31 research outputs found

    Estimation of particle concentration profiles in a three-phase fluidized bed from experimental data and using the wake model

    No full text
    Particles with a size distribution in the range of 34 to 468 µm were fluidized in a three-phase bed using low liquid and gas velocities. Particle size distribution and pressure profile measurements were carried out at different locations in the bed in order to study the influence of fluid velocities on segregation and dispersion of particles in different size classes. The influence of gas velocity on particle mixing was analyzed in terms of internal solid fluxes, calculated by means of the wake model. Based on the experimental results, different particle distribution patterns were identified. Although no significant tendencies were observed for radial profiles, particles of different sizes have significantly different axial profiles, which are mainly affected by the velocity of the liquid phase. Thus, depending on the liquid velocity, smaller particles reach a maximum concentration at different bed heights

    Neural network model for the on-line monitoring of a crystallization process

    No full text
    This paper presents the results of the application of a recently developed technique, based on Neural Networks (NN), in the recognition of angular distribution patterns of light scattered by particles in suspension, for the purpose of estimating concentration and crystal size distribution (CSD) in a precipitation process based on the addition of antisolvent (a model system consisting of sodium chloride, water and ethanol). In the first step, in NN model was fitted, using particles with different size distributions and concentrations. Then the model was used to monitor the process, thus enabling a fast and reliable estimation of supersaturation and CSD. Such information, which is difficult to obtain by any other means, can be used in the study of fundamental aspects of crystallization and precipitation processes

    Thermal stability of crandallite CaAl3(PO4)2(OH)5.(H2O) A 'Cave' mineral from the Jenolan Caves

    Get PDF
    Thermogravimetry combined with evolved gas mass spectrometry has been used to characterise the mineral crandallite CaAl3(PO4)2(OH)5•(H2O) and to ascertain the thermal stability of this ‘cave’ mineral. X-ray diffraction proves the presence of the mineral and identifies the products after thermal decomposition. The mineral crandallite is formed through the reaction of calcite with bat guano. Thermal analysis shows that the mineral starts to decompose through dehydration at low temperatures at around 139°C while dehydroxylation occurs over the temperature range 200 to 700°C with loss of OH units. The critical temperature for OH loss is around 416°C and above this temperature the mineral structure is altered. Some minor loss of carbonate impurity occurs at 788°C. This study shows the mineral is unstable above 139°C. This temperature is well above the temperature in caves, which have a maximum temperature of 15°C. A chemical reaction for the synthesis of crandallite is offered and the mechanism for the thermal decomposition is given

    Investigation of the mass transfer processes during the desalination of water containing phenol and sodium chloride by electrodialysis

    Get PDF
    Oxidation processes are used in wastewater treatment when conventional processes are not effective due to the presence of recalcitrant organic contaminants, like phenol. However, the presence of ionic compounds associated with organic pollutants may retard the oxidation. In this work the transport of species contained in an aqueous solution of phenol containing sodium chloride was evaluated in an electrodialysis (ED) system. An experimental study was carried out in which the influence of the process variables on the phenol loss and sodium chloride removal was investigated. Experiments were also performed without current, in order to determine the phenol transfer due to diffusion. The phenol and salt concentration variations in the ED compartments were measured over time, using dedicated procedures and an experimental design to determine the global characteristic parameters. A phenomenological approach was used to relate the phenol, salt and water fluxes with the driving forces (concentration and electric potential gradients). Under ED conditions, two contributions were pointed out for the phenol transport, i.e. diffusion and convection, this latter coming from the water flux due to electroosmosis related to the migration of salts. The fitting of the parameters of the transport equations resulted in good agreement with the experimental results over the range of conditions investigated. (c) 2008 Elsevier B.V. All rights reserved.Brazilian Federal Agency CAPE

    Photo-Fenton removal of water-soluble polymers

    No full text
    This paper presents the results of experiments carried out in a laboratory-scale photochemical reactor on the photodegradation of different polymers in aqueous solutions by the photo-Fenton process. Solutions of three polymers, polyethyleneglicol (PEG), polyacrylamide (PAM), and polyvinylpyrrolidone(PVP), were tested under different. conditions. The reaction progress was evaluated by sampling and analyzing the total organic carbon concentration in solution (TOC) along the reaction time. The behavior of the different polymers is discussed, based oil the evolution of the TOC-time curves. Under specific reaction conditions, the formation and coalescence of solid particles was Visually observed. Solids formation occurred simultaneously to a sharp decrease in the TOC of the liquid phase. This may be favorable for the treatment of industrial wastewater containing polymers, since the photodegradation process can be Coupled with solid separation systems. which may reduce the treatment cost. (C) 2008 Elsevier B.V. All rights reserved.CAPES (Coordenacao de Aperfeicoamento de Pessoal de Nivel Superior)CNPq (Conselho Nacional de Desenvolvimento Cientifico e Tecnologico)FAPESP (Fundacao de Amparo Pesquisa do Estado de Sao Paulo

    Feasibility Study of a Solar Reactor for Phenol Treatment by the Photo-Fenton process in Aqueous Solution

    No full text
    Solar reactors can be attractive in photodegradation processes due to lower electrical energy demand. The performance of a solar reactor for two flow configurations, i.e., plug flow and mixed flow, is compared based on experimental results with a pilot-scale solar reactor. Aqueous solutions of phenol were used as a model for industrial wastewater containing organic contaminants. Batch experiments were carried out under clear sky, resulting in removal rates in the range of 96100?%. The dissolved organic carbon removal rate was simulated by an empirical model based on neural networks, which was adjusted to the experimental data, resulting in a correlation coefficient of 0.9856. This approach enabled to estimate effects of process variables which could not be evaluated from the experiments. Simulations with different reactor configurations indicated relevant aspects for the design of solar reactors.CAPESCNPqFAPES
    corecore