1,522 research outputs found
The structure and dynamics of GRB jets
Original paper can be found at: http://www.astroscu.unam.mx/~rmaa/rmaa.html Copyright Universidad Nacional Autonoma de MexicoThere are several lines of evidence which suggest that the relativistic outflows in gamma-ray bursts (GRBs) are collimated into narrow jets. The jet structure has important implications for the true energy release and the event rate of GRBs, and can constrain the mechanism responsible for the acceleration and collimation of the jet. Nevertheless, the jet structure and its dynamics as it sweeps up the external medium and decelerates, are not well understood. In this review I discuss our current understanding of GRB jets, stressing their structure and dynamics.Peer reviewe
Emergence of a confined state in a weakly bent wire
In this paper we use a simple straightforward technique to investigate the
emergence of a bound state in a weakly bent wire. We show that the bend behaves
like an infinitely shallow potential well, and in the limit of small bending
angle and low energy the bend can be presented by a simple 1D delta function
potential.Comment: 4 pages, 3 Postscript figures (uses Revtex); added references and
rewritte
Neutrinos from Gamma-Ray Bursts in Pulsar Wind Bubbles: \sim 10^{16} eV
The supranova model for Gamma-Ray Bursts (GRBs) is becoming increasingly more
popular. In this scenario the GRB occurs weeks to years after a supernova
explosion, and is located inside a pulsar wind bubble (PWB). Protons
accelerated in the internal shocks that emit the GRB may interact with the
external PWB photons producing pions which decay into \sim 10^{16} eV
neutrinos. A km^2 neutrino detector would observe several events per year
correlated with the GRBs.Comment: Accepted for publication in PRL. 4 pages, 3 figures, minor change
Impulsive acceleration of strongly magnetized relativistic flows
The definitive version can be found at: http://onlinelibrary.wiley.com/ Copyright Royal Astronomical SocietyThe strong variability of magnetic central engines of active galactic nuclei (AGNs) and gamma-ray bursts (GRBs) may result in highly intermittent strongly magnetized relativistic outflows. We find a new magnetic acceleration mechanism for such impulsive flows that can be much more effective than the acceleration of steady-state flows. This impulsive acceleration results in kinetic-energy-dominated flows that are conducive to efficient dissipation at internal magnetohydrodynamic shocks on astrophysically relevant distances from the central source. For a spherical flow, a discrete shell ejected from the source over a time t0 with Lorentz factor Γ∼ 1 and initial magnetization σ0=B20/4πρ0c2≫ 1 quickly reaches a typical Lorentz factor Γ∼σ1/30 and magnetization σ∼σ2/30 at the distance R0≈ct0. At this point, the magnetized shell of width Δ∼R0 in the laboratory frame loses causal contact with the source and continues to accelerate by spreading significantly in its own rest frame. The expansion is driven by the magnetic pressure gradient and leads to relativistic relative velocities between the front and back of the shell. While the expansion is roughly symmetric in the centre of the momentum frame, in the laboratory frame, most of the energy and momentum remains in a region (or shell) of width Δ∼R0 at the head of the flow. This acceleration proceeds as Γ∼ (σ0R/R0)1/3 and σ∼σ2/30 (R/R0)-1/3 until reaching a coasting radius Rc∼R0σ20, where the kinetic energy becomes dominant: Γ∼σ0 and σ∼ 1 at Rc. The shell then starts coasting and spreading (radially), its width growing as Δ∼R0(R/Rc), causing its magnetization to drop as σ∼Rc/R at R > Rc. Given the typical variability time-scales of AGNs and GRBs, the magnetic acceleration in these sources is a combination of the quasi-steady-state collimation acceleration close to the source and the impulsive (conical or locally quasi-spherical) acceleration farther out. The interaction with the external medium, which can significantly affect the dynamics, is briefly addressed in the discussion.Peer reviewe
Gamma-Ray Burst afterglow scaling coefficients for general density profile
Gamma-ray burst (GRB) afterglows are well described by synchrotron emission
originating from the interaction between a relativistic blast wave and the
external medium surrounding the GRB progenitor. We introduce a code to
reconstruct spectra and light curves from arbitrary fluid configurations,
making it especially suited to study the effects of fluid flows beyond those
that can be described using analytical approximations. As a check and first
application of our code we use it to fit the scaling coefficients of
theoretical models of afterglow spectra. We extend earlier results of other
authors to general circumburst density profiles. We rederive the physical
parameters of GRB 970508 and compare with other authorsComment: 11 pages, 5 figures. Revised edition removes references to unphysical
chromatic break and adds appendix on hot region directly behind shoc
The Prompt Gamma-Ray and Afterglow Energies of Short-Duration Gamma-Ray Bursts
I present an analysis of the gamma-ray and afterglow energies of the complete
sample of 17 short duration GRBs with prompt X-ray follow-up. I find that 80%
of the bursts exhibit a linear correlation between their gamma-ray fluence and
the afterglow X-ray flux normalized to t=1 d, a proxy for the kinetic energy of
the blast wave ($F_{X,1}~F_{gamma}^1.01). An even tighter correlation is
evident between E_{gamma,iso} and L_{X,1} for the subset of 13 bursts with
measured or constrained redshifts. The remaining 20% of the bursts have values
of F_{X,1}/F_{gamma} that are suppressed by about three orders of magnitude,
likely because of low circumburst densities (Nakar 2007). These results have
several important implications: (i) The X-ray luminosity is generally a robust
proxy for the blast wave kinetic energy, indicating nu_X>nu_c and hence a
circumburst density n>0.05 cm^{-3}; (ii) most short GRBs have a narrow range of
gamma-ray efficiency, with ~0.85 and a spread of 0.14 dex; and
(iii) the isotropic-equivalent energies span 10^{48}-10^{52} erg. Furthermore,
I find tentative evidence for jet collimation in the two bursts with the
highest E_{gamma,iso}, perhaps indicative of the same inverse correlation that
leads to a narrow distribution of true energies in long GRBs. I find no clear
evidence for a relation between the overall energy release and host galaxy
type, but a positive correlation with duration may be present, albeit with a
large scatter. Finally, I note that the outlier fraction of 20% is similar to
the proposed fraction of short GRBs from dynamically-formed neutron star
binaries in globular clusters. This scenario may naturally explain the
bimodality of the F_{X,1}/F_{gamma} distribution and the low circumburst
densities without invoking speculative kick velocities of several hundred km/s.Comment: Submitted to ApJ; 9 pages, 2 figures, 1 tabl
Synchrotron Self Absorption in GRB Afterglow
GRB afterglow is reasonably described by synchrotron emission from
relativistic blast waves at cosmological distances. We perform detailed
calculations taking into account the effect of synchrotron self absorption. We
consider emission from the whole region behind the shock front, and use the
Blandford McKee self similar solution to describe the fluid behind the shock.
We calculate the spectra and the observed image of a GRB afterglow near the
self absorption frequency and derive an accurate expression for
. We show that the image is rather homogeneous for , as
opposed to the bright ring at the outer edge and dim center, which appear at
higher frequencies. We compare the spectra we obtain to radio observations of
GRB970508. We combine the calculations of the spectra near the self absorption
frequency with other parts of the spectra and obtain revised estimates for the
physical parameters of the burst: , ,
, . These estimates are different by up to two
orders of magnitude than the estimates based on an approximate spectrum.Comment: 19 page latex file including 6 figures and 1 tabl
- …