199 research outputs found

    SNP Miniplexes for Individual Identification of Random-Bred Domestic Cats.

    Get PDF
    Phenotypic and genotypic characteristics of the cat can be obtained from single nucleotide polymorphisms (SNPs) analyses of fur. This study developed miniplexes using SNPs with high discriminating power for random-bred domestic cats, focusing on individual and phenotypic identification. Seventy-eight SNPs were investigated using a multiplex PCR followed by a fluorescently labeled single base extension (SBE) technique (SNaPshot(®) ). The SNP miniplexes were evaluated for reliability, reproducibility, sensitivity, species specificity, detection limitations, and assignment accuracy. Six SNPplexes were developed containing 39 intergenic SNPs and 26 phenotypic SNPs, including a sex identification marker, ZFXY. The combined random match probability (cRMP) was 6.58 × 10(-19) across all Western cat populations and the likelihood ratio was 1.52 × 10(18) . These SNPplexes can distinguish individual cats and their phenotypic traits, which could provide insight into crime reconstructions. A SNP database of 237 cats from 13 worldwide populations is now available for forensic applications

    Whole genome sequencing in cats, identifies new models for blindness in AIPL1 and somite segmentation in HES7

    Get PDF
    BackgroundThe reduced cost and improved efficiency of whole genome sequencing (WGS) is drastically improving the development of cats as biomedical models. Persian cats are models for Leber's congenital amaurosis (LCA), the most severe and earliest onset form of visual impairment in humans. Cats with innocuous breed-defining traits, such as a bobbed tail, can also be models for somite segmentation and vertebral column development.MethodsThe first WGS in cats was conducted on a trio segregating for LCA and the bobbed tail abnormality. Variants were identified using FreeBayes and effects predicted using SnpEff. Variants within a known haplotype block for cat LCA and specific candidate genes for both phenotypes were prioritized by the predicted variant effect on the proteins and concordant segregation within the trio. The efficiency of WGS of a single trio of domestic cats was evaluated.ResultsA stop gain was identified at position c.577C > T in cat AIPL1, a predicted p.Arg193*. A c.5A > G variant causing a p.V2A was identified in HES7. The variants segregated concordantly in a Persian - Japanese bobtail pedigree. Over 1700 cats from 40 different breeds and populations were genotyped for the AIPL1 variant, defining an allelic frequency in only Persian -related breeds of 1.15%. A sub-set of cats was genotyped for the HES7 variant, supporting the variant as private to the Japanese bobtail breed. Approximately 18 million SNPs were identified for application in cat research. The cat AIPL1 variant would have been considered a high priority variant for evaluation, regardless of a priori knowledge from previous genetic studies.ConclusionsThis study represents the first effort of the 99 Lives Cat Genome Sequencing Initiative to identify disease--causing variants in the domestic cat using WGS. The current cat reference assembly is efficient for gene and variant identification. However, as the feline variant database improves, development of cats as biomedical models for human disease will be more efficient, providing an alternative, large animal model for drug and gene therapy trials. Undiagnosed human patients with early-onset blindness should be screened for this AIPL1 variant. The HES7 variant should further calibrate the somite segmentation clock

    Aristaless-like homeobox protein 1 (ALX1) variant associated with craniofacial structure and frontonasal dysplasia in Burmese cats

    Get PDF
    AbstractFrontonasal dysplasia (FND) can have severe presentations that are medically and socially debilitating. Several genes are implicated in FND conditions, including Aristaless-Like Homeobox 1 (ALX1), which is associated with FND3. Breeds of cats are selected and bred for extremes in craniofacial morphologies. In particular, a lineage of Burmese cats with severe brachycephyla is extremely popular and is termed Contemporary Burmese. Genetic studies demonstrated that the brachycephyla of the Contemporary Burmese is a simple co-dominant trait, however, the homozygous cats have a severe craniofacial defect that is incompatible with life. The craniofacial defect of the Burmese was genetically analyzed over a 20 year period, using various genetic analysis techniques. Family-based linkage analysis localized the trait to cat chromosome B4. Genome-wide association studies and other genetic analyses of SNP data refined a critical region. Sequence analysis identified a 12bp in frame deletion in ALX1, c.496delCTCTCAGGACTG, which is 100% concordant with the craniofacial defect and not found in cats not related to the Contemporary Burmese

    Cytidine monophospho-N-acetylneuraminic acid hydroxylase (CMAH) mutations associated with the domestic cat AB blood group

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The cat has one common blood group with two major serotypes, blood type A that is dominant to type B. A rare type AB may also be allelic and is suspected to be recessive to A and dominant to B. Cat blood type antigens are defined, N-glycolylneuraminic acid (NeuGc) is associated with type A and N-acetylneuraminic acid (NeuAc) with type B. The enzyme <it>cytidine monophospho-N-acetylneuraminic acid hydroxylase </it>(<it>CMAH</it>) determines the sugar bound to the red cell by converting NeuAc to NeuGc. Thus, mutations in <it>CMAH </it>may cause the A and B blood types.</p> <p>Results</p> <p>Genomic sequence of <it>CMAH </it>from eight cats and the cDNA of four cats representing all blood types were analyzed to identify causative mutations. DNA variants consistent with the blood types were genotyped in over 200 cats. Five SNPs and an indel formed haplotypes that were consistent with each blood type.</p> <p>Conclusion</p> <p>Mutations in type B cats likely disrupt the gene function of <it>CMAH</it>, leading to a predominance of NeuAc. Type AB concordant variants were not identified, however, cDNA species suggest an alternative allele that activates a downstream start site, leading to a CMAH protein that would be altered at the 5' region. The cat AB blood group system is proposed to be designated by three alleles, <it>A </it>> <it>a</it><sup><it>ab </it></sup>> <it>b</it>. The <it>A </it>and <it>b CMAH </it>alleles described herein can distinguish type A and type B cats without blood sample collections. <it>CMAH </it>represents the first blood group gene identified outside of non-human primates and humans.</p

    Compulsory care of individuals with severe substance use disorders and alcohol- and drug-related mortality: A Swedish registry study

    Get PDF
    AimThis study used 17 year of Swedish registry data (2003–2019) for 25,125 adults assessed for their severity of substance use to identify the baseline factors predicting the risk of being court-ordered into compulsory care and examine the association between admission to compulsory care and mortality risks due to alcohol- or drug-related causes.Methods and materialsAddiction Severity Index (ASI) assessment data were linked to register data on demographic characteristics, compulsory care, and alcohol- and drug-related mortality. Cox regression models were used to identify baseline factors predictive of post-assessment admission to compulsory care in the 5 years post-substance use assessment. Discrete-time random-effect logistic regression models were used to examine the association between compulsory care duration and alcohol or drug-related mortality risks. Propensity score matching was used for validation.ResultsThe first models identified that younger age, female gender, and ASI composite scores for drug use, mental health and employment were significantly associated with the risk of placement in compulsory care for drugs other than alcohol. Female gender and ASI composite scores for alcohol, drug use and employment were significantly associated with compulsory care treatment for alcohol use. The second models showed that older individuals and men were more likely to die due to alcohol-related causes, while younger individuals and men were more likely to die due to drug-related causes. Length of stay in compulsory care institutions significantly increased the likelihood of dying due to substance use-related causes. Propensity scores analyses confirmed the results.ConclusionIn Sweden, a significant concern is the higher likelihood of women and young individuals to be court-ordered to compulsory care. Although compulsory care is often advocated as a life-saving intervention, our findings do not provide strong support for this claim. On the contrary, our findings show that admission to compulsory care is associated with a higher risk of substance use-related mortality. Factors such as compulsory care often not including any medical or psychological therapy, together with relapse and overdose after discharge, may be possible contributing factors to these findings

    Bestrophin Gene Mutations Cause Canine Multifocal Retinopathy: A Novel Animal Model for Best Disease

    Get PDF
    PURPOSE. Canine multifocal retinopathy (cmr) is an autosomal recessive disorder of multiple dog breeds. The disease shares a number of clinical and pathologic similarities with Best macular dystrophy (BMD), and cmr is proposed as a new large animal model for Best disease. METHODS. cmr was characterized by ophthalmoscopy and histopathology and compared with BMD-affected patients. BEST1 (alias VMD2), the bestrophin gene causally associated with BMD, was evaluated in the dog. Canine ortholog cDNA sequence was cloned and verified using RPE/choroid 5′- and 3′-RACE. Expression of the canine gene transcripts and protein was analyzed by Northern and Western blotting and immunocytochemistry. All exons and the flanking splice junctions were screened by direct sequencing. RESULTS. The clinical phenotype and pathology of cmr closely resemble lesions of BMD. Canine VMD2 spans 13.7 kb of genomic DNA on CFA18 and shows a high level of conservation among eukaryotes. The transcript is predominantly expressed in RPE/choroid and encodes bestrophin, a 580-amino acid protein of 66 kDa. Immunocytochemistry of normal canine retina demonstrated specific localization of protein to the RPE basolateral plasma membranes. Two disease-specific sequence alterations were identified in the canine VMD2 gene: a C73T stop mutation in cmr1 and a G482A missense mutation in cmr2. CONCLUSIONS. The authors propose these two spontaneous mutations in the canine VMD2 gene, which cause cmr, as the first naturally occurring animal model of BMD. Further development of the cmr models will permit elucidation of the complex molecular mechanism of these retinopathies and the development of potential therapies
    • …
    corecore