50 research outputs found

    Development of reflectance imaging methodologies to investigate super-paramagnetic iron oxide nanoparticles

    Get PDF
    Engineered nanoparticles, such as super paramagnetic iron oxide nanoparticles (SPIONs) offer significant benefits for the development of various diagnostic and therapeutic strategies. Limitations of existing imaging methodologies in the study of NPs, such as the effects of fluorescent labelling and diffraction limited resolution, and the advantages that visualization of spatial localization can offer in studies, increases the demand for new and optimized imaging routines. Reflectance Confocal Microscopy (RCM) methods were optimized and Reflectance Structured Illumination Microscopy (R-SIM) was introduced, offering a two fold increase in resolution - particularly advantageous for NP quantification and localization studies. Analysis routines were developed to enable the automated quantification of NP presence within cells via the different methodologies. Correlative procedures were also established for imaging the same sample with different reflectance methods and TEM, maximizing the information attainable from a single sample and allowing comparisons between the techniques for specific applications. These aforementioned optimized techniques were then applied to the determination of NP uptake and trafficking in cancer cell lines, and, in combination with siRNA, to ascertain proteins that are involved in the uptake process. Studies were also performed to model the degradative process of SPIONs within cellular compartments. This thesis thus provided several important tools for the future assessment of the efficacy and safety of NPs for clinical use, enabling quantitative analysis of uptake route, sub-cellular localization and NP intracellular fate

    Current application of capillary electrophoresis in nanomaterial characterisation and its potential to characterise the protein and small molecule corona

    Get PDF
    Due to the increasing use and production of nanomaterials (NMs), the ability to characterise their physical/chemical properties quickly and reliably has never been so important. Proper characterisation allows a thorough understanding of the material and its stability, and is critical to establishing dose-response curves to ascertain risks to human and environmental health. Traditionally, methods such as Transmission Electron Microscopy (TEM), Field Flow Fractionation (FFF) and Dynamic Light Scattering (DLS) have been favoured for size characterisation, due to their wide-availability and well-established protocols. Capillary Electrophoresis (CE) offers a faster and more cost-effective solution for complex dispersions including polydisperse or non-spherical NMs. CE has been used to rapidly separate NMs of varying sizes, shapes, surface modifications and compositions. This review will discuss the literature surrounding the CE separation techniques, detection and NM characteristics used for the analysis of a wide range of NMs. The potential of combining CE with mass spectrometry (CE-MS) will also be explored to further expand the characterisation of NMs, including the layer of biomolecules adsorbed to the surface of NMs in biological or environmental compartments, termed the acquired biomolecule corona. CE offers the opportunity to uncover new/poorly characterised low abundance and polar protein classes due to the high ionisation efficiency of CE-MS. Furthermore, the possibility of using CE-MS to characterise the poorly researched small molecule interactions within the NM corona is discussed.peer-reviewe

    UV-Vis spectroscopic characterization of nanomaterials in aqueous media

    Get PDF
    The physicochemical characterization of nanomaterials (NMs) is often an analytical challenge, due to their small size (at least one dimension in the nanoscale, i.e. 1–100 nm), dynamic nature, and diverse properties. At the same time, reliable and repeatable characterization is paramount to ensure safety and quality in the manufacturing of NM-bearing products. There are several methods available to monitor and achieve reliable measurement of nanoscale-related properties, one example of which is Ultraviolet-Visible Spectroscopy (UV-Vis). This is a well-established, simple, and inexpensive technique that provides non-invasive and fast real-time screening evaluation of NM size, concentration, and aggregation state. Such features make UV-Vis an ideal methodology to assess the proficiency testing schemes (PTS) of a validated standard operating procedure (SOP) intended to evaluate the performance and reproducibility of a characterization method. In this paper, the PTS of six partner laboratories from the H2020 project ACEnano were assessed through an interlaboratory comparison (ILC). Standard gold (Au) colloid suspensions of different sizes (ranging 5–100 nm) were characterized by UV-Vis at the different institutions to develop an implementable and robust protocol for NM size characterization

    IMI - Myopia Genetics Report

    Get PDF
    The knowledge on the genetic background of refractive error and myopia has expanded dramatically in the past few years. This white paper aims to provide a concise summary of current genetic findings and defines the direction where development is needed. We performed an extensive literature search and conducted informal discussions with key stakeholders. Specific topics reviewed included common refractive error, any and high myopia, and myopia related to syndromes. To date, almost 200 genetic loci have been identified for refractive error and myopia, and risk variants mostly carry low risk but are highly prevalent in the general population. Several genes for secondary syndromic myopia overlap with those for common myopia. Polygenic risk scores show overrepresentation of high myopia in the higher deciles of risk. Annotated genes have a wide variety of functions, and all retinal layers appear to be sites of expression. The current genetic findings offer a world of new molecules involved in myopiagenesis. As the missing heritability is still large, further genetic advances are needed. This Committee recommends expanding large-scale, in-depth genetic studies using complementary big data analytics, consideration of gene-environment effects by thorough measurement of environmental exposures, and focus on subgroups with extreme phenotypes and high familial occurrence. Functional characterization of associated variants is simultaneously needed to bridge the knowledge gap between sequence variance and consequence for eye growth

    Cross-cutting principles for planetary health education

    Get PDF
    Since the 2015 launch of the Rockefeller Foundation Lancet Commission on planetary health,1 an enormous groundswell of interest in planetary health education has emerged across many disciplines, institutions, and geographical regions. Advancing these global efforts in planetary health education will equip the next generation of scholars to address crucial questions in this emerging field and support the development of a community of practice. To provide a foundation for the growing interest and efforts in this field, the Planetary Health Alliance has facilitated the first attempt to create a set of principles for planetary health education that intersect education at all levels, across all scales, and in all regions of the world—ie, a set of cross-cutting principles

    Versailles project on advanced materials and standards (VAMAS) interlaboratory study on measuring the number concentration of colloidal gold nanoparticles

    Get PDF
    We describe the outcome of a large international interlaboratory study of the measurement of particle number concentration of colloidal nanoparticles, project 10 of the technical working area 34, "Nanoparticle Populations" of the Versailles Project on Advanced Materials and Standards (VAMAS). A total of 50 laboratories delivered results for the number concentration of 30 nm gold colloidal nanoparticles measured using particle tracking analysis (PTA), single particle inductively coupled plasma mass spectrometry (spICP-MS), ultraviolet-visible (UV-Vis) light spectroscopy, centrifugal liquid sedimentation (CLS) and small angle X-ray scattering (SAXS). The study provides quantitative data to evaluate the repeatability of these methods and their reproducibility in the measurement of number concentration of model nanoparticle systems following a common measurement protocol. We find that the population-averaging methods of SAXS, CLS and UV-Vis have high measurement repeatability and reproducibility, with between-labs variability of 2.6%, 11% and 1.4% respectively. However, results may be significantly biased for reasons including inaccurate material properties whose values are used to compute the number concentration. Particle-counting method results are less reproducibile than population-averaging methods, with measured between-labs variability of 68% and 46% for PTA and spICP-MS respectively. This study provides the stakeholder community with important comparative data to underpin measurement reproducibility and method validation for number concentration of nanoparticles

    Versailles project on advanced materials and standards (VAMAS) interlaboratory study on measuring the number concentration of colloidal gold nanoparticles

    Get PDF
    We describe the outcome of a large international interlaboratory study of the measurement of particle number concentration of colloidal nanoparticles, project 10 of the technical working area 34, "Nanoparticle Populations" of the Versailles Project on Advanced Materials and Standards (VAMAS). A total of 50 laboratories delivered results for the number concentration of 30 nm gold colloidal nanoparticles measured using particle tracking analysis (PTA), single particle inductively coupled plasma mass spectrometry (spICP-MS), ultraviolet-visible (UV-Vis) light spectroscopy, centrifugal liquid sedimentation (CLS) and small angle X-ray scattering (SAXS). The study provides quantitative data to evaluate the repeatability of these methods and their reproducibility in the measurement of number concentration of model nanoparticle systems following a common measurement protocol. We find that the population-averaging methods of SAXS, CLS and UV-Vis have high measurement repeatability and reproducibility, with between-labs variability of 2.6%, 11% and 1.4% respectively. However, results may be significantly biased for reasons including inaccurate material properties whose values are used to compute the number concentration. Particle-counting method results are less reproducibile than population-averaging methods, with measured between-labs variability of 68% and 46% for PTA and spICP-MS respectively. This study provides the stakeholder community with important comparative data to underpin measurement reproducibility and method validation for number concentration of nanoparticles
    corecore