240 research outputs found

    Real-time simulation and hardware-in-the-loop approaches for integrating renewable energy sources into smart grids  : challenges & actions

    Get PDF
    The integration of distributed renewable energy sources and the multi-domain behaviours inside the cyber-physical energy system (smart grids) draws up major challenges. Their validation and roll out requires careful assessment, in term of modelling, simulation and testing. The traditional approach focusing on a particular object, actual hardware or a detailed model, while drastically simplifying the remainder of the system under test, is no longer sufficient. Real-time simulation and Hardware-in-the-Loop (HIL) techniques emerge as indispensable tools for validating the behaviour of renewable sources as well as their impact/interaction to with the cyber-physical energy system. This paper aims to provide an overview of the present status-quo of real-time and HIL approaches used for smart grids and their readiness for cyber-physical experiments. We investigate the current limitations of HIL techniques and point out necessary future developments. Subsequently, the paper highlights challenges that need specific attention as well as ongoing actions and further research directions

    Education and training needs, methods, and tools

    Get PDF
    The importance of education and training in the domain of power and energy systems targeting the topics of cyber-physical energy systems/smart grids is discussed in this chapter. State-of-the art laboratory-based and simulation-based tools are presented, aiming to address the new educational needs

    Laboratory coupling approach

    Get PDF
    This chapter deals with the coupling of smart grid laboratories for joint experiments. Therefore, various possibilities are outlined and a reference implementation is introduced. Finally, the vision of a distributed, virtual research infrastructure is presented

    Hardware-in-the-loop assessment methods

    Get PDF
    The importance of using real-time simulation and hardware-in-the-loop techniques for the domain of power and energy systems is covered by this chapter. A brief overview of the main concepts is provided as well as a method for their integration into a holistic validation framework for testing smart grid systems. Also, corresponding reference implementations are outlined

    Measurement of Inclusive Spin Structure Functions of the Deuteron

    Full text link
    We report the results of a new measurement of spin structure functions of the deuteron in the region of moderate momentum transfer (Q2Q^2 = 0.27 -- 1.3 (GeV/c)2^2) and final hadronic state mass in the nucleon resonance region (WW = 1.08 -- 2.0 GeV). We scattered a 2.5 GeV polarized continuous electron beam at Jefferson Lab off a dynamically polarized cryogenic solid state target (15^{15}ND3_3) and detected the scattered electrons with the CEBAF Large Acceptance Spectrometer (CLAS). From our data, we extract the longitudinal double spin asymmetry A∣∣A_{||} and the spin structure function g1dg_1^d. Our data are generally in reasonable agreement with existing data from SLAC where they overlap, and they represent a substantial improvement in statistical precision. We compare our results with expectations for resonance asymmetries and extrapolated deep inelastic scaling results. Finally, we evaluate the first moment of the structure function g1dg_1^d and study its approach to both the deep inelastic limit at large Q2Q^2 and to the Gerasimov-Drell-Hearn sum rule at the real photon limit (Q2→0Q^2 \to 0). We find that the first moment varies rapidly in the Q2Q^2 range of our experiment and crosses zero at Q2Q^2 between 0.5 and 0.8 (GeV/c)2^2, indicating the importance of the Δ\Delta resonance at these momentum transfers.Comment: 13 pages, 8 figures, ReVTeX 4, final version as accepted by Phys. Rev.

    Electroproduction of ϕ(1020)\phi(1020) mesons at 1.4≀Q2≀1.4\leq Q^2\leq GeV2^2 measured with the CLAS spectrometer

    Get PDF
    Electroproduction of exclusive ϕ\phi vector mesons has been studied with the CLAS detector in the kinematical range 1.4≀Q2≀3.81.4\leq Q^2\leq 3.8 GeV2^{2}, 0.0≀tâ€Č≀3.60.0\leq t^{\prime}\leq 3.6 GeV2^{2}, and 2.0≀W≀3.02.0\leq W\leq 3.0 GeV. The scaling exponent for the total cross section as 1/(Q2+Mϕ2)n1/(Q^2+M_{\phi}^2)^n was determined to be n=2.49±0.33n=2.49\pm 0.33. The slope of the four-momentum transfer tâ€Čt' distribution is bϕ=0.98±0.17b_{\phi}=0.98 \pm 0.17 GeV−2^{-2}. Under the assumption of s-channel helicity conservation (SCHC), we determine the ratio of longitudinal to transverse cross sections to be R=0.86±0.24R=0.86 \pm 0.24. A 2-gluon exchange model is able to reproduce the main features of the data.Comment: Phys Rev C, 15 pages, 18 figure

    Measurement of Deeply Virtual Compton Scattering with a Polarized Proton Target

    Get PDF
    The longitudinal target-spin asymmetry A_UL for the exclusive electroproduction of high energy photons was measured for the first time in p(e,e'p\gamma). The data have been accumulated at Jefferson Lab with the CLAS spectrometer using 5.7 GeV electrons and a longitudinally polarized NH_3 target. A significant azimuthal angular dependence was observed, resulting from the interference of the Deeply Virtual Compton Scattering and Bethe-Heitler processes. The amplitude of the sin(phi) moment is 0.252 +/- 0.042(stat) +/- 0.020(sys). Theoretical calculations are in good agreement with the magnitude and the kinematic dependence of the target-spin asymmetry, which is sensitive to the generalized parton distributions H and H-tilde.Comment: Modified text slightly, added reference

    Measurement of the Polarized Structure Function σLTâ€Č\sigma_{LT^\prime} for p(e⃗,eâ€Čπ+)np(\vec{e},e'\pi^+)n in the Δ(1232)\Delta(1232) Resonance Region

    Full text link
    The polarized longitudinal-transverse structure function σLTâ€Č\sigma_{LT^\prime} has been measured using the p(e⃗,eâ€Čπ+)np(\vec e,e'\pi^+)n reaction in the Δ(1232)\Delta(1232) resonance region at Q2=0.40Q^2=0.40 and 0.65 GeV2^2. No previous σLTâ€Č\sigma_{LT^\prime} data exist for this reaction channel. The kinematically complete experiment was performed at Jefferson Lab with the CEBAF Large Acceptance Spectrometer (CLAS) using longitudinally polarized electrons at an energy of 1.515 GeV. A partial wave analysis of the data shows generally better agreement with recent phenomenological models of pion electroproduction compared to the previously measured π0p\pi^0 p channel. A fit to both π0p\pi^0 p and π+n\pi^+ n channels using a unitary isobar model suggests the unitarized Born terms provide a consistent description of the non-resonant background. The tt-channel pion pole term is important in the π0p\pi^0 p channel through a rescattering correction, which could be model-dependent.Comment: 6 pages, LaTex, 5 eps figures: Submitted to PRC/Brief Reports v2: Updated referenc

    Deeply virtual and exclusive electroproduction of omega mesons

    Full text link
    The exclusive omega electroproduction off the proton was studied in a large kinematical domain above the nucleon resonance region and for the highest possible photon virtuality (Q2) with the 5.75 GeV beam at CEBAF and the CLAS spectrometer. Cross sections were measured up to large values of the four-momentum transfer (-t < 2.7 GeV2) to the proton. The contributions of the interference terms sigma_TT and sigma_TL to the cross sections, as well as an analysis of the omega spin density matrix, indicate that helicity is not conserved in this process. The t-channel pi0 exchange, or more generally the exchange of the associated Regge trajectory, seems to dominate the reaction gamma* p -> omega p, even for Q2 as large as 5 GeV2. Contributions of handbag diagrams, related to Generalized Parton Distributions in the nucleon, are therefore difficult to extract for this process. Remarkably, the high-t behaviour of the cross sections is nearly Q2-independent, which may be interpreted as a coupling of the photon to a point-like object in this kinematical limit.Comment: 15 pages,19 figure
    • 

    corecore