563 research outputs found

    Rapid and complete hitless defragmentation method using a coherent RX LO with fast wavelength tracking in elastic optical networks

    Get PDF
    This paper demonstrates a rapid and full hitless defragmentation method in elastic optical networks exploiting a new technique for fast wavelength tracking in coherent receivers. This technique can be applied to a single-carrier connection or each of the subcarriers forming a superchannel. A proof-of-concept demonstration shows hitless defragmentation of a 10 Gb/s QPSK single-carrier connection from 1547.75 nm to 1550.1 nm in less than 1 mu s. This was obtained using a small (0.625 kB) link-layer transmitter buffer without the need for any additional transponder. We also demonstrated that the proposed defragmentation technique is capable of hopping over an existing connection, i.e. 10 Gb/s OOK at 1548.5 nm, without causing any degradation of its real-time Bit Error Rate (BER) value. The proposed scheme gives advantages in terms of overall network blocking probability reduction up to a factor of 40. (C) 2012 Optical Society of Americ

    The programmable processor

    Full text link
    [EN] Reconfigurable optical chips made from 2D meshes of connected waveguides could pave the way for programmable, general purpose microwave photonics processors.Capmany Francoy, J.; Gasulla Mestre, I.; Pérez-López, D. (2016). The programmable processor. Nature Photonics. 10:6-8. doi:10.1038/nphoton.2015.254S6810Waterhouse, R. & Novak, D. IEEE Microwave Mag. 16, 84–92 (2015).Skubic, B., Bottari, G., Rostami, A., Cavaliere, F. & Ölen, P. IEEE J. Lightwave Technol. 33, 1084–1091 (2015).Nature Photonics Technology Focus http://www.nature.com/nphoton/journal/v5/n12/techfocus/index.html (2011).Marpaung, D. et al. Lasers Phot. Rev. 7, 506–538 (2013).Pérez, D., Gasulla, I. & Capmany, J. Opt. Express 23, 14640–14654 (2015).Zhuang, L. et al. Optica 2, 854–859 (2015).Smit, M. et al. Semicond. Sci. Technol. 28, 083001 (2014).Guan, B. B. et al. IEEE J. Sel. Top. Quantum Electron. 20, 359–368 (2014).Wang, J. et al. Nature Commun. 6, 5957 (2015).Miller, D. A. B. Optica 2, 747–750 (2015)

    Frutapin, a lectin from Artocarpus incisa (breadfruit): cloning, expression and molecular insights

    Get PDF
    Artocarpus incisa (breadfruit) seeds contain three different lectins (Frutalin, Frutapin and Frutackin) with distinct carbohydrate specificities. The most abundant lectin is Frutalin, an α-D-galactose-specific carbohydrate-binding glycoprotein with antitumour properties and potential for tumour biomarker discovery as already reported. Frutapin (FTP) is the second most abundant, but proved difficult to purify with very low yields and contamination with Frutalin frustrating its characterization. Here, we report for the first time high-level production and isolation of biologically-active recombinant FTP in E. coli BL21, optimizing conditions with the best set yielding >40 mg/L culture of soluble active FTP. The minimal concentration for agglutination of red blood cells was 62.5 µg/mL of FTP, a process effectively inhibited by mannose. Apo-FTP, FTP-mannose and FTP-glucose crystals were obtained and diffracted X-rays to a resolution of 1.58 (P212121), 1.70 (P3121) and 1.60 (P3121) Å, respectively. The best solution showed four monomers per asymmetric unit. Molecular Dynamics simulation suggested FTP displays higher affinity for mannose than glucose. Cell studies revealed FTP was non-cytotoxic to cultured mouse fibroblast 3T3 cells below 0.5 mg/mL and also capable of stimulating cell migration at 50 µg/mL. In conclusion, our optimized expression system allowed high amounts of correctly-folded soluble FTP to be isolated. This recombinant bioactive lectin will now be tested in future studies for therapeutic potential; for example, in wound healing and tissue regeneration

    Double-sided slippery liquid-infused porous materials using conformable mesh

    Get PDF
    Often wetting is considered from the perspective of a single surface of a rigid substrate and its topographical properties such as roughness or texture. However, many substrates, such as membranes and meshes, have two useful surfaces. Such flexible substrates also offer the potential to be formed into structures with either a double-sided surface (e.g. by joining the ends of a mesh as a tape) or a single-sided surface (e.g. by ends with a half-twist). When a substrate possesses holes, it is also possible to consider how the spaces in the substrate may be connected or disconnected. This combination of flexibility, holes and connectedness can therefore be used to introduce topological concepts, which are distinct from simple topography. Here, we present a method to create a Slippery Liquid-Infused Porous Surface (SLIPS) coating on flexible conformable doubled-sided meshes and for coating complex geometries. By considering the flexibility and connectedness of a mesh with the surface properties of SLIPS, we show it is possible to create double-sided SLIPS materials with high droplet mobility and droplet control on both faces. We also exemplify the importance of flexibility using a mesh-based SLIPS pipe capable of withstanding laminar and turbulent flows for 180 and 90 minutes, respectively. Finally, we discuss how ideas of topology introduced by the SLIPS mesh might be extended to create completely new types of SLIPS systems, such as Mobius strips and auxetic metamaterials

    Neuroprotection in a Novel Mouse Model of Multiple Sclerosis

    Get PDF
    The authors acknowledge the support of the Barts and the London Charity, the Multiple Sclerosis Society of Great Britain and Northern Ireland, the National Multiple Sclerosis Society, USA, notably the National Centre for the Replacement, Refinement & Reduction of Animals in Research, and the Wellcome Trust (grant no. 092539 to ZA). The siRNA was provided by Quark Pharmaceuticals. The funders and Quark Pharmaceuticals had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript

    Mapping gene associations in human mitochondria using clinical disease phenotypes

    Get PDF
    Nuclear genes encode most mitochondrial proteins, and their mutations cause diverse and debilitating clinical disorders. To date, 1,200 of these mitochondrial genes have been recorded, while no standardized catalog exists of the associated clinical phenotypes. Such a catalog would be useful to develop methods to analyze human phenotypic data, to determine genotype-phenotype relations among many genes and diseases, and to support the clinical diagnosis of mitochondrial disorders. Here we establish a clinical phenotype catalog of 174 mitochondrial disease genes and study associations of diseases and genes. Phenotypic features such as clinical signs and symptoms were manually annotated from full-text medical articles and classified based on the hierarchical MeSH ontology. This classification of phenotypic features of each gene allowed for the comparison of diseases between different genes. In turn, we were then able to measure the phenotypic associations of disease genes for which we calculated a quantitative value that is based on their shared phenotypic features. The results showed that genes sharing more similar phenotypes have a stronger tendency for functional interactions, proving the usefulness of phenotype similarity values in disease gene network analysis. We then constructed a functional network of mitochondrial genes and discovered a higher connectivity for non-disease than for disease genes, and a tendency of disease genes to interact with each other. Utilizing these differences, we propose 168 candidate genes that resemble the characteristic interaction patterns of mitochondrial disease genes. Through their network associations, the candidates are further prioritized for the study of specific disorders such as optic neuropathies and Parkinson disease. Most mitochondrial disease phenotypes involve several clinical categories including neurologic, metabolic, and gastrointestinal disorders, which might indicate the effects of gene defects within the mitochondrial system. The accompanying knowledgebase (http://www.mitophenome.org/) supports the study of clinical diseases and associated genes

    Comparing Monofractal and Multifractal Analysis of Corrosion Damage Evolution in Reinforcing Bars

    Get PDF
    Based on fractal theory and damage mechanics, the aim of this paper is to describe the monofractal and multifractal characteristics of corrosion morphology and develop a new approach to characterize the nonuniform corrosion degree of reinforcing bars. The relationship between fractal parameters and tensile strength of reinforcing bars are discussed. The results showed that corrosion mass loss ratio of a bar cannot accurately reflect the damage degree of the bar. The corrosion morphology of reinforcing bars exhibits both monofractal and multifractal features. The fractal dimension and the tensile strength of corroded steel bars exhibit a power function relationship, while the width of multifractal spectrum and tensile strength of corroded steel bars exhibit a linear relationship. By comparison, using width of multifractal spectrum as multifractal damage variable not only reflects the distribution of corrosion damage in reinforcing bars, but also reveals the influence of nonuniform corrosion on the mechanical properties of reinforcing bars. The present research provides a new approach for the establishment of corrosion damage constitutive models of reinforcing bars

    Caffeine Reduces 11β-Hydroxysteroid Dehydrogenase Type 2 Expression in Human Trophoblast Cells through the Adenosine A2B Receptor

    Get PDF
    Maternal caffeine consumption is associated with reduced fetal growth, but the underlying molecular mechanisms are unknown. Since there is evidence that decreased placental 11β-hydroxysteroid dehydrogenase type 2 (11β-HSD2) is linked to fetal growth restriction, we hypothesized that caffeine may inhibit fetal growth partly through down regulating placental 11β-HSD2. As a first step in examining this hypothesis, we studied the effects of caffeine on placental 11β-HSD2 activity and expression using our established primary human trophoblast cells as an in vitro model system. Given that maternal serum concentrations of paraxanthine (the primary metabolite of caffeine) were greater in women who gave birth to small-for-gestational age infants than to appropriately grown infants, we also studied the effects of paraxanthine. Our main findings were: (1) both caffeine and paraxanthine decreased placental 11β-HSD2 activity, protein and mRNA in a concentration-dependent manner; (2) this inhibitory effect was mediated by the adenosine A2B receptor, since siRNA-mediated knockdown of this receptor prevented caffeine- and paraxanthine-induced inhibition of placental 11β-HSD2; and (3) forskolin (an activator of adenyl cyclase and a known stimulator of 11β-HSD2) abrogated the inhibitory effects of both caffeine and paraxanthine, which provides evidence for a functional link between exposure to caffeine and paraxanthine, decreased intracellular levels of cAMP and reduced placental 11β-HSD2. Taken together, these findings reveal that placental 11β-HSD2 is a novel molecular target through which caffeine may adversely affect fetal growth. They also uncover a previously unappreciated role for the adenosine A2B receptor signaling in regulating placental 11β-HSD2, and consequently fetal development
    corecore