35,849 research outputs found

    The effect of internal pipe wall roughness on the accuracy of clamp-on ultrasonic flow meters

    Get PDF
    Clamp-on transit-time ultrasonic flowmeters (UFMs) suffer from poor accuracy compared with spool-piece UFMs due to uncertainties that result from the in-field installation process. One of the important sources of uncertainties is internal pipe wall roughness which affects the flow profile and also causes significant scattering of ultrasound. This paper purely focuses on the parametric study to quantify the uncertainties (related to internal pipe wall roughness) induced by scattering of ultrasound and it shows that these effects are large even without taking into account the associated flow disturbances. The flowmeter signals for a reference clamp-on flowmeter setup were simulated using 2-D finite element analysis including simplifying assumptions (to simulate the effect of flow) that were deemed appropriate. The validity of the simulations was indirectly verified by carrying out experiments with different separation distances between ultrasonic probes. The error predicted by the simulations and the experimentally observed errors were in good agreement. Then, this simulation method was applied on pipe walls with rough internal surfaces. For ultrasonic waves at 1 MHz, it was found that compared with smooth pipes, pipes with only a moderately rough internal surface (with 0.2-mm rms and 5-mm correlation length) can exhibit systematic errors of 2 in the flow velocity measurement. This demonstrates that pipe internal surface roughness is a very important factor that limits the accuracy of clamp on UFMs

    Stochastic stability of viscoelastic systems under Gaussian and Poisson white noise excitations

    Get PDF
    As the use of viscoelastic materials becomes increasingly popular, stability of viscoelastic structures under random loads becomes increasingly important. This paper aims at studying the asymptotic stability of viscoelastic systems under Gaussian and Poisson white noise excitations with Lyapunov functions. The viscoelastic force is approximated as equivalent stiffness and damping terms. A stochastic differential equation is set up to represent randomly excited viscoelastic systems, from which a Lyapunov function is determined by intuition. The time derivative of this Lyapunov function is then obtained by stochastic averaging. Approximate conditions are derived for asymptotic Lyapunov stability with probability one of the viscoelastic system. Validity and utility of this approach are illustrated by a Duffing-type oscillator possessing viscoelastic forces, and the influence of different parameters on the stability region is delineated

    A systematic study of Rayleigh-Brillouin scattering in air, N2 and O2 gases

    Full text link
    Spontaneous Rayleigh-Brillouin scattering experiments in air, N2 and O2 have been performed for a wide range of temperatures and pressures at a wavelength of 403 nm and at a 90 degrees scattering angle. Measurements of the Rayleigh-Brillouin spectral scattering profile were conducted at high signal-to-noise ratio for all three species, yielding high-quality spectra unambiguously showing the small differences between scattering in air, and its constituents N2 and O2. Comparison of the experimental spectra with calculations using the Tenti S6 model, developed in 1970s based on linearized kinetic equations for molecular gases, demonstrates that this model is valid to high accuracy. After previous measurements performed at 366 nm, the Tenti S6 model is here verified for a second wavelength of 403 nm. Values for the bulk viscosity for the gases are derived by optimizing the model to the measurements. It is verified that the bulk viscosity parameters obtained from previous experiments at 366 nm, are valid for wavelengths of 403 nm. Also for air, which is treated as a single-component gas with effective gas transport coefficients, the Tenti S6 treatment is validated for 403 nm as for the previously used wavelength of 366 nm, yielding an accurate model description of the scattering profiles for a range of temperatures and pressures, including those of relevance for atmospheric studies. It is concluded that the Tenti S6 model, further verified in the present study, is applicable to LIDAR applications for exploring the wind velocity and the temperature profile distributions of the Earth's atmosphere. Based on the present findings, predictions can be made on the spectral profiles for a typical LIDAR backscatter geometry, which deviate by some 7 percent from purely Gaussian profiles at realistic sub-atmospheric pressures occurring at 3-5 km altitude in the Earth's atmosphere

    Efficient electronic entanglement concentration assisted with single mobile electron

    Full text link
    We present an efficient entanglement concentration protocol (ECP) for mobile electrons with charge detection. This protocol is quite different from other ECPs for one can obtain a maximally entangled pair from a pair of less-entangled state and a single mobile electron with a certain probability. With the help of charge detection, it can be repeated to reach a higher success probability. It also does not need to know the coefficient of the original less-entangled states. All these advantages may make this protocol useful in current distributed quantum information processing.Comment: 6pages, 3figure

    Fluctuations and scaling of inverse participation ratios in random binary resonant composites

    Full text link
    We study the statistics of local field distribution solved by the Green's-function formalism (GFF) [Y. Gu et al., Phys. Rev. B {\bf 59} 12847 (1999)] in the disordered binary resonant composites. For a percolating network, the inverse participation ratios (IPR) with q=2q=2 are illustrated, as well as the typical local field distributions of localized and extended states. Numerical calculations indicate that for a definite fraction pp the distribution function of IPR PqP_q has a scale invariant form. It is also shown the scaling behavior of the ensemble averaged described by the fractal dimension DqD_q. To relate the eigenvectors correlations to resonance level statistics, the axial symmetry between D2D_2 and the spectral compressibility χ\chi is obtained.Comment: 7 pages, 6 figures, accepted by Physical Review
    • …
    corecore