3 research outputs found

    Enhancement and underlying fatigue mechanisms of laser powder bed fusion additive-manufactured 316L stainless steel

    No full text
    Abstract In this study, the enhancement of additively manufactured (AM) 316L, by annealing, to the fully reversed tension-compression fatigue performance, in terms of fatigue life and fatigue damage, were investigated under two conditions: as-built (AB) and heat-treated (HT) at 900 °C. The underlying fatigue mechanisms were comprehensively characterised through intensive microstructural observations of cyclic-strained microstructures and fracture surfaces using laser confocal scanning microscopy (LCSM) and secondary electron imaging using scanning electron microscopy (SEM). The experimental results showed that the fatigue resistance of HT 316L was significantly enhanced by 100% as the fatigue limit was increased from 75 to 150 MPa for AB and HT 316L, respectively. The fatigue cracking mechanism in AB 316L is mainly related to two imperfections of the AM-induced microstructural components: residual stresses, which cause highly localised deformation, and dendritic cellular structures, which possess a weak link in their grain boundaries against crack propagation. Upon heat treatment at 900 °C, the residual stresses and dendritic structure were effectively reduced. Consequently, the fatigue life of AM 316L was significantly enhanced by promoting the formation of high-angle boundaries. More precisely, the cyclic deformation processes in fatigued HT 316L involve persistent slip bands and strain hardening

    Comparative study of additively manufactured and reference 316 L stainless steel samples:effect of severe shot peening on microstructure and residual stresses

    No full text
    Abstract The as-built selective laser melted (SLM) austenitic stainless steel 316 L components are characterized by presence of quality related concerns such as tensile residual stresses, poor surface finish, etc. These issues may prove to be detrimental during the actual usage of components and could result in poor mechanical performance. Therefore, it is important to perform the apt post processing such as heat treatment and shot peening to tailor such problems and facilitate improved mechanical performance. In the present work, additively manufactured (AM) 316 L samples were subjected to shot peening with different parameters including the severe shot peening (SSP) procedure. The identical shot peening protocol was also applied to reference samples to evaluate the comparable response. Both the shot peened reference and AM samples were studied for residual stresses, surface topography, microhardness, and the corresponding microstructure. The results indicated, that SSP induced higher values of compressive residual stresses deeper into the samples. This was accompanied by reduced surface roughness, increased grain refinement depth, and higher microhardness near the surface. The SSP resulted in transformation of original austenite to martensite near the surface in the reference samples

    The effect of severe shot peening on fatigue life of laser powder bed fusion manufactured 316L stainless steel

    Get PDF
    Abstract Severe shot peening (SSP) was used on additive manufactured 316L by laser powder bed fusion. The effect of the post processing on the surface features of the material was analyzed through residual stress measurements, tensile testing, hardness-depth profiles, and fatigue testing by flexural bending. The results showed that SSP can be utilized to form residual stresses up to −400 MPa 200 μm below the surface. At the same time, a clear improvement on the surface hardness was achieved from 275 HV to near 650 HV. These together resulted in a clear improvement on material strength which was recorded at 10% improvement in ultimate tensile strength. Most significantly, the fatigue limit of the material was tripled from 200 MPa to over 600 MPa and the overall fatigue strength raised similarly from a low to high cycle regime
    corecore