151 research outputs found

    Effect of Beta-Mannanase Supplementation on Growth Performance, Fecal Consistency, and Carcass Characteristics of Weanling Pigs

    Get PDF
    The study aimed to investigate the effect of beta-mannanase supplementation on growth performance, fecal consistency, and carcass characteristics of weanling pigs. A total of 100 weaned piglets (initial body weight = 7 ± 0.5 kg) were divided into 2 dietary treatments of (T1) control diet; and (T2) beta-mannanase supplemented diet. Each treatment was replicated 5 times with a pen of 10 piglets each following a completely randomized design. Feed and water were supplied ad libitum during the 30- day feeding trial. Fecal scores per pen were determined every morning on a daily basis; 1 pig per replicate was randomly selected for carcass evaluation. The results showed that there were no significant differences (P>0.05) in feed conversion ratio, fecal consistency scores, dressing percentage, and loin eye area between T1 and T2. Treatment T1 produced a greater body weight and gained weight faster compared to T2. In conclusion, beta-mannanase supplementation did not improve growth performance, fecal consistency, and carcass characteristics in weanling pigs. The amount of beta-mannanase was not enough to degrade the non-starch polysaccharides of the soybean meal

    Evaluation of coffee bean husk fermented by a combination of Aspergillus niger, Trichoderma harzianum, and Saccharomyces cerevisiae as animal feed

    Get PDF
    Abundant coffee bean husk acquires an alternative source of fiber for livestock feed, but a high level of the crude fiber of it became an obstacle. Solid-state fermentation technology using lignocellulolytic fungi is known to be able to improve the nutritional quality of feedstuff that have high fiber content. Its mechanism is through the degradation of the lignocellulose fraction and enhance protein content. This study aimed to determine the nutritional quality of fermented coffee bean husk with a combination of fungi and yeast. The fermentation method used a solid-state fermentation consisting of 7 different inoculums, namely: P0: Unfermented coffee bean husk, P1: Aspergillus niger, P2: Saccharomyces cerevisiae, P3: Trichoderma harzianum, P4: Aspergillus niger + S. Cereviciase, P5: Aspergillus niger + Trichoderma harzianum, P6: Saccharomyces cerevisiae + Trichoderma harzianum and P7: Aspergillus niger + Saccharomyces. Cereviciase + Trichoderma harzianum. The nutritional quality of the fermented coffee bean husk was determined by proximate analysis, lignocellulolytic fraction, and digestibility. The data obtained were analyzed by ANOVA and followed by Tukey's post hoc test. The crude fiber content of fermented coffee bean husk (P1-P7) was lower than unfermented (P0). There was no significant difference among treatments in crude fat and protein. Treatment P3 has the highest total digestibility nutrient (70) and the lower crude fiber (15.03). A combination of Aspergillus niger and Saccharomyces cerevisiae reduce lignin content by about (4,16%). In conclusion, the fermented coffee bean husk can be utilized as animal feedstuff with higher nutritional quality than unfermented

    Modulation of chicken gut microbiota for enhanced productivity and health: A review

    Get PDF
    Microbiota in the digestive tract has become an interesting topic for researchers in recent years. The profile of chicken digestive tract microbiota and its relationship with health and production efficiency have become basic data for modulating the diversity and abundance of the digestive tract microbiota. This article reviews the techniques used to analyze the diversity, role, and function of the gastrointestinal microbiota and the mechanisms by which they are modulated. The gut microbiota plays an important role in animal production, especially during feed digestion and animal health, because it interacts with the host against pathogens. Feed modulation can be a strategy to modulate gut composition and diversity to increase production efficiency by improving growth conditions

    Effect of alcohol dehydrogenase 1C (ADH1C) genotype on vitamin A restriction and marbling in Korean native steers

    Get PDF
    Objective This work was to find the correlation of alcohol dehydrogenase 1C (ADH1C) genotype with vitamin A reduction and carcass traits during the vitamin A restriction period. Methods In study 1, 60 Korean native steers were fed a diet (890 IU/kg) with 8,000 IU and 0 IU of supplemental premix vitamin A/kg of dry matter (DM) for control and treatment group, respectively. The levels of serum vitamin A were analyzed through high preparative performance liquid chromatography, and the ADH1C genotype was analyzed based on polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP; 78.1% TT type, 21.9% TC type); however, CC type was not found. Then, the interaction between ADH1C and carcass traits on the vitamin A restriction was investigated in study 2. A total of 136 Korean native steers were fed a diet that included 930 IU/kg vitamin A of DM. Results Serum vitamin A in treatment was reduced to 112.4 IU/dL in steers with TT type of ADH1C, while for steers with TC type the concentration of serum vitamin A was dropped to 79.5 IU/dL (p<0.1) in study 1. This showed that TC type had the potential to lower serum vitamin A concentration during vitamin A restriction compared to TT type. In study 2 we found that eye muscle area, marbling and carcass weight in Korean native steers with TC type were higher than in steers with TT type (p<0.05). Conclusion The interaction between vitamin A restriction and TC type of ADH1C gene could have the potential of increasing the marbling in Korean native steers. These results indicated that steers with TC type of the ADH1C gene were more sensitive to the change of serum vitamin A than TT types. Furthermore, this finding has the potential to enable a higher marbling score under the condition of vitamin A restriction in Korean native steers

    Zinc-chelated Vitamin C Stimulates Adipogenesis of 3T3-L1 Cells

    Get PDF
    Adipose tissue development and function play a critical role in the regulation of energy balance, lipid metabolism, and the pathophysiology of metabolic syndromes. Although the effect of zinc ascorbate supplementation in diabetes or glycemic control is known in humans, the underlying mechanism is not well described. Here, we investigated the effect of a zinc-chelated vitamin C (ZnC) compound on the adipogenic differentiation of 3T3-L1 preadipocytes. Treatment with ZnC for 8 d significantly promoted adipogenesis, which was characterized by increased glycerol-3-phosphate dehydrogenase activity and intracellular lipid accumulation in 3T3-L1 cells. Meanwhile, ZnC induced a pronounced up-regulation of the expression of glucose transporter type 4 (GLUT4) and the adipocyte-specific gene adipocyte protein 2 (aP2). Analysis of mRNA and protein levels further showed that ZnC increased the sequential expression of peroxisome proliferator-activated receptor gamma (PPARγ) and CCAAT/enhancer-binding protein alpha (C/EBPα), the key transcription factors of adipogenesis. These results indicate that ZnC could promote adipogenesis through PPARγ and C/EBPα, which act synergistically for the expression of aP2 and GLUT4, leading to the generation of insulin-responsive adipocytes and can thereby be useful as a novel therapeutic agent for the management of diabetes and related metabolic disorders

    Anatomical Consideration of the Anterior and Lateral Cutaneous Nerves in the Scalp

    Get PDF
    To better understand the anatomic location of scalp nerves involved in various neurosurgical procedures, including awake surgery and neuropathic pain control, a total of 30 anterolateral scalp cutaneous nerves were examined in Korean adult cadavers. The dissection was performed from the distal to the proximal aspects of the nerve. Considering the external bony landmarks, each reference point was defined for all measurements. The supraorbital nerve arose from the supraorbital notch or supraorbital foramen 29 mm lateral to the midline (range, 25-33 mm) and 5 mm below the supraorbital upper margin (range, 4-6 mm). The supratrochlear nerve exited from the orbital rim 16 mm lateral to the midline (range, 12-21 mm) and 7 mm below the supraorbital upper margin (range, 6-9 mm). The zygomaticotemporal nerve pierced the deep temporalis fascia 10 mm posterior to the frontozygomatic suture (range, 7-13 mm) and 22 mm above the upper margin of the zygomatic arch (range, 15-27 mm). In addition, three types of zygomaticotemporal nerve branches were found. Considering the superficial temporal artery, the auriculotemporal nerve was mostly located superficial or posterior to the artery (80%). There were no significant differences between the right and left sides or based on gender (P>0.05). These data can be applied to many neurosurgical diagnostic or therapeutic procedures related to anterolateral scalp cutaneous nerve
    corecore