116 research outputs found

    Solar Wind Speed Estimate with Machine Learning Ensemble Models for LISA

    Full text link
    In this work we study the potentialities of machine learning models in reconstructing the solar wind speed observations gathered in the first Lagrangian point by the ACE satellite in 2016--2017 using as input data galactic cosmic-ray flux variations measured with particle detectors hosted onboard the LISA Pathfinder mission also orbiting around L1 during the same years. We show that ensemble models composed of heterogeneous weak regressors are able to outperform weak regressors in terms of predictive accuracy. Machine learning and other powerful predictive algorithms open a window on the possibility of substituting dedicated instrumentation with software models acting as surrogates for diagnostics of space missions such as LISA and space weather science.Comment: Submitted to Environmental Modelling & Softwar

    Cosmic-ray positron measurements: on the origin of the e + excess and limits on magnetar birthrate

    Get PDF
    Fifty years after the discovery of antimatter in cosmic rays at the top of the atmosphere, the trend of the most accurate measurements of positrons indicate an excess of these particles above 7 GeV with respect to the secondary component produced by primary cosmic rays propagating in the interstellar medium. This excess is studied here within the scenario of the last 25-year magnetic spectrometer observations. The characteristics of sources contributing to the overall e + flux observed near Earth as a function of particle energy are discussed. Pulsars and magnetars are considered plausible sources of cosmic-ray leptons. The consistency of this possibility is evaluated on the basis of inferred e + source characteristics and parameters set in several other astrophysics fields for these neutron stars. In case all pulsars and magnetars in the vicinity of Earth contribute to e + -e fluxes as expected, a larger positron excess would have been observed. Disks around pulsars and magnetars may play a role in quenching pair production in the magnetosphere of these neutron stars. The magnetar birthrate may also be overestimated

    Low-energy electromagnetic processes affecting free-falling test-mass charging for LISA and future space interferometers

    Full text link
    Galactic cosmic rays and solar energetic particles charge gold-platinum, free-falling test masses (TMs) on board interferometers for the detection of gravitational waves in space. The charging process induces spurious forces on the test masses that affect the sensitivity of these instruments mainly below 10310^{-3} Hz. Geant4 and FLUKA Monte Carlo simulations were carried out to study the TM charging process on board the LISA Pathfinder mission that remained into orbit around the Sun-Earth Lagrange point L1 between 2016 and 2017. While a good agreement was observed between simulations and measurements of the TMs net charging, the shot noise associated with charging fluctuations of both positive and negative particles resulted 3-4 times higher that predicted. The origin of this mismatch was attributed to the propagation of electrons and photons only above 100 eV in the simulations. In this paper, low-energy electromagnetic processes to be included in the future Monte Carlo simulations for LISA and LISA-like space interferometers TM charging are considered. {It is found that electrons and photons below 100 eV give a contribution to the effective charging comparable to that of the whole sample of particles above this energy. In particular, for incident protons ionization contributes twice with respect to low energy kinetic emission and electron backscattering. The other processes are found to play a negligible role. For heavy nuclei only sputtering must be considered.Comment: Accepted for publication in Classical and Quantum Gravit

    Bridging the gap between Monte Carlo simulations and measurements of the LISA Pathfinder test-mass charging for LISA

    Full text link
    Cubic gold-platinum free-falling test masses (TMs) constitute the mirrors of future LISA and LISA-like interferometers for low-frequency gravitational wave detection in space. High-energy particles of Galactic and solar origin charge the TMs and thus induce spurious electrostatic and magnetic forces that limit the sensitivity of these interferometers. Prelaunch Monte Carlo simulations of the TM charging were carried out for the LISA Pathfinder (LPF) mission, that was planned to test the LISA instrumentation. Measurements and simulations were compared during the mission operations. The measured net TM charging agreed with simulation estimates, while the charging noise was three to four times higher. We aim to bridge the gap between LPF TM charging noise simulations and observations. New Monte Carlo simulations of the LPF TM charging due to both Galactic and solar particles were carried out with the FLUKA/LEI toolkit. This allowed propagating low-energy electrons down to a few electronvolt. These improved FLUKA/LEI simulations agree with observations gathered during the mission operations within statistical and Monte Carlo errors. The charging noise induced by Galactic cosmic rays is about one thousand charges per second. This value increases to tens of thousands charges per second during solar energetic particle events. Similar results are expected for the LISA TM charging.Comment: 11 pages, 9 figure

    Study of Galactic Cosmic-Ray Flux Modulation by Interplanetary Plasma Structures for the Evaluation of Space Instrument Performance and Space Weather Science Investigations

    Get PDF
    The role of high-energy particles in limiting the performance of on-board instruments was studied for the European Space Agency (ESA) Laser Interferometer Space Antenna (LISA) Pathfinder (LPF) and ESA/National Astronautics and Space Administration Solar Orbiter missions. Particle detectors (PD) placed on board the LPF spacecraft allowed for testing the reliability of pre-launch predictions of galactic cosmic-ray (GCR) energy spectra and for studying the modulation of proton and helium overall flux above 70 MeV n − 1 on a day-by-day basis. GCR flux variations up to approximately 15% in less than a month were observed with LPF orbiting around the Lagrange point L1 between 2016 and 2017. These variations appeared barely detected or undetected in neutron monitors. In this work the LPF data and contemporaneous observations carried out with the magnetic spectrometer AMS-02 experiment are considered to show the effects of GCR flux short-term variations with respect to monthly averaged measurements. Moreover, it is shown that subsequent large-scale interplanetary structures cause a continuous modulation of GCR fluxes. As a result, small Forbush decreases cannot be considered good proxies for the transit of interplanetary coronal mass ejections and for geomagnetic storm forecasting

    A novel approach in magnetic cloud-driven Forbush decrease modeling

    Get PDF
    Interplanetary coronal mass ejections (ICMEs) are large-scale solar wind disturbances propagating from the Sun and causing a depression of the galactic-cosmic ray (GCR) intensity known as Forbush decrease (FD). IC- MEs generally contain coherent plasma structures called magnetic clouds (MCs). A unique and powerful data analysis tool allowing for the study of the quasi-3-D configuration of a MC is the Grad-Shafranov (GS) recons - truction. The aim of this work is to investigate the role played by the MC configuration in the formation of a FD. A suited full-orbit test-particle simulation has been developed in order to evaluate FD amplitude and time pro- file produced by the MC obtained with the GS reconstruction. Particle trajectories are computed starting from an isotropic flux outside the MC region. In addition, particle diffusion has been modeled by superimposing a small-angle scattering over the unperturbed charged particle motion at each time step. The model allows us to investigate the MC effect on GCR propagation and to study the energy dependence of the physical processes in - volved, as it provides an estimate of ground-based GCR counts observations at different latitudes. A comparison between model results and both space-based cosmic-ray measurements in L1 and ground-based observations suggests a major role of drifts in producing the FD and a reduced contribution of GCR particle diffusion

    The role of low-energy electrons in the charging process of LISA test masses

    Get PDF
    The estimate of the total electron yield is fundamental for our understanding of the test-mass charging associated with cosmic rays in the Laser Interferometer Space Antenna (LISA) Pathfinder mission and in the forthcoming gravitational wave observatory LISA. To unveil the role of low energy electrons in this process owing to galactic and solar energetic particle events, in this work we study the interaction of keV and sub-keV electrons with a gold slab using a mixed Monte Carlo (MC) and ab-initio framework. We determine the energy spectrum of the electrons emerging from such a gold slab hit by a primary electron beam by considering the relevant energy loss mechanisms as well as the elastic scattering events. We also show that our results are consistent with experimental data and MC simulations carried out with the GEANT4-DNA toolkit

    A New Method to Model Magnetic Cloud-driven Forbush Decreases: The 2016 August 2 Event

    Get PDF
    Interplanetary coronal mass ejections (ICMEs), generally containing magnetic clouds (MCs), are associated with galactic-cosmic ray (GCR) intensity depressions known as Forbush decreases (FDs). An ICME was observed at L1 between 2016 August 2 at 14:00 UT and August 3 at 03:00 UT. The MC region was identified and its magnetic configuration was retrieved by using the Grad-Shafranov (GS) reconstruction. A weak FD in the GCR count-rate was observed on 2016 August 2 by a particle detector on board the European Space Agency LISA Pathfinder mission. The spacecraft orbited around L1 and the particle detector allowed us to monitor the GCR intensity at energies above 70 MeVn(-1). A 9% decrease in the cosmic-ray intensity was observed during the ICME passage. The first structure of the ICME caused a 6.4% sharp decrease, while the MC produced a 2.6% decrease. A suited full-orbit test-particle simulation was performed on the MC configuration obtained through the GS reconstruction. The FD amplitude and time profile obtained through the simulation show an excellent agreement with observations. The test-particle simulation allows us to derive the energy dependence of the MC-driven FD providing an estimate of the amplitude at different rigidities, here compared with several neutron monitor observations. This work points out the importance of the large-scale MC configuration in the interaction between GCRs and ICMEs and suggests that particle drifts have a primary role in modulating the GCR intensity within the MC under study and possibly in at least all slowly expanding ICMEs lacking a shock/sheath region

    Astrodynamical Space Test of Relativity using Optical Devices I (ASTROD I) - A class-M fundamental physics mission proposal for Cosmic Vision 2015-2025: 2010 Update

    Get PDF
    This paper on ASTROD I is based on our 2010 proposal submitted for the ESA call for class-M mission proposals, and is a sequel and an update to our previous paper [Experimental Astronomy 23 (2009) 491-527; designated as Paper I] which was based on our last proposal submitted for the 2007 ESA call. In this paper, we present our orbit selection with one Venus swing-by together with orbit simulation. In Paper I, our orbit choice is with two Venus swing-bys. The present choice takes shorter time (about 250 days) to reach the opposite side of the Sun. We also present a preliminary design of the optical bench, and elaborate on the solar physics goals with the radiation monitor payload. We discuss telescope size, trade-offs of drag-free sensitivities, thermal issues and present an outlook. ASTROD I is a planned interplanetary space mission with multiple goals. The primary aims are: to test General Relativity with an improvement in sensitivity of over 3 orders of magnitude, improving our understanding of gravity and aiding the development of a new quantum gravity theory; to measure key solar system parameters with increased accuracy, advancing solar physics and our knowledge of the solar system; and to measure the time rate of change of the gravitational constant with an order of magnitude improvement and the anomalous Pioneer acceleration, thereby probing dark matter and dark energy gravitationally. It is envisaged as the first in a series of ASTROD missions. ASTROD I will consist of one spacecraft carrying a telescope, four lasers, two event timers and a clock. Two-way, two-wavelength laser pulse ranging will be used between the spacecraft in a solar orbit and deep space laser stations on Earth, to achieve the ASTROD I goals.Comment: 15 pages, 11 figures, 1 table, based on our 2010 proposal submitted for the ESA call for class-M mission proposals, a sequel and an update to previous paper [Experimental Astronomy 23 (2009) 491-527] which was based on our last proposal submitted for the 2007 ESA call, submitted to Experimental Astronom
    corecore