132 research outputs found

    Tortoise: Interactive System Configuration Repair

    Full text link
    System configuration languages provide powerful abstractions that simplify managing large-scale, networked systems. Thousands of organizations now use configuration languages, such as Puppet. However, specifications written in configuration languages can have bugs and the shell remains the simplest way to debug a misconfigured system. Unfortunately, it is unsafe to use the shell to fix problems when a system configuration language is in use: a fix applied from the shell may cause the system to drift from the state specified by the configuration language. Thus, despite their advantages, configuration languages force system administrators to give up the simplicity and familiarity of the shell. This paper presents a synthesis-based technique that allows administrators to use configuration languages and the shell in harmony. Administrators can fix errors using the shell and the technique automatically repairs the higher-level specification written in the configuration language. The approach (1) produces repairs that are consistent with the fix made using the shell; (2) produces repairs that are maintainable by minimizing edits made to the original specification; (3) ranks and presents multiple repairs when relevant; and (4) supports all shells the administrator may wish to use. We implement our technique for Puppet, a widely used system configuration language, and evaluate it on a suite of benchmarks under 42 repair scenarios. The top-ranked repair is selected by humans 76% of the time and the human-equivalent repair is ranked 1.31 on average.Comment: Published version in proceedings of IEEE/ACM International Conference on Automated Software Engineering (ASE) 201

    A Fast Compiler for NetKAT

    Full text link
    High-level programming languages play a key role in a growing number of networking platforms, streamlining application development and enabling precise formal reasoning about network behavior. Unfortunately, current compilers only handle "local" programs that specify behavior in terms of hop-by-hop forwarding behavior, or modest extensions such as simple paths. To encode richer "global" behaviors, programmers must add extra state -- something that is tricky to get right and makes programs harder to write and maintain. Making matters worse, existing compilers can take tens of minutes to generate the forwarding state for the network, even on relatively small inputs. This forces programmers to waste time working around performance issues or even revert to using hardware-level APIs. This paper presents a new compiler for the NetKAT language that handles rich features including regular paths and virtual networks, and yet is several orders of magnitude faster than previous compilers. The compiler uses symbolic automata to calculate the extra state needed to implement "global" programs, and an intermediate representation based on binary decision diagrams to dramatically improve performance. We describe the design and implementation of three essential compiler stages: from virtual programs (which specify behavior in terms of virtual topologies) to global programs (which specify network-wide behavior in terms of physical topologies), from global programs to local programs (which specify behavior in terms of single-switch behavior), and from local programs to hardware-level forwarding tables. We present results from experiments on real-world benchmarks that quantify performance in terms of compilation time and forwarding table size

    ADsafety: Type-Based Verification of JavaScript Sandboxing

    Full text link
    Web sites routinely incorporate JavaScript programs from several sources into a single page. These sources must be protected from one another, which requires robust sandboxing. The many entry-points of sandboxes and the subtleties of JavaScript demand robust verification of the actual sandbox source. We use a novel type system for JavaScript to encode and verify sandboxing properties. The resulting verifier is lightweight and efficient, and operates on actual source. We demonstrate the effectiveness of our technique by applying it to ADsafe, which revealed several bugs and other weaknesses.Comment: in Proceedings of the USENIX Security Symposium (2011

    Do Machine Learning Models Produce TypeScript Types That Type Check?

    Get PDF
    Type migration is the process of adding types to untyped code to gain assurance at compile time. TypeScript and other gradual type systems facilitate type migration by allowing programmers to start with imprecise types and gradually strengthen them. However, adding types is a manual effort and several migrations on large, industry codebases have been reported to have taken several years. In the research community, there has been significant interest in using machine learning to automate TypeScript type migration. Existing machine learning models report a high degree of accuracy in predicting individual TypeScript type annotations. However, in this paper we argue that accuracy can be misleading, and we should address a different question: can an automatic type migration tool produce code that passes the TypeScript type checker? We present TypeWeaver, a TypeScript type migration tool that can be used with an arbitrary type prediction model. We evaluate TypeWeaver with three models from the literature: DeepTyper, a recurrent neural network; LambdaNet, a graph neural network; and InCoder, a general-purpose, multi-language transformer that supports fill-in-the-middle tasks. Our tool automates several steps that are necessary for using a type prediction model, (1) importing types for a project's dependencies; (2) migrating JavaScript modules to TypeScript notation; (3) inserting predicted type annotations into the program to produce TypeScript when needed; and (4) rejecting non-type predictions when needed. We evaluate TypeWeaver on a dataset of 513 JavaScript packages, including packages that have never been typed before. With the best type prediction model, we find that only 21% of packages type check, but more encouragingly, 69% of files type check successfully.Comment: Published at the 37th European Conference on Object-Oriented Programming (ECOOP 2023

    Do Machine Learning Models Produce TypeScript Types That Type Check? (Artifact)

    Get PDF

    Making High-Performance Robots Safe and Easy to Use for an Introduction to Computing

    Full text link
    Robots are a popular platform for introducing computing and artificial intelligence to novice programmers. However, programming state-of-the-art robots is very challenging, and requires knowledge of concurrency, operation safety, and software engineering skills, which can take years to teach. In this paper, we present an approach to introducing computing that allows students to safely and easily program high-performance robots. We develop a platform for students to program RoboCup Small Size League robots using JavaScript. The platform 1) ensures physical safety at several levels of abstraction, 2) allows students to program robots using the JavaScript in the browser, without the need to install software, and 3) presents a simplified JavaScript semantics that shields students from confusing language features. We discuss our experience running a week-long workshop using this platform, and analyze over 3,000 student-written program revisions to provide empirical evidence that our approach does help students.Comment: 8 pages, 7 figures, 4 table
    • …
    corecore