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ABSTRACT 12 

Thermogravimetry combined with evolved gas mass spectrometry has been used to 13 

characterise the mineral crandallite CaAl3(PO4)2(OH)5·(H2O) and to ascertain the thermal 14 

stability of this ‘cave’ mineral.  X-ray diffraction proves the presence of the mineral and 15 

identifies the products after thermal decomposition.  The mineral crandallite is formed 16 

through the reaction of calcite with bat guano.  Thermal analysis shows that the mineral starts 17 

to decompose through dehydration at low temperatures at around 139°C while 18 

dehydroxylation occurs over the temperature range 200 to 700°C with loss of OH units. The 19 

critical temperature for OH loss is around 416°C and above this temperature the mineral 20 

structure is altered. Some minor loss of carbonate impurity occurs at 788°C. This study 21 

shows the mineral is unstable above 139°C.  This temperature is well above the 22 

temperature in caves, which have a maximum temperature of 15°C. A chemical reaction 23 

for the synthesis of crandallite is offered and the mechanism for the thermal 24 

decomposition is given. 25 
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Introduction 29 

 Many minerals are found as cave minerals and are found worldwide [1-6].  Phosphates have 30 

been known to exist in the Jenolan caves for a very long time [7-9].  Dating of clays in these 31 

caves suggest the caves are very old around 340 million years [10].  The calcite in the caves 32 

is older and has been dated as 430 million years old. The mineral crandallite is a hydroxy 33 

phosphate of calcium and aluminium. The mineral may be formed through the reaction of bat 34 

guano with calcite and also the reaction of solution phosphate with calcite.  Crandallite is a 35 

trigonal mineral, CaAl3(PO4)2(OH)5·H2O, which forms compact, cleavable or fibrous masses. 36 

The mineral is intimately associated with brushite and gypsum.  37 

 38 

Blanchard measured the thermal analysis patterns of crandallites [11].  He found weak 39 

endothermic reactions occur at 115, 180, 330°C while a strong endothermic peak appears at 40 

530°C, with exotherms at 690, 785, 930°C and between 1070 and 1150°C. 41 

Thermogravimetry shows that the 530°C peak is related to the loss of most of the H2O of 42 

crystallisation.  Francisco et al. [12] researched the thermal treatment of the aluminous 43 

phosphates of the crandallite group. These researchers studied the phosphate solubility 44 

resulting from the thermal treatment of crandallites.  Guardini et al. [13] reported studies on 45 

the calcination of aluminous phosphates in fluidised bed reactors.  Interest in crandallites and 46 

their thermal stability stems from the use of aluminophosphates as fertilizers [12-15].  47 

Despite this interest there have been very few studies on the thermal analysis of crandallites.  48 

 49 

Thermal analysis offers an important technique for the determination of the thermal stability 50 

of minerals [16-25]. Importantly the decomposition steps [20, 22, 26] can be obtained and 51 

mechanisms of decomposition of the mineral ascertained. There have been almost no studies 52 

on the thermal analysis of ‘cave’ minerals. In this research, we report the thermal 53 

decomposition of the mineral crandallite, a mineral common to caves worldwide.   54 

Experimental 55 

Minerals 56 
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The mineral crandallite (D56949) was sourced from The Australian Museum and originated 57 

from the Jenolan caves, New South Wales, Australia. Details of the mineral has been 58 

published (Anthony et al. Page 137) [27].   59 

Thermogravimetric analysis 60 

Thermal decomposition of crandallite was carried out in a TA® Instruments incorporated 61 

high-resolution thermogravimetric analyser (series Q500) in a flowing nitrogen 62 

atmosphere (80 cm3/min). Approximately 50 mg of sample was heated in an open 63 

platinum crucible at a rate of 5.0 °C/min up to 1000°C at high resolution. The TG 64 

instrument was coupled to a Balzers (Pfeiffer) mass spectrometer for gas analysis. Only 65 

selected gases such as water and sulphur dioxide were analysed.  66 

X-Ray diffraction patterns were collected using a Philips X'pert wide angle X-Ray 67 

diffractometer, operating in step scan mode, with Cu K radiation (1.54052 Å). 68 

Results and Discussion 69 

 70 

X-ray diffraction 71 

The XRD patterns of the crandallite before and after thermal analysis are shown in Figs 1a 72 

and 1b respectively.  Fig. 1a clearly shows that the mineral sample of crandallite from the 73 

Jenolan caves is very pure with only traces of another phosphate mineral (Ref: 01-0171-74 

1800).  The XRD pattern of the products after thermal decomposition (Fig. 1b) clearly shows 75 

that the products are aluminium phosphate and calcium aluminium phosphate.  76 

 77 

Thermal Analysis 78 

The thermogravimetric and derivative thermogravimetry curves of crandallite are shown in 79 

Figure 2. The associated ion current curves are reported in Figure 3. Based upon the formula 80 

CaAl3(PO4)2(OH)5·(H2O) the theoretical mass loss of water is 5.64% and the calculated mass 81 

loss of the OH units is 14.10%.  It is not expected that any phosphate would be decomposed 82 

over the temperature range studied.  A small mass loss is observed over the ambient to 65°C 83 

temperature range and is attributed to adsorbed water.  A major mass loss is found at 139°C 84 
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with a mass loss of 3.01%.  The ion current curves show a maximum at 155°C for water. 85 

Thus, the mass loss step at 139°C is attributed to the dehydration step.  A broad mass loss 86 

occurs over the 200 to 700°C temperature range.  Three mass loss temperatures are identified 87 

at 273, 416 and 504°C.  The total mass loss over these temperatures is 13.27% which may be 88 

compared with the calculated mass loss of 14.10%.  The measured mass loss is slightly less 89 

than the calculated value.  The following reactions are proposed: 90 

CaAl3(PO4)2(OH)5·(H2O)  → CaAl3(PO4)2(OH)5 + H2O   at 139°C 91 

9CaAl3(PO4)2(OH)5  →  22.5H2O  +  Ca9Al(PO4)7  + 11AlPO4  + 7.5Al2O3  after 700°C 92 

Blanchard [11] reported a TG mass loss at 530°C and attributed this peak to the loss of water 93 

of crystallisation.  This statement differs from our interpretation: the dTG maximum at 139°C 94 

is assigned to the dehydration peak whereas the broad peak centred upon 416°C is assigned to 95 

dehydroxylation.  Blanchard [11] used derivative thermal analysis to analyse crandallites.   A 96 

weak exothermic peak was observed at 115°C and strong endothermic peak at 530°C. Higher 97 

temperature exothermic effects were also observed by Blanchard. These effects are above the 98 

temperature range of this experiment. 99 

 100 

The presence of carbonate was checked through CO2 evolution during the thermal 101 

decomposition, the results of which are shown in the ion current curves. It is not unexpected 102 

that some calcite may be present, after all the crandallite is found on top of the stalactites in 103 

the caves.  The ion current curve for CO2 shows a peak at 795°C which corresponds to the 104 

small mass loss at 788°C of 0.2%.  This mass loss is attributed to the decomposition of the 105 

calcite.  The crandallite is found on calcite surfaces.  In reality this figure is excellent because 106 

it shows there is almost no impurity in crandallite. XRD of the product from the thermal 107 

decomposition of crandallite shows the product is a mixture ofAlPO4, Ca9Al(PO4)7 and 108 

Al2O3.   109 

 110 

Mechanism of formation of crandallite CaAl3(PO4)2(OH)5·(H2O) in caves 111 

Crandallite is formed through the reaction of bat guano and calcite. The question arises as to 112 

the source of aluminium. The Jenolan caves are known to have clays in the caves and these 113 
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may act as a source of aluminium. The chemical reaction of the phosphoric acid arising from 114 

the bat guano and the clays results in the liberation of the aluminium ions. The presence of 115 

these clays enables the estimation of the age of the caves.  The dating of clay is determined 116 

by tiny amounts of radioactive potassium. Over time the potassium turns to argon, a gas, 117 

which remains trapped, allowing measurement of the ratio of radioactive potassium to argon. 118 

The presence of the breakdown of, for example, kaolinite clays through the strong acids in 119 

the bat guano, results in the formation of gibbsite. This gibbsite may then act as a source of 120 

the hydroxyl units. The temperature inside the Jenolan Caves varies but is usually 15°C or 121 

less. Such low temperature favours the crystallisation of crandallite from solution.  122 

Bat guano provides a source of phosphate anions. Crandallite is formed on the calcite 123 

surfaces and the calcite provides a source of the Ca2+ ions. The Al3+ ions come from clays in 124 

the caves. Crandallite is formed from the reaction of the ions in solution. The following 125 

reaction is suggested: 126 

Ca2+ + 3Al3+  + 2H3PO4  + 6OH- → CaAl3(PO4)(PO3OH)(OH)6  127 

One of the important considerations for the nucleation and crystallisation of crandallite is the 128 

temperature and humidity within the Jenolan caves.  The temperatures within the caves are 129 

quite low and vary only by a small amount throughout the year.  Temperature sensing 130 

determined the temperature to vary from 12.8 to 15.6°C.  The higher temperatures are only 131 

achieved near the cave entrances.  The humidity within the caves is high and never goes 132 

below 75% relative humidity and the air is often saturated. 133 

 134 

CONCLUSIONS  135 

 136 

The mineral crandallite is known as a ‘cave’ mineral and is found in many caves worldwide. 137 

Experiments have been conducted to test the stability of the mineral and to find over what 138 

temperature range the mineral is stable. Thermal analysis shows that the mineral starts to 139 

decompose through dehydration at low temperatures at around 139°C while the 140 

decomposition dehydroxylation occurs over the temperature range 200 to 700°C. The critical 141 

temperature for OH loss is around 416°C and above this temperature the mineral structure 142 

is altered. Some minor loss of carbonate impurity occurs at 788°C.  143 
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 144 

It is concluded that the mineral starts to decompose at 139°C and all hydroxyl units are lost 145 

by 700°C.  The structural integrity of the mineral above this temperature is lost as is shown 146 

by the XRD patterns of the products of the thermal decomposition.  A mechanism for the 147 

synthesis and decomposition of crandallite is provided. 148 
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