78 research outputs found

    Brainstorm Pipeline Analysis of Resting-State Data From the Open MEG Archive

    Get PDF
    We present a simple, reproducible analysis pipeline applied to resting-state magnetoencephalography (MEG) data from the Open MEG Archive (OMEGA). The data workflow was implemented with Brainstorm, which like OMEGA is free and openly accessible. The proposed pipeline produces group maps of ongoing brain activity decomposed in the typical frequency bands of electrophysiology. The procedure is presented as a technical proof of concept for streamlining a broader range and more sophisticated studies of resting-state electrophysiological data. It also features the recently introduced extension of the brain imaging data structure (BIDS) to MEG data, highlighting the scalability and generalizability of Brainstorm analytical pipelines to other, and potentially larger data volumes

    MEG/EEG Group Analysis With Brainstorm

    Get PDF
    Brainstorm is a free, open-source Matlab and Java application for multimodal electrophysiology data analytics and source imaging [primarily MEG, EEG and depth recordings, and integration with MRI and functional near infrared spectroscopy (fNIRS)]. We also provide a free, platform-independent executable version to users without a commercial Matlab license. Brainstorm has a rich and intuitive graphical user interface, which facilitates learning and augments productivity for a wider range of neuroscience users with little or no knowledge of scientific coding and scripting. Yet, it can also be used as a powerful scripting tool for reproducible and shareable batch processing of (large) data volumes. This article describes these Brainstorm interactive and scripted features via illustration through the complete analysis of group data from 16 participants in a MEG vision study

    A thalamocortical pathway for fast rerouting of tactile information to occipital cortex in congenital blindness

    Get PDF
    In congenitally blind individuals, the occipital cortex responds to various nonvisual inputs. Some animal studies raise the possibility that a subcortical pathway allows fast re-routing of tactile information to the occipital cortex, but this has not been shown in humans. Here we show using magnetoencephalography (MEG) that tactile stimulation produces occipital cortex activations, starting as early as 35 ms in congenitally blind individuals, but not in blindfolded sighted controls. Given our measured thalamic response latencies of 20 ms and a mean estimated lateral geniculate nucleus to primary visual cortex transfer time of 15 ms, we claim that this early occipital response is mediated by a direct thalamo-cortical pathway. We also observed stronger directed connectivity in the alpha band range from posterior thalamus to occipital cortex in congenitally blind participants. Our results strongly suggest the contribution of a fast thalamo-cortical pathway in the cross-modal activation of the occipital cortex in congenitally blind humans

    Identification of time-varying cortico-cortical and cortico-muscular coherence during motor tasks with multivariate autoregressive models

    Get PDF
    Neural populations coordinate at fast subsecond time-scales during rest and task execution. As a result, functional brain connectivity assessed with different neuroimaging modalities (EEG, MEG, fMRI) may also change over different time scales. In addition to the more commonly used sliding window techniques, the General Linear Kalman Filter (GLFK) approach has been proposed to estimate time-varying brain connectivity. In the present work, we propose a modification of the GLFK approach to model time-varying connectivity. We also propose a systematic method to select the hyper-parameters of the model. We evaluate the performance of the method using MEG and EMG data collected from 12 young subjects performing two motor tasks (unimanual and bimanual hand grips), by quantifying time-varying cortico-cortical and cortico-muscular coherence (CCC and CMC). The CMC results revealed patterns in accordance with earlier findings, as well as an improvement in both time and frequency resolution compared to sliding window approaches. These results suggest that the proposed methodology is able to unveil accurate time-varying connectivity patterns with an excellent time resolution

    Evaluating the effect of aging on interference resolution with time-varying complex networks analysis

    Full text link
    In this study we used graph theory analysis to investigate age-related reorganization of functional networks during the active maintenance of information that is interrupted by external interference. Additionally, we sought to investigate network differences before and after averaging network parameters between both maintenance and interference windows. We compared young and older adults by measuring their magnetoencephalographic recordings during an interference-based working memory task restricted to successful recognitions. Data analysis focused on the topology/temporal evolution of functional networks during both the maintenance and interference windows. We observed that: (a) Older adults require higher synchronization between cortical brain sites in order to achieve a successful recognition, (b) The main differences between age groups arise during the interference window, (c) Older adults show reduced ability to reorganize network topology when interference is introduced, and (d) Averaging network parameters leads to a loss of sensitivity to detect age differencesThis work has been supported by the Spanish MINECO under project [FIS2013-41057], as well as FundaciĂłn Carolina Doctoral Scholarship Program and Colciencias Doctoral Program 56

    Evaluating the effect of aging on interference resolution with time-varying complex networks analysis

    Get PDF
    In this study we used graph theory analysis to investigate age-related reorganization of functional networks during the active maintenance of information that is interrupted by external interference. Additionally, we sought to investigate network differences before and after averaging network parameters between both maintenance and interference windows. We compared young and older adults by measuring their magnetoencephalographic recordings during an interference-based working memory task restricted to successful recognitions. Data analysis focused on the topology/temporal evolution of functional networks during both the maintenance and interference windows. We observed that: (a) Older adults require higher synchronization between cortical brain sites in order to achieve a successful recognition, (b) The main differences between age groups arise during the interference window, (c) Older adults show reduced ability to reorganize network topology when interference is introduced, and (d) Averaging network parameters leads to a loss of sensitivity to detect age differencesThis work has been supported by the Spanish MINECO under project [FIS2013-41057], as well as FundaciĂłn Carolina Doctoral Scholarship Program and Colciencias Doctoral Program 56

    Cognitive reserve is associated with the functional organization of brain networks in healthy aging: a MEG study

    Full text link
    The proportion of elderly people in the population has increased rapidly in the last century and consequently "healthy aging" is expected to become a critical area of research in neuroscience. Evidence reveals how healthy aging depends on three main behavioral factors: social lifestyle, cognitive activity and physical activity. In this study, we focused on the role of cognitive activity, concentrating specifically on educational and occupational attainment factors, which were considered two of the main pillars of cognitive reserve. 21 subjects with similar rates of social lifestyle, physical and cognitive activity were selected from a sample of 55 healthy adults. These subjects were divided into two groups according to their level of cognitive reserve; one group comprised subjects with high cognitive reserve (9 members) and the other contained those with low cognitive reserve (12 members). To evaluate the cortical brain connectivity network, all participants were recorded by Magnetoencephalography (MEG) while they performed a memory task (modified version of the SternbergÂżs Task). We then applied two algorithms (Phase Locking Value & Phase-Lag Index) to study the dynamics of functional connectivity. In response to the same task, the subjects with lower cognitive reserve presented higher functional connectivity than those with higher cognitive reserve. These results may indicate that participants with low cognitive reserve needed a greater 'effort' than those with high cognitive reserve to achieve the same level of cognitive performance. Therefore, we conclude that cognitive reserve contributes to the modulation of the functional connectivity patterns of the aging brain

    MEG-BIDS, the brain imaging data structure extended to magnetoencephalography.

    Get PDF
    We present a significant extension of the Brain Imaging Data Structure (BIDS) to support the specific aspects of magnetoencephalography (MEG) data. MEG measures brain activity with millisecond temporal resolution and unique source imaging capabilities. So far, BIDS was a solution to organise magnetic resonance imaging (MRI) data. The nature and acquisition parameters of MRI and MEG data are strongly dissimilar. Although there is no standard data format for MEG, we propose MEG-BIDS as a principled solution to store, organise, process and share the multidimensional data volumes produced by the modality. The standard also includes well-defined metadata, to facilitate future data harmonisation and sharing efforts. This responds to unmet needs from the multimodal neuroimaging community and paves the way to further integration of other techniques in electrophysiology. MEG-BIDS builds on MRI-BIDS, extending BIDS to a multimodal data structure. We feature several data-analytics software that have adopted MEG-BIDS, and a diverse sample of open MEG-BIDS data resources available to everyone
    • …
    corecore