1,839 research outputs found

    Mott-Hubbard insulators for systems with orbital degeneracy

    Full text link
    We study how the electron hopping reduces the Mott-Hubbard band gap in the limit of a large Coulomb interaction U and as a function of the orbital degeneracy N. The results support the conclusion that the hopping contribution grows as roughly \sqrt{N}W, where W is the one-particle band width, but in certain models a crossover to a \sim NW behavior is found for a sufficiently large N.Comment: 7 pages, revtex, 6 figures more information at http://www.mpi-stuttgart.mpg.de/dokumente/andersen/fullerene

    Mott Transition in Degenerate Hubbard Models: Application to Doped Fullerenes

    Full text link
    The Mott-Hubbard transition is studied for a Hubbard model with orbital degeneracy N, using a diffusion Monte-Carlo method. Based on general arguments, we conjecture that the Mott-Hubbard transition takes place for U/W \propto \sqrt{N}, where U is the Coulomb interaction and W is the band width. This is supported by exact diagonalization and Monte-Carlo calculations. Realistic parameters for the doped fullerenes lead to the conclusion that stoichiometric A_3 C_60 (A=K, Rb) are near the Mott-Hubbard transition, in a correlated metallic state.Comment: 4 pages, revtex, 1 eps figure included, to be published in Phys.Rev.B Rapid Com

    Screening, Coulomb pseudopotential, and superconductivity in alkali-doped Fullerenes

    Full text link
    We study the static screening in a Hubbard-like model using quantum Monte Carlo. We find that the random phase approximation is surprisingly accurate almost up to the Mott transition. We argue that in alkali-doped Fullerenes the Coulomb pseudopotential μ\mu^\ast is not very much reduced by retardation effects. Therefore efficient screening is important in reducing μ\mu^{\ast} sufficiently to allow for an electron-phonon driven superconductivity. In this way the Fullerides differ from the conventional picture, where retardation effects play a major role in reducing the electron-electron repulsion.Comment: 4 pages RevTeX with 2 eps figures, additional material available at http://www.mpi-stuttgart.mpg.de/docs/ANDERSEN/fullerene

    Asymptotically exact mean field theory for the Anderson model including double occupancy

    Full text link
    The Anderson impurity model for finite values of the Coulomb repulsion UU is studied using a slave boson representation for the empty and doubly occupied ff-level. In order to avoid well known problems with a naive mean field theory for the boson fields, we use the coherent state path integral representation to first integrate out the double occupancy slave bosons. The resulting effective action is linearized using {\bf two-time} auxiliary fields. After integration over the fermionic degrees of freedom one obtains an effective action suitable for a 1/Nf1/N_f-expansion. Concerning the constraint the same problem remains as in the infinite UU case. For T0T \rightarrow 0 and NfN_f \rightarrow \infty exact results for the ground state properties are recovered in the saddle point approximation. Numerical solutions of the saddle point equations show that even in the spindegenerate case Nf=2N_f = 2 the results are quite good.Comment: 19, RevTeX, cond-mat/930502

    Important role of alkali atoms in A4C60

    Full text link
    We show that hopping via the alkali atoms plays an important role for the t1u band of A4C60 (A=K, Rb), in strong contrast to A3C60. Thus the t1u band is broadened by more than 40 % by the presence of the alkali atoms. The difference between A4C60 and A3C60 is in particular due to the less symmetric location of the alkali atoms in A4C60.Comment: 5 pages, revtex, 2 figures, submitted to Phys. Rev. B more information at http://www.mpi-stuttgart.mpg.de/dokumente/andersen/fullerene

    Holstein polaron in the presence of disorder

    Full text link
    Non-local, inhomogeneous and retarded response observed in experiments is reproduced by introducing the Inhomogeneous Momentum Average (IMA) method to study single polaron problems with disorder in the on-site potential and/or spatial variations of the electron-phonon couplings and/or phonon frequencies. We show that the electron-phonon coupling gives rise to an additional inhomogeneous, strongly retarded potential, which makes instant approximations questionable. The accuracy of IMA is demonstrated by comparison with results from the approximation free Diagrammatic Monte Carlo (DMC) method. Its simplicity allows for easy study of many problems that were previously unaccessible. As an example, we show how inhomogeneities in the electron-phonon coupling lead to nonlocal, retarded response in scanning tunneling microscopy (STM) images.Comment: 4 pages, 3 figure

    A discrete Hubbard-Stratonovich decomposition for general, fermionic two-body interactions

    Full text link
    A scheme is presented to decompose the exponential of a two-body operator in a discrete sum over exponentials of one-body operators. This discrete decomposition can be used instead of the Hubbard-Stratonovich transformation in auxiliary-field quantum Monte-Carlo methods. As an illustration, the decomposition is applied to the Hubbard model, where it is equivalent to the discrete Hubbard-Stratonovich transformation introduced by Hirsch, and to the nuclear pairing Hamiltonian.Comment: 8 pages, includes 2 eps figures, to appear in Phys. Lett.

    Exact zero-point energy shift in the e(n E)e\otimes (n~E), t(n H)t\otimes (n~H) many modes dynamic Jahn-Teller systems at strong coupling

    Full text link
    We find the exact semiclassical (strong coupling) zero-point energy shifts applicable to the e(nE)e\otimes (n E) and t(nH)t\otimes (n H) dynamic Jahn-Teller problems, for an arbitrary number nn of discrete vibrational modes simultaneously coupled to one single electronic level. We also obtain an analytical formula for the frequency of the resulting normal modes, which has an attractive and apparently general Slater-Koster form. The limits of validity of this approach are assessed by comparison with O'Brien's previous effective-mode approach, and with accurate numerical diagonalizations. Numerical values obtained for t(nH)t\otimes (n H) with n=8n =8 and coupling constants appropriate to C60_{60}^- are used for this purpose, and are discussed in the context of fullerene.Comment: 20 pages, 4 ps figure

    Accelerating Chloroplast Engineering: A New System for Rapid Generation of Marker-Free Transplastomic Lines of Chlamydomonas reinhardtii

    Get PDF
    ‘Marker-free’ strategies for creating transgenic microorganisms avoid the issue of potential transmission of antibiotic resistance genes to other microorganisms. An already-established strategy for engineering the chloroplast genome (=plastome) of the green microalga Chlamydomonas reinhardtii involves the restoration of photosynthetic function using a recipient strain carrying a plastome mutation in a key photosynthesis gene. Selection for transformant colonies is carried out on minimal media, such that only those cells in which the mutated gene has been replaced with a wild-type copy carried on the transgenic DNA are capable of phototrophic growth. However, this approach can suffer from issues of efficiency due to the slow growth of C. reinhardtii on minimal media and the slow die-back of the untransformed lawn of cells when using mutant strains with a limited photosensitivity phenotype. Furthermore, such phototrophic rescue has tended to rely on existing mutants that are not necessarily ideal for transformation and targeted transgene insertion: Mutants carrying point mutations can easily revert, and those with deletions that do not extend to the intended transgene insertion site can give rise to a sub-population of rescued lines that lack the transgene. In order to improve and accelerate the transformation pipeline for C. reinhardtii, we have created a novel recipient line, HNT6, carrying an engineered deletion in exon 3 of psaA, which encodes one of the core subunits of photosystem I (PSI). Such PSI mutants are highly light-sensitive allowing faster recovery of transformant colonies by selecting for light-tolerance on acetate-containing media, rather than phototrophic growth on minimal media. The deletion extends to a site upstream of psaA-3 that serves as a neutral locus for transgene insertion, thereby ensuring that all of the recovered colonies are transformants containing the transgene. We demonstrate the application of HNT6 using a luciferase reporter

    Electronic thermal conductivity at high temperatures: Violation of the Wiedemann-Franz law in narrow band metals

    Full text link
    We study the electronic part of the thermal conductivity kappa of metals. We present two methods for calculating kappa, a quantum Monte-Carlo (QMC) method and a method where the phonons but not the electrons are treated semiclassically (SC). We compare the two methods for a model of alkali-doped C60, A3C60, and show that they agree well. We then mainly use the SC method, which is simpler and easier to interpret. We perform SC calculations for Nb for large temperatures T and find that kappa increases with T as kappa(T)=a+bT, where a and b are constants, consistent with a saturation of the mean free path, l, and in good agreement with experiment. In contrast, we find that for A3C60, kappa(T) decreases with T for very large T. We discuss the reason for this qualitatively in the limit of large T. We give a quantum-mechanical explanation of the saturation of l for Nb and derive the Wiedemann-Franz law in the limit of T much smaller than W, where W is the band width. In contrast, due to the small W of A3C60, the assumption T much smaller than W can be violated. We show that this leads to kappa(T) \sim T^{-3/2} for very large T and a strong violation of the Wiedemann-Franz law.Comment: 8 pages, 4 figure
    corecore