research

Fluctuations and scaling of inverse participation ratios in random binary resonant composites

Abstract

We study the statistics of local field distribution solved by the Green's-function formalism (GFF) [Y. Gu et al., Phys. Rev. B {\bf 59} 12847 (1999)] in the disordered binary resonant composites. For a percolating network, the inverse participation ratios (IPR) with q=2q=2 are illustrated, as well as the typical local field distributions of localized and extended states. Numerical calculations indicate that for a definite fraction pp the distribution function of IPR PqP_q has a scale invariant form. It is also shown the scaling behavior of the ensemble averaged described by the fractal dimension DqD_q. To relate the eigenvectors correlations to resonance level statistics, the axial symmetry between D2D_2 and the spectral compressibility χ\chi is obtained.Comment: 7 pages, 6 figures, accepted by Physical Review

    Similar works