and clustering techniques that

are adaptable to the variations in tree point cloud data can lead to more robust

and accurate solutions. These methods could be applied to different tree species,

point cloud densities, and other variations encountered in real-world forestry

applications.

By addressing these challenges and capitalizing on the opportunities, this thesis

aims to advance the state of the art in tree point cloud analysis and provide prac-

tical solutions for forestry applications. Through the development and evaluation of

innovative algorithms and the integration of diverse techniques, the work presented

here seeks to contribute to a deeper understanding of the strengths and limitations

of various methods and their potential applications in the context of tree point cloud

segmentation and analysis.
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Chapter 3

Methodology and Technical Details

3.1 Overview of the Proposed Framework

The proposed framework seeks to address the challenges of tree point cloud segmen-

tation by focusing on segmenting tree components, specifically the trunk, branches,

and leaves, rather than identifying individual trees within a cloud. The framework

combines state-of-the-art techniques from both supervised and unsupervised learn-

ing in a multi-stage methodology, which includes synthetic dataset generation, data

preprocessing and subsampling, deep learning-based segmentation, and unsupervised

clustering with community detection.

Initially, a synthetic tree point cloud dataset is generated using a combination of

SpeedTree, L-Systems [42], and re-optimization techniques. SpeedTree is a powerful

vegetation modeling and rendering software that enables the creation of realistic trees,

while L-Systems, or Lindenmayer Systems, are formal grammars used for modeling the

growth processes of plant development. This dataset serves as the basis for training

and evaluating the deep learning models.
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The raw tree point cloud data then undergo preprocessing and subsampling to

facilitate efficient and accurate segmentation. This process is outlined at a high level

in Fig 3.1.

Figure 3.1: Pipeline showing the steps to transform the original SpeedTree object
into a preprocessed subsampled input ready for model inference. The Deep Learning
Model block separately represents each of the five investigated models for this part-
segmentation task. Each model uses categorical cross-entropy as the loss function
responsible for driving the models to achieve optimal performance.

The next stage involves segmentation of tree components using deep learning

models, with a focus on selecting the most appropriate architecture and tuning hy-

perparameters to maximize performance. Following the segmentation, unsupervised

clustering and community detection techniques are applied to further refine the re-

sults and propagate the labels obtained from the deep learning model to a larger

portion of the point cloud.

By leveraging the strengths of both supervised and unsupervised learning, the

proposed framework aims to deliver an effective and versatile solution for point cloud

tree component segmentation tasks. This approach addresses the research objectives

of accurately segmenting tree components, evaluating the value of synthetic trees for
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calibrating and evaluating deep learning models, and identifying the most effective

parts of the pipeline for tree component segmentation.

3.2 Synthetic Tree Point Cloud Dataset Generation

Pipeline

Gathering real-world labeled point cloud data for tree segmentation is a challenging

task, as it is time-consuming, costly, and requires expert-level domain knowledge [43].

Moreover, trees of the same species can exhibit a wide variety of structural forms,

adding to the complexity of obtaining a comprehensive and representative dataset.

Due to these factors, a large publicly available dataset for researchers to collaborate

with is currently lacking. In light of these challenges, this thesis explores the use of

synthetically created point cloud data to bridge this data-shortage gap.

In this study, a synthetic tree point cloud dataset is generated, which aims to

address the aforementioned limitations while providing a reliable foundation for the

proposed framework.

3.2.1 SpeedTree: A High-Fidelity Tree Modeling Solution

SpeedTree is a software solution that specializes in generating high-quality and real-

istic tree models [44]. SpeedTree’s unique approach to tree modeling allows users to

generate a wide variety of tree species with intricate variations in morphology and

topology, making it an ideal choice for generating synthetic datasets.

At the core of SpeedTree’s modeling capabilities are L-Systems, a formalism for

modeling complex structures based on stochastic, parametrized, context-sensitive

grammars. L-Systems were originally developed in 1968 by Aristid Lindenmayer as a
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way to mathematically model the growth processes of plant development [42]. They

have since been heavily extended, and are currently used in the film and video game

industry to procedurally generate realistic looking synthetic trees [45, 46]. Each syn-

thetic tree is built using a parametric set of recursive production rules that describe

how to build a tree for a given number of steps. By changing the parameter values

of a given L-System, trees that have significantly different visual characteristics and

structural features can be produced.

3.2.2 Leveraging the power of L-Systems

Data was obtained using the SpeedTree Model Library Store [47]. From a list of

seven target species common to the forests of the Sierra Nevada Mountains (quaking

aspen, Douglas fir, western white pine, black oak, western juniper, ponderosa pine,

and Jeffrey pine), high quality models existed for five of the seven. At present, there

were not any sufficiently high quality realistic looking models for ponderosa pine and

Jeffrey pine, which is why they were omitted from this dataset. These five dominant

species were selected based on how well each resemble their real-life counterparts.

This design choice was made in order for model generalizability and transferability

to datasets containing LIDaR scans of real trees. Each species model contained the

L-System parameterization values needed to stochastically generate other, synthetic,

look-a-like copies of the original ‘seed’ tree. Samples of stochastic generations can be

visualized in Fig 3.2. This study’s results and discussion utilize models only trained

using synthetic trees produced from the quaking aspen L-System ’seed.’
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Figure 3.2: Visualization of point clouds generated for quaking aspen (top), Douglas
fir (middle), and white pine (bottom). Each model is generated using the same
species’ parametric L-System seed. Adding stochastic noise to these L-System seeds
helps create structurally different trees. The color of points in the point cloud (blue:
trunk / yellow: branch / pink: leaf) designates point-wise labels.

3.2.3 Re-Optimization for Point Cloud Representation

To prepare these models, whose polygon counts are optimized for use in movies and

video games, they first have to be re-optimized to be useful in the context of a point

cloud dataset. Each vertex in an exported SpeedTree object becomes a point in the

point cloud sample, so it is important to have a realistic distribution of vertex/points

similar to a LIDaR scan. SpeedTree Generators can be thought of as the parametric
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Figure 3.3: A synthetic white pine model without point cloud re-optimization per-
formed (left) and with re-optimization performed (right). Without re-optimization,
the point cloud appears visually sparse and contains only 11,483 points. By applying
reoptimization it contains 283,649 points.

rules of an L-System [42] that determine how Nodes are placed and what each Node

looks like. Generators contain hundreds of unique parameters. Each contributes to

the overall structure of the tree. Editing a combination of these parameter values

can significantly change a tree’s topology; however, certain parameters only affect the

computational fidelity of the underlying polygon mesh. The reoptimization process

aims at increasing both the raw number and density of vertices along Nodes in the

tree’s polygon mesh. Increasing the length and radial absolute values of a Generator’s

segment will increase vertex count and density along Nodes produced by the Gener-

ator. Appropriate segment lengths and radial values need to be empirically found for

every SpeedTree model.

There is no one-size-fits-all solution for determining the appropriate segment

lengths and radial values, as the optimal values vary depending on the tree species
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and specific model being used. It is important to note that changing these values

does not alter the phenotypic structure of the selected tree species; instead, it only

increases the polygon count granularity and vertex count to provide a more accurate

point cloud representation. To find the best values for each tree model, the segment

lengths and radial values were systematically varied while closely examining the re-

sulting point clouds. The optimal values were determined based on the ability to

generate point clouds that closely resemble realistic LIDAR scans of the tree species

in question, while also ensuring that the overall computational complexity remained

manageable. Through this empirical process, adequate segment lengths and radial

values that resulted in high-quality point cloud representations for each of the selected

tree species were found.

Every Generator also has an Optimization parameter, whose value should also be

set to the minimum (zero optimization). Meshes in the tree model, which are often

used for leaves, fronds, and dead branches, should have reoptimization performed by

adding additional anchor points to the mesh, which function similarly to vertices in

the exported model. A tree model having undergone this process is illustrated in

Fig.3.3, where its raw point count has been increased by around 25x. Each species of

tree will manually undergo this reoptimization process, as each separate SpeedTree

model may have more or less Generators that need to be individually reoptimized.

3.2.4 Role of Synthetic Data in Deep Learning

Having access to large and diverse datasets is critical for training robust models.

Synthetic data generated from SpeedTree can be used to supplement real-world

datasets or provide a controlled environment for testing and validating segmenta-

tion algorithms. Furthermore, SpeedTree’s custom exporter exports the complete

mesh-topology of a given tree as a hierarchical XML document. The schema of the
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document similarly represents the hierarchical structure of the Generator topology of

the original tree. This means that vertices from the same Node are stored together,

allowing for groups of points to maintain their original label throughout the expor-

tation process. By strategically self-labeling Generators in the original SpeedTree

Model, it is possible to export a point cloud of ground-truth labels with Node-wise

granularity.

After the re-optimization process outlined earlier, 1000 stochastic generations were

exported for each species composing a total of 5000 unique tree point clouds. Each

tree point cloud also contains a class label for every point as belonging to a trunk,

branch, or leaf Node. This dataset then underwent an 80%/10%/10% split on a

per-species basis for training, validation, and testing.

3.3 Data Preprocessing and Subsampling

Preparing the synthetic tree point clouds for deep learning models involves a series

of preprocessing steps and a well-planned subsampling technique. This section de-

scribes the preprocessing steps applied to the tree point clouds and the selection and

implementation of the subsampling technique.

3.3.1 Preprocessing Steps for Tree Point Clouds

The first step in preprocessing the tree point clouds involves normalizing the point

clouds. Normalization is crucial in the context of deep learning because it ensures that

different features have the same scale, allowing the model to converge more quickly

and potentially achieve better performance. To normalize the input point clouds, two

primary steps are taken. First, the points are zero-mean centered along the origin,

ensuring that the point cloud is centered around the coordinate system’s origin. This
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step helps the model focus on the geometric structure of the point cloud without

being influenced by its position in the coordinate system.

Second, the tree point clouds are normalized to fit within a unit circle. By doing

this, a consistent scale is maintained across all point clouds, allowing the model to

better learn the underlying patterns and structures present in the data. This step

is particularly important when dealing with point clouds from various tree species,

which may have varied sizes and shapes.

Additionally, z-score thresholding is applied to remove outlier points, which might

be present in real-world scans due to factors such as birds or noise. This step helps

to eliminate any potentially detrimental effects these outlier points may have on the

performance of the deep learning models. By removing outliers, the model can focus

on the most relevant and representative points in the point cloud, improving its ability

to learn and generalize.

3.3.2 Selection and Implementation of Subsampling Technique

The choice of subsampling technique plays a crucial role in the deep learning model’s

performance. During training, the ground truth labels are utilized to perform class-

weighted random subsampling to 2,048 points. Downsampling point clouds achieves a

two-fold goal. Firstly, downsampling performs data augmentation in a way that helps

to enrich the data diversity that the model receives as input, allowing the same original

point cloud to be reused multiple times during the training process without the model

memorizing specific point layouts. Secondly, while input size-invariant deep learning

models for point clouds exist, it has been shown that performing a downsampling to

2,048 points increases model performance on segmentation and classification-based

tasks [48] [9]. Random downsampling was chosen because it makes no assumptions

about the input point cloud space and is relatively fast to perform.
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After downsampling, the point clouds then have a random rotation applied as a

data augmentation step in order to help the model further generalize to real-life trees

that are not perfectly level with the ground. Lastly, each point cloud is normalized to

fit within a Unit-Sphere to help constrain the feature-space to lie within a common

boundary.

During the testing phase, when the ground truth labels are not available, and to

better assess the model’s performance on real trees, a uniform grid subsampling tech-

nique is employed. This technique subsamples the test point clouds to 2,048 points,

helping to address the issue of occlusion and the non-uniform distribution of point

density. By using a consistent subsampling technique during inference, the model’s

performance can be better evaluated in real-world scenarios, where the distribution

of points and the presence of occlusions can be highly variant.

3.4 Segmentation with Deep Learning

Segmentation of tree point clouds plays a crucial role in understanding tree structure

and composition. This section discusses the choice of deep learning architectures,

their training process, and hyperparameter tuning for a 3-class part-segmentation

task on isolated tree point clouds.

3.4.1 Choice of Deep Learning Architectures

A total of five deep learning models were investigated and evaluated for their per-

formance in part-segmentation tasks with three classes: trunk, branch, and leaf.

The chosen point cloud part-segmentation model architectures include PointNet [1],

PointNet++ [2], ShellNet [49], Dynamic Graph CNN (DGCNN) [50], and Point-Voxel

Transformer (PVT) [9]. Each model’s architecture is illustrated at a high level in Fig.
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3.4.

Figure 3.4: High-level visualization of the network architecture for each of the deep
learning models utilized for tree part-segmentation. Each model in their original
paper typically has a dual branching structure to perform both classification and
segmentation. Only the segmentation branch is displayed here for both relevance and
simplicity.
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These specific models were selected based on several criteria: their performance on

part-segmentation tasks using popular point cloud datasets such as ModelNet40 [51]

and ShapeNet [26], their popularity and acceptability within the point cloud deep

learning community as both baselines and cutting-edge architectures, and to compare

how different methods, such as hierarchical, voxel, graph, and hybrid, might be better

suited for the domain of tree topology.

3.4.2 Network Training and Hyperparameter Tuning

Each model used the same data splits for training, validation, and testing, ensuring

a reproducible comparative analysis of their performance. The loss of each model

was calculated using class-weighted categorical cross-entropy to account for any im-

balanced distribution of class labels. Model performance is quantified using the Dice

coefficient between the predictions and ground truth, while part-average Intersection-

over-Union (pIoU) is included to facilitate comparison with other datasets.

After preprocessing, each model takes only the geometric coordinates (x, y, z ) of

subsampled points as inputs. Hyperparameters for each model were optimized using

a Bayesian search based on model performance, ensuring a satisfactory configuration

for each architecture.

All deep learning models were implemented using the GPU version of PyTorch on

a hardware configuration consisting of an Intel® Xeon® W-2295 18 x 3.0GHz proces-

sor, 512GB RAM, and an NVIDIA Quadro P2200 (5GB) graphics card. This powerful

setup enabled efficient training and evaluation of the chosen deep learning architec-

tures, allowing for a comprehensive and accurate assessment of their performance in

the tree point cloud segmentation task.
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3.5 Unsupervised Clustering and Community Detec-

tion

In this section, various community detection techniques are outlined for their utility

in augmenting the results of the deep learning segmentation model. This section also

covers graph construction methods and how their potential for label propagation will

be evaluated.

3.5.1 Graph Construction Methods

To analyze various community detection techniques for their effectiveness in label

propagation, it is necessary to construct a graph from the point cloud. Two graph

construction methods were considered in this study:

K-Nearest Neighbors (KNN)

The first method involves connecting a node to its K closest neighbors, where a low

value of K is chosen to ensure local connectivity. In this study, K=10 was used.

This approach is simple and provides a connected graph, which is essential for several

community detection techniques.

Alpha Shapes Surface Reconstruction

The second method utilizes Alpha Shapes to approximate a mesh for the tree point

cloud, as shown in Figure 3.5. Alpha Shapes is a surface reconstruction technique that

uses a parameter alpha to determine the coarseness of the surface reconstruction. It

does not guarantee a single connected-component graph, which is necessary for some

community detection techniques. If more than one graph component is created, they
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Figure 3.5: Alpha-Shapes mesh generation for a tree point cloud with increasing alpha
values (α = 0.005, α = 0.01, α = 0.03, α = 0.05, α = 0.1).

need to be stitched together using the closest neighbors between components.

3.5.2 Limitations of Other Surface Reconstruction Techniques

Several surface reconstruction techniques have been proposed to generate surface

models from point cloud data, such as Poisson Surface Reconstruction (PSR) [52],

Ball Pivoting Algorithm (BPA) [53], and Marching Cubes (MC) [54]. However, these

methods may not be suitable for reconstructing tree surfaces for various reasons,

such as reliance on priors, normal vector information, or their inability to handle

complex and concave shapes. In contrast, KNN connectivity inference and Alpha

Shapes Surface Reconstruction [55] offer more flexible and adaptable solutions for

constructing graphs from point clouds, making them more suitable for tree surface

reconstruction tasks.
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3.5.3 Community Detection Techniques and Label Propaga-

tion

Label propagation within clusters is a process of assigning labels to a set of unlabeled

data points within a cluster based on a small set of labeled data points belonging to

the same cluster. The goal in this study is to use this approach to label a point cloud

of a tree that has partially labeled data available.

Identifying Clusters

The first step is to identify clusters of points within the tree point cloud using com-

munity detection techniques. These techniques group nodes with similar attributes

or connections into clusters.

Proposed K-Neighbor-Nurtured-Garden (KNNG) Algorithm

The K-Neighbor-Nurtured-Garden (KNNG) algorithm is a label propagation algo-

rithm designed for labeling nodes in an unstructured point cloud without the need

for a pre-built graph structure. The algorithm comprises two main phases: a "seeds"

creation pass and a "seeds" transformation pass. The steps involved in these phases

are depicted in Figure 3.6.

In the first phase, the algorithm identifies the K nearest "dirt" nodes to each

"flower" using an Annoy index for accelerated nearest neighbor search. The "dirt"

nodes are then assigned the same label as the "flower", transforming them into

"seeds". In the second phase, the "seeds" are converted into new "flowers", which par-

ticipate in the subsequent iteration of the labeling process. The algorithm continues

running until no "dirt" nodes or "flowers" are left.

The following is an outline of the KNNG algorithm’s implementation:
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Figure 3.6: Four time steps of the K-Neighbor-Nurtured-Garden (KNNG) algorithm.

Algorithm 1 K-Neighbor-Nurtured-Garden Algorithm
1: function K-Nearest-Nurtured-Garden(G,K)
2: Initialize an Annoy index for fast nearest neighbor search.
3: Get partially labeled nodes and assign them as "flowers" F .
4: while there are "dirt" nodes D or "flowers" F remaining in G do
5: for each "flower" f ∈ F do
6: Find the K closest "dirt" nodes d ∈ D within the z-score threshold.
7: Assign f ’s label to the "dirt" nodes, turning them into new "seeds" S.
8: end for
9: Transform the "seeds" S into new "flowers" F ′ for the next iteration.

10: Update the set of "dead" nodes X to include any "flowers" that did not
generate new "seeds" in the previous iteration.

11: Remove "dead" nodes X from G.
12: end while
13: return the list of nodes with labels assigned by the KNNG algorithm.
14: end function

Algorithm 1 describes the K-Neighbor-Nurtured-Garden algorithm and is specif-

ically developed to efficiently propagate labels within an unstructured point cloud,
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making it more versatile and suitable for applications such as tree segmentation.

Unlike community detection techniques requiring a pre-built graph or network, the

KNNG algorithm operates directly on unstructured point clouds and makes no as-

sumptions about the input. This allows for greater flexibility in handling various

types of data, such as tree point clouds, where a pre-built graph may not exist or

may not accurately represent the structure of the point cloud.

Label Propagation Within Clusters

Once the clusters are identified, label propagation can be performed within each

cluster separately. Network clustering techniques such as FUMO, Spectral Lanc-

zos, AFC, Label Propagation, Async LPA, Recursive KNN, Voronoi Clustering, and

KNNG were chosen to propagate labels to the unlabeled points in the tree based on

their relevance to the problem and their effectiveness in related works. The perfor-

mance of these techniques in label propagation within clusters is evaluated in terms

of their accuracy and efficiency.

3.6 Evaluation of Techniques

The evaluation process for the proposed framework is designed to assess the perfor-

mance of both segmentation and unsupervised clustering techniques. This compre-

hensive evaluation will help identify the most effective methods for tree component

segmentation in point cloud data. The following subsections detail the evaluation

methodology for each aspect of the framework.
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3.6.1 Evaluating Segmentation Performance

To evaluate the performance of the deep learning models employed for tree compo-

nent segmentation, several metrics and considerations are employed. The validation

datasets are sampled and chosen randomly from the synthetic tree point cloud data.

For each tree class, 80% are allocated for training, 10% for validation, and 10% for

testing. This random sampling approach ensures that the datasets are representative

of the overall population and reduces the likelihood of sampling bias.

The performance of tree component segmentation is assessed using the following

metrics:

• Dice Coefficient (F1 Score): The F-score for each class label (trunk, branches,

and leaves) is calculated to measure the accuracy of the model in classifying each

component. The F-score is a harmonic mean of precision and recall, providing

a balanced metric for evaluating the effectiveness of the model in segmenting

tree components.

• Part Intersection over Union (Part IoU): Part IoU is used to evaluate

the performance of a given technique in segmenting individual parts of the tree

components, such as the trunk, branches, and leaves. It is calculated by dividing

the intersection of the predicted part segmentation and the ground truth part

segmentation by the union of the two segmentations. Higher Part IoU values

indicate better model performance in accurately segmenting individual parts of

the tree components.

• Inference Time (ms): Inference time refers to the time it takes for a trained

deep learning model to process a single input and generate a prediction. It is

an important consideration for evaluating a model’s performance in real-world

applications where fast predictions for scalability are necessary. Inference time



51

is typically measured in milliseconds (ms).

• Parameter Count (m): Parameter count refers to the number of trainable

parameters in a deep learning model. It is an important consideration for eval-

uating a model’s complexity and its ability to generalize to new data. The

parameter count is typically measured in millions (m).

These evaluation metrics, along with visual inspection of the segmented point

clouds, will provide a comprehensive understanding of the segmentation performance

of the deep learning models. The visual inspections are conducted on both synthetic

test-set trees and real Terrestrial Laser Scanning (TLS) scans of actual trees. Due to

the absence of ground truth labels for real tree scans, quantitative results cannot be

obtained for these samples. Therefore, visual inspection serves as the primary method

for evaluating model performance on real tree data, complementing the quantitative

assessments performed on synthetic test-set trees. This combined approach ensures

a thorough evaluation of the deep learning models across various data types.

3.6.2 Evaluating Unsupervised Clustering Performance

The evaluation of unsupervised clustering techniques focuses on assessing their ef-

fectiveness in refining the segmentation obtained from the PVT deep learning model

and the additional time they may require. The same data partitioning approach used

in the segmentation performance evaluation is employed here, ensuring consistency

across evaluations. Each unsupervised clustering technique, including community de-

tection strategies and the proposed k-Nearest Neighbor Graph (KNNG) algorithm,

is evaluated and compared to the baseline approach of having the model process the

entire point cloud at once.

The performance of unsupervised clustering techniques is assessed using the fol-
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lowing metrics:

• Label coverage: Label coverage measures the proportion of points in the point

cloud that have been assigned a class label. Higher label coverage indicates that

the technique is successful in propagating labels to a larger portion of the point

cloud.

• Dice Coefficient (F1 Score): To better assess the impact of unsupervised

clustering techniques when applied to the outputs of the segmentation model,

F-scores are recalculated after applying each clustering method. These new F-

scores enable a direct comparison between the original F-scores obtained from

the deep learning model outputs and the F-scores after incorporating the un-

supervised clustering methods. This comparison provides valuable insights into

the effectiveness of each unsupervised clustering technique in refining and im-

proving the initial segmentation results.

• Additional inference time (s): The extra time taken by the unsupervised

clustering techniques is recorded, as many of these methods may require a sig-

nificant amount of time to process the data. This metric is crucial for under-

standing the efficiency of each method, which is an essential factor in real-world

applications.

By evaluating the performance of the unsupervised clustering techniques using

these metrics, the study aims to identify the most effective method for refining and

extending the initial segmentation produced by the deep learning models. The sub-

sequent sections will present the results of this evaluation, shedding light on the

strengths and weaknesses of each technique and informing the selection of the opti-

mal approach for the task.
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Chapter 4

Experimental Results

4.1 Part Segmentation Results and Discussion

Quantitative assessment of part-segmentation is summarized in Table 4.1 and visu-

alized in Fig 4.1. Each model’s parameters were saved upon validation convergence,

which was gauged when the loss on the validation set stopped increasing and became

stable after three epochs. In this study, a high testing pIoU (average unweighted

class accuracy), high Dice coefficient (weighted class accuracy), and low inference

time (model scalability) were all considered as the criteria of a good classifier.

PVT was able to significantly outperform every other model in all three class

domains. This is because of its hybrid-based PVT blocks that simultaneously learn

from varying scales of the raw pointcloud and voxelized representations. It aims

to learn both local features in the voxel-domain and global features in the point-

domain. Additionally, it employs a UNET-like architecture [56], which is notable for

their impressive performance in 2D segmentation tasks.

In addition, comparing model pIoU performance between this task and ShapeNet



54

Figure 4.1: Visualization of performance using radar charts for each part segmentation
task: (a) Trunk, (b) Branch, and (c) Leaf. Each chart compares the Dice Coefficient,
Precision, Specificity, and Recall for each deep learning model. Values are normalized
such that the minimum value lies at the center ring of the chart and the max value
lies on the outermost ring. Each ring is labeled with its corresponding value.
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Table 4.1: Statistical summary of the five tree part-segmentation models showing
averaged performance metrics when evaluated on the test-set. pIoU means part-
average Intersection-over-Union.

Trunk Branch Leaf
PointNet Dice Coefficient 0.499 0.627 0.855

Precision 0.336 0.719 0.926
Recall 0.973 0.556 0.794
Specificity 0.814 0.834 0.942
pIoU 0.773
Inference (ms) 206
Parameters (m) 3.536

PointNet++ Dice Coefficient 0.565 0.715 0.868
Precision 0.412 0.773 0.912
Recall 0.900 0.665 0.828
Specificity 0.875 0.851 0.926
pIoU 0.800
Inference (ms) 1113
Parameters (m) 0.966

ShellNet Dice Coefficient 0.592 0.740 0.878
Precision 0.459 0.808 0.883
Recall 0.835 0.682 0.875
Specificity 0.904 0.876 0.893
pIoU 0.796
Inference (ms) 385
Parameters (m) 0.775

DGCNN Dice Coefficient 0.888 0.735 0.852
Precision 0.814 0.767 0.911
Recall 0.978 0.705 0.801
Specificity 0.888 0.893 0.960
pIoU 0.830
Inference (ms) 59
Parameters (m) 1.454

PVT Dice Coefficient 0.945 0.858 0.918
Precision 0.905 0.888 0.931
Recall 0.990 0.830 0.905
Specificity 0.948 0.948 0.966
pIoU 0.910
Inference (ms) 93
Parameters (m) 6.414

part-segmentation, it is interesting to see that all classifiers except for PVT had worse

pIoU values. It stands to reason that objects from the ShapeNet dataset were easier
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for deep learning models to learn about than the complex branching structure of a

tree pointcloud.

DGCNN was the most rapid on model inference for a single tree (59 ms), nearly

halfing the inference time of PVT (93 ms). DGCNN does not have to voxelize a

pointcloud several times during model inference, which could help explain why it

sees such performance boost in inference time. Additionally, its Edge Conv blocks

seem to perform well on the cylindrical structure of the tree pointcloud. However,

this model notably has a limiting hyperparameter K, which determines the number

of edge connections a singular point can have. While one value of K might work

well for classifying one class, it may limit performance on another class. This would

help explain the large value gap in Dice coefficient between the trunk (0.888), branch

(0.735), and leaf (0.852).

Comparing the precision and recall values among classes, all models had higher

recalls than precisions for trunk, and the inverse for both branch and leaf. This

indicates that each model was often over-estimating the number of trunk points.

While viewing rendered model predictions, points near the intersection of branches

and the trunk were often observed to be the ones misclassified as a trunk. This also

might be a difficult problem for humans, so it makes sense why these models had a

hard time classifying these ambiguous intersection regions.

PointNet++ had the worst model inference time (1113 ms). This large inference

time is by design, as the PointNet++ architecture applies PointNet recursively on a

nested partitioning of the input point set. By designing the architecture that way,

PointNet++ is able to learn local features with increasing contextual scales. One

of ShellNet’s large contributions to the 3D deep learning space was to achieve bet-

ter performance than PointNet++ while simultaneously speeding up model inference

time and decreasing model size. Using ShellConv blocks instead of PointNet blocks
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helps to drastically speed up model inference time. Additionally, its concentric spher-

ical shells to define representative features helps it closely match the performance of

PointNet++ accross the board.

Figure 4.2: Visualization of segmentation results of PVT model on a synthetic Douglas
fir tree from the test set (left) and a real TLS scan of a Douglas fir (right).

To assess the performance of the PVT model on both synthetic and real tree point

clouds, visualizations are provided of the segmentation results in Figure 4.2. The left

side of the figure shows the PVT outputs on a synthetic Douglas fir from the test

set. On the right side of the figure are shown the results of applying the trained

model to a real TLS scan of a Douglas fir tree. It is important to note that it is

not possible to obtain quantitative performance metrics for the real tree due to the
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lack of point-wise ground truth labels. However, through visual inspection of the

real tree segmentation results, it is evident that the model does an exceptional job

at identifying and labeling the various parts of the tree. This observation suggests

that the PVT model generalizes well to real-world tree point clouds and is capable of

handling the inherent complexities and variations found in nature.

4.2 Label-Propagation Results and Discussion

In this study, the utility of K-Neighbor-Nurtured-Garden (KNNG) for label propaga-

tion in synthetic tree point clouds was proposed. Table 4.2 presents the performance

comparison in terms of F-scores for the three classes (trunk, branch, and leaf) and

computation time between each clustering method. While the KNNG method showed

promise in terms of computational efficiency and label coverage, its performance in

terms of F-scores for the three classes (trunk, branch, and leaf) was found to be

lackluster when compared to other methods. Particularly, the performance drop in

trunk points was more pronounced compared to branch and leaf points. This section

discusses the potential reasons for this unexpected outcome and provides insight into

the limitations of the KNNG method.

One possible reason for the observed performance drop in trunk points could be

the inherent nature of the KNNG algorithm, which relies on the k-nearest neighbors

to propagate labels. Trunk points, by their nature, tend to be spatially more con-

centrated and localized in a tree point cloud. As a result, the k-nearest neighbors

of a trunk point are more likely to be other trunk points. In the presence of noise

or errors in the initial labeling, this local concentration can lead to a reinforcing

feedback loop, where incorrect labels propagate and amplify within the trunk points,

ultimately affecting the F-score.
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Table 4.2: Summary of study results: Average performance metrics across 100 test
pointcloud trees.

K-NN connectivity inference

Community Detection Method Average Additional
Inference time (s) Label coverage Trunk F-Score Branch F-Score Leaf F-Score

FUMO 123.3(±80.9) 99.99% 0.249 0.289 0.743
Spectral Lanczos 4573.9(±1812.2) 60% 0.598 0.72 0.817
AFC 15.1(±6.9) 61.60% 0.746 0.828 0.92
Label Propagation 3.4(±1.4) 71% 0.752 0.832 0.931
Asyn LPA 8.90(±3.53) 62% 0.761 0.832 0.926

Alpha Shapes Surface Reconstruction connectivity inference

Community Detection Method Average Additional
Inference time (s) Label coverage Trunk F-Score Branch F-Score Leaf F-Score

FUMO 395.35(±269.34) 99.99% 0.214 0.427 0.586
Spectral Lanczos 20944(±11337.77) 82% 0.402 0.64 0.77
AFC 3.5(±1.3) 97% 0.355 0.624 0.743
Label Propagation 1.7(±0.53) 89% 0.307 0.645 0.75
Asyn LPA 2.1(±0.64) 89% 0.363 0.651 0.765

No Graph Structure

Method Average Additional
Inference time (s) Label coverage Trunk F-Score Branch F-Score Leaf F-Score

PVT(2048) - 2048 pts 0.945 0.859 0.919
PVT(all) - 100% 0.714 0.783 0.879
rKNN 10.1(±5.6) 100% 0.771 0.801 0.911
Voronoi Clustering 5.34(±1.72) 100% 0.704 0.728 0.8726
KNNG (ours) K=4 3.91(±1.36) 100% 0.525 0.709 0.857
KNNG (ours) K=3 4.75(±1.76) 100% 0.521 0.705 0.853
KNNG (ours) K=2 7.06(±2.93) 100% 0.53 0.713 0.858
KNNG (ours) K=1 7.38(±3.05) 100% 0.569 0.704 0.835

Furthermore, the presence of varying point densities within the point cloud may

also have affected the performance of the KNNG method. These factors may have

introduced inconsistencies in the spatial distribution of the points, making it chal-

lenging for the algorithm to propagate labels accurately based on the neighborhood

information. In particular, the trunk region may have been more susceptible to such

inconsistencies.

In light of these observations, it appears that the KNNG method may have certain

limitations when applied to synthetic tree point clouds, particularly in the context of

trunk point labeling. While the method offers advantages in terms of computational

speed and label coverage, its performance in terms of F-scores is found to be inferior

to other methods, such as Asyn LPA and Label Propagation. Future research could

focus on refining the KNNG algorithm or exploring alternative methods that can

better capture the unique spatial characteristics of tree point clouds and achieve

more accurate label propagation across all classes.
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While the K-Neighbor-Nurtured-Garden (KNNG) method did not perform as

expected, other methods utilizing the K-NN connectivity inference such as Asyn-

chronous Label Propagation Algorithm (Asyn LPA) and Label Propagation demon-

strated superior performance in terms of F-scores across trunk, branch, and leaf

classes.

One of the factors that may have contributed to the superior performance of Asyn

LPA and Label Propagation is their ability to better adapt to the complex spatial

structures present in tree point clouds. These methods are based on propagating

labels through an iterative process, which allows them to effectively capture the un-

derlying structure of the data and propagate labels more accurately. This iterative

approach can help mitigate the impact of noise or errors in the initial labeling, as the

algorithms continuously refine the labels based on the information from neighboring

points.

In addition, the Asyn LPA method allows for asynchronous updating of labels

during the propagation process, which can be beneficial in situations where the point

cloud exhibits varying point densities, occlusions, or overlapping regions. This asyn-

chronous updating enables the method to be more robust against local inconsistencies

in the spatial distribution of points, as it does not rely solely on the immediate neigh-

borhood information for label updates. This flexibility may have contributed to the

improved performance of Asyn LPA in comparison to other methods.

Label Propagation also performed well in this study; potentially due to its ability

to adapt to the specific characteristics of tree point clouds. Like Asyn LPA, Label

Propagation is an iterative method that refines labels based on the information from

neighboring points. However, Label Propagation operates in a synchronous manner,

updating all labels simultaneously at each iteration. This approach can lead to faster

convergence of the algorithm, which might be advantageous in cases where the point
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cloud exhibits a clear and well-defined structure.

Moreover, both Asyn LPA and Label Propagation methods could be further fine-

tuned by adjusting their respective parameters, such as the number of iterations or

the influence of neighborhood size. This flexibility allows for the optimization of

the methods for the specific characteristics of synthetic tree point clouds, potentially

leading to improved performance.

In summary, the superior performance of Asyn LPA and Label Propagation meth-

ods in this study can be attributed to their ability to better adapt to the complex

spatial structures present in tree point clouds, as well as their iterative nature, which

allows for more accurate label propagation. These methods demonstrate the poten-

tial to effectively address the challenges associated with labeling synthetic tree point

clouds and could serve as a foundation for future research in this area.

Figure 4.3: Synthetic tree point cloud before and after label propagation. The left
point cloud in each pair demonstrates the initial labeling results, while the right
point cloud displays the significantly enhanced coverage obtained by applying label
propagation.

Figs 4.3 and 4.4 illustrate the improvements achieved through the combination

of deep learning and label propagation techniques. The figures showcase before and

after images of both synthetic and real Douglas fir TLS scans that have been par-

tially labeled using the PVT model for 2,048 points. The left point cloud in each

pair demonstrates the initial labeling results, while the righ images display the signif-
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Figure 4.4: Real Douglas fir TLS scan before and after label propagation. The left
point cloud in each pair demonstrates the initial labeling results, while the right
point cloud displays the significantly enhanced coverage obtained by applying label
propagation.

icantly enhanced coverage obtained by applying label propagation. By incorporating

community detection methods, we can effectively cluster regions of interest, provid-

ing a solid foundation for label propagation to further refine and extend the labeling

process. This combination of techniques allows for more accurate and complete seg-

mentation of tree components, resulting in a substantial improvement in labeling

coverage and overall segmentation performance.

This study revealed that community detection clustering techniques performed sig-

nificantly better when applied to graphs built using K-NN connectivity inference com-

pared to those constructed using the Alpha Shapes Surface Reconstruction (ASSR)

algorithm.

The main difference between the K-NN connectivity inference and ASSR lies in



63

the way they construct the graph structure. The K-NN approach directly connects

points based on their proximity in Euclidean space, which makes it more sensitive

to local point densities. As a result, K-NN connectivity inference tends to create

better-defined clusters that capture the underlying structure of the point cloud more

accurately.

On the other hand, ASSR constructs the graph by approximating the underlying

surface of the 3D object, which might not always capture the local point densities

effectively. This can lead to situations where the reconstructed mesh inaccurately

reflects the spatial distribution of points, resulting in less cohesive clusters. Conse-

quently, community detection methods applied to ASSR-based graphs might struggle

to propagate labels efficiently and accurately, leading to lower F-scores.

Another possible explanation for the performance difference is that K-NN connec-

tivity inference is more flexible in terms of adapting to various point densities and

noise levels. This allows the connectivity to be tailored to the specific characteristics

of the point cloud data, whereas ASSR relies on a fixed set of parameters that might

not be suitable for all cases.

It is also worth noting that the choice of community detection method can play a

significant role in the overall performance of label propagation. These results showed

that some methods, such as Asynchronous Label Propagation Algorithm (Asyn LPA),

achieved higher F-scores than others, regardless of the graph construction technique.

This suggests that the effectiveness of label propagation is not solely determined

by the graph connectivity but also depends on the choice of community detection

algorithm.

In conclusion, these findings highlight the importance of selecting an appropriate

graph connectivity inference method when using community detection techniques for

label propagation in point cloud data. The K-NN connectivity inference approach
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appears to be better suited for this task, providing more accurate and efficient label

propagation compared to the Alpha Shapes Surface Reconstruction algorithm.
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Chapter 5

Conclusions and Future Work

Terrestrial and Airborne Laser Scanning provide effective tools for forestry profes-

sionals to digitally catalog entire landscapes into large datasets of point clouds.

Topographically accurate synthetic tree models, once robustly generated using the

proposed method’s automatic tree part-segmentation, have the potential to be im-

plemented at-scale. The model-provided information about a given tree’s topology

contains important details used in allometric equations to estimate above ground

biomass (AGB). AGB is useful for understanding carbon stocks and fluxes, which

feeds back into models of climate change. The novel contributions of this research

include extending the modality of highly accurate tree part-segmentation from 2D

(RGB/RGB-D) into the raw, unstructured geometric-coordinate point cloud domain,

as well as providing a synthetic vegetation point cloud dataset-generation pipeline

for use in training other deep learning remote-sensing tasks like tree-segmentation,

estimating mensuration data, species identification, and wood filtering.

The study further evaluated the performance of various label propagation tech-

niques for improving the labeling of synthetic tree point clouds generated using

SpeedTree and segmented using a Point-Voxel Transformer model. The goal was
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to determine the most effective technique for propagating labels within clusters and

enhancing the labeling of unlabeled points in the point cloud. Comparison of dif-

ferent community detection methods, including modularity-based clustering, spectral

clustering, and the Asynchronous Label Propagation Algorithm (Asyn LPA), applied

to graphs built using K-NN connectivity inference and Alpha Shapes Surface Re-

construction (ASSR) algorithm, as well as several unstructured-point cloud based

methods was carried out. The evaluation considered factors such as F-scores for each

class label, label coverage, and time expenditure.

Results from experiments with 100 test-set synthetic tree point clouds demon-

strated that community detection clustering techniques applied to graphs built using

K-NN connectivity inference consistently outperformed those applied to graphs con-

structed using the ASSR algorithm. This suggests that the choice of graph connectiv-

ity inference method is critical for achieving accurate and efficient label propagation

in point cloud data. The K-NN approach, with its sensitivity to local point densi-

ties and adaptability to various point densities and noise levels, appears to be better

suited for this task compared to the ASSR algorithm.

Furthermore, the choice of community detection method played a significant role

in the overall performance of label propagation. Some methods, such as the Asyn-

chronous Label Propagation Algorithm (Asyn LPA), consistently achieved higher F-

scores, regardless of the graph construction technique, highlighting the importance of

selecting the appropriate community detection algorithm.

A call for more environmental artists with backgrounds in forest ecology would

be helpful in generating more realistic-looking synthetic trees. The research pipeline

is limited by what SpeedTree already has in their store library. By bringing talented

artists into this research space, more procedural models can be produced and catered

towards various domain-specific deep learning tasks.
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Another direction for future work may involve the investigation of methods in

which these synthetic tree point clouds are subsampled. Random subsampling is a

naive, but fast approach that may not subsample the point cloud in an optimal way

for the models to learn. Data-driven sampler learning strategies have been shown to

increase base-line model performance for point-wise analysis and segmentation-based

tasks. Future research could explore such strategies for improving the performance

of label propagation in synthetic tree point clouds.

Interestingly, the proposed K-Neighbor-Nurtured-Garden (KNNG) method, which

was initially expected to perform well, yielded relatively low F-scores compared to the

Asyn LPA and Label Propagation methods despite its fast inference time and 100%

label coverage. This finding presents an opportunity for future research to further

investigate the reasons behind KNNG’s suboptimal performance and explore potential

improvements to the method, such as incorporating weighting schemes based on point

density, or adapting the neighborhood size according to the spatial distribution of

points.

In light of the findings, future work in point cloud labeling should focus on leverag-

ing K-NN connectivity inference and carefully selecting the most suitable community

detection method for a given dataset. Additionally, continued exploration and op-

timization of label propagation techniques, including the proposed KNNG method,

could lead to even more accurate and efficient point cloud labeling solutions in the

future.

In summary, this research contributes to the understanding of label propagation

techniques for point cloud data and offers valuable insights to guide the selection

of graph connectivity inference methods and community detection algorithms. The

findings provide a foundation for further research and development in the field of point

cloud labeling, ultimately contributing to advancements in 3D object recognition,
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robotics, and computer vision applications.
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